
Rotor-Liquid-Fundament System’s Oscillation 
 

A. Kydyrbekuly 

 
 Institute of Mechanics and Machine Studies, Almaty, KAZAKHSTAN 

 e-mail: almatbek@list.ru 

 

 

Abstract The work is devoted to research of oscillation and sustainability of stationary twirl of 

vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and 

set on relative frame fundament.  

The accounting of such factors like oscillation of fundament, liquid oscillation, influence 

of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, 

static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, 

allows to settle an invoice more precisely kinematic and dynamic characteristics of system.  

The solution of this task becomes complicated that movement of a rotating rotor and liquid 

movement in his cavity are interconnected that causes change of frequency of the compelled 

fluctuations and instability emergence, and the solved system of the equations consists of the 

connected equations of movement of a firm body, the equations of the continuous environment 

and boundary conditions for liquid. 
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1 Introduction 

 
In design and an assessment of vibrating characteristics of rotor cars it is necessary to 

consider case fluctuations, i.e. to consider dynamic system "rotor-corpus-fundament" as a whole 

[1,2,3]. In many theoretical and practical researches on dynamics of the rotor systems containing 

liquid, rotor fluctuations with liquid are considered only and thus the bed (base) is considered 

motionless. Such assumption leads to essential errors at an assessment of dynamic and kinematic 

characteristics of rotor system as a whole [2,4,5]. Pilot studies of such dynamic systems as rotor 

systems, show importance of the accounting of vibration of the base and need of development of 

measures for their decrease [2,6].  

 

 

2 Putting Problems, Movement Equation System and Their Solution  

 
The rotor cavity has a form of cylinder. The mass of liquid is considered a constant in time, 

and its quantity – sufficient completely to moisten cylindrical walls of a cavity even at big 

deviations