

Russian Academy of Sciences Joint Institute for High Temperatures RAS Institute of Problems of Chemical Physics RAS

Kabardino-Balkarian State University

XXXII International Conference on Interaction of Intense Energy Fluxes with Matter

March 1-6, 2017, Elbrus, Russia

Book of Abstracts

Moscow & Chernogolovka & Nalchik 2017 This book consists of the abstracts of plenary, oral and poster contributions to the XXXII International Conference on Interaction of Intense Energy Fluxes with Matter (March 1–6, 2017, Elbrus, Kabardino-Balkaria, Russia). The reports deal with the contemporary investigations in the field of physics of extreme states of matter. The conference topics are as follows: interaction of intense laser, x-ray and microwave radiation, powerful ion and electron beams with matter; techniques of intense energy fluxes generation; experimental methods of diagnostics of ultrafast processes; shock waves, detonation and combustion physics; equations of state and constitutive equations for matter at high pressures and temperatures; lowtemperature plasma physics; physical issues of power engineering and technology aspects.

The conference is supported by the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant No. 17-02-20033).

Edited by academician Fortov V.E., Karamurzov B.S., Efremov V.P., Khishchenko K.V., Sultanov V.G., Kadatskiy M.A., Andreev N.E., Dyachkov L.G., Iosilevskiy I.L., Kanel G.I., Levashov P.R., Mintsev V.B., Savintsev A.P., Shakhray D.V., Shpatakovskaya G.V.

CONTENTS

Chapter 1. Power Interaction with Matter

<i>Fortov V.E.</i> Chemical elements under extreme conditions .	38
Hoffmann D.H.H., Sharkov B.Yu., Bagnoud V., Blazevic A.,	
Kühl T., Neff S., Neumayer P., Rosmej O.N., Varent-	
sov D., Weyrich K. Accelerators for high energy density	
physics	38
<u>Andreev N.E.</u> Advanced methods of electron acceleration to	
high energies	39
<u>Khazanov E.A.</u> Laser interferometer gravitational wave ob-	
servatory: Machine review and contribution of the In-	
stitute of Applied Physics RAS	40
Sitnikov D.S., Ilina I.V., Khramova Yu.V., Filatov M.A.,	
Semenova M.L., Kosheleva N.V., Zurina I.M., Gor-	
kun A.A., Saburina I.N. Noncontact laser microsurgery	
of 3D living objects for use in reproductive and regen-	
erative medicine	41
Struleva E.V., Ashitkov S.I., Komarov P.S., Ovchinnik-	
ov A.V., Agranat M.B. Ablation of tantalum and vana-	
dium: Strength of liquid phase under a single-pulse ac-	
tion of femtosecond laser	42
Yurkevich A.A., Agranat M.B. Features of radiation of d-	
metals (gold) in the nonequilibrium electrons and lat-	
tice heating by femtosecond laser pulses	43
Soboleva N.N., Makarov A.V., Malygina I.Yu. Creation of	
the wear resistance NiCrBSi coatings by laser cladding	
and subsequent deformation processing	44
Filippov A.A., Fomin V.M., Kosarev V.F., Malikov A.G.,	
Orishich A.M., Ryashin N.S. The development of het-	
erogeneous materials based on Ni and B_4C powders us-	
ing a cold spray and stratified selective laser melting	
technologies \ldots \ldots \ldots \ldots \ldots \ldots \ldots	45
Savintsev A.P., Gavasheli Yu.O. Determination of thermo-	
mechanical ablation thresholds to sodium chloride irra-	
diated by short laser pulses	46
Efremov V.P., Frolov A.A., Fortov V.E. Ultrafast destruc-	
tion of quartz optical fibers	47

Nikolskii V.P., Stegailov V.V. Finite-difference time-domain	
simulation of the interaction between ultrashort laser	
pulses and metal nanoparticles	60
Povarnitsyn M.E., Andreev N.E. Wide-range model of Ag	
response on femtosecond laser irradiation	61
Veysman M.E., Kuznetsov S.V., Andreev N.E. On the emit-	
tance growth under non-symmetric laser-plasma cou-	
pling conditions	61
Pugachev L.P., Andreev N.E., Povarnitsyn M.E., Ros-	
mej O.N. Electrons accelerating backward in the in-	
teraction of femtosecond laser pulses with solids	62
Popov V.S., Pugachev L.P., Andreev N.E. Injection and ac-	
celeration of electrons in the plasma wake field gener-	
ated by short laser pulse	63
Mishura G.S., Andreev N.E. The structure of wake fields	
excited in plasma by different drivers	64
<u>Kuznetsov S. V.</u> Generation of short electron bunches by a	
laser pulse crossing a sharp boundary of plasma	65
Pugacheva D.V., Andreev N.E. Spin dynamics of electrons	
emitting synchrotron radiation during laser plasma ac-	
celeration	66
Starikovskiy A., Limbach C., Miles R. Trajectory control of	
small rotating projectiles by laser discharges	66
Rosmej O.N., Schönlein A., Zaehter S., Adra C., Khag-	
hani D., Samsonova J., Hoffmann A., Hoefner S., Kar-	
tashov D., Kaluza M., Spielmann C., Pugachev L.P.,	
Andreev N.E., Uschmann I. Diagnostic of plasmas cre-	
ated in relativistic laser matter interaction at high laser	
contrast	68
Ryzhkov S.V., Kuzenov V.V., Timofeeva N.O. Laser-driven	
magneto-inertial fusion with magnetized hohlraum	69
Aliverdiev A.A., Batani D., <u>Amirova A.A.</u> , Benocci R.,	
Dezulian R., Krousky E., Pfeifer M., Ullschmied J.,	
Skala J., Jakubowska K. About laser shocks dynamics	
for complex spot and structured targets	70
Bastykova N.Kh., <u>Kodanova S.K.</u> , Ramazanov T.S., Tikho-	
nov A., Maiorov S.A. Hydrodynamic model of interac-	
tion of laser radiation with deuterium–tritium target $% \left({{{\mathbf{x}}_{i}}} \right)$.	71

Hydrodynamic model of interaction of laser radiation with deuterium-tritium target

Bastykova N Kh¹, Kodanova S K^{1,@}, Ramazanov T S¹, Tikhonov A² and Maiorov S A³

¹ Research Institute of Experimental and Theoretical Physics of the Al-Farabi Kazakh National University, al-Farabi Avenue 71, Almaty 050040, Kazakhstan
² School of Science and Technology, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan

 3 Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow 119991, Russia

[@] kodanova@physics.kz

In this work, the hydrodynamic model of two-temperature plasma in conditions of inertial fusion is considered. The system of hydrodynamic equations with the counts of kinetic phenomena (viscosity, thermal conductivity and the temperature difference between ions and electrons) the radiation transfer equation and beam of heavy ions are calculated. In the framework of the model based on the hydrodynamic system, the results of several numerical experiments, the study of which is substantive interest, are considered: (i) shock wave propagation in spherical geometry for two temperature plasma; (ii) the impact of high-power laser pulse on a target, confining a mixture of deuterium and tritium; (iii) the impact of heavy ion beam at a hot dense plasma bunch. In the first problem important role play the electron conductivity and discrepancies between ions and electrons temperatures on the front of shock waves. In the second problem the compression of deuterium-tritium mixture due to the expansion of the outer shell is considered. An important role is played by the wave of electron thermal conductivity and the shock wave propagating inside the target. In the third problem the heating of dense hot plasma bunch by beam of heavy ions is considered. This research was funded under the target program No.0115PK03029 "NU-Berkeley strategic initiative in warm dense matter, advanced materials and energy sources for 2014–2018" from the Ministry of Education and Science of the Republic of Kazakhstan.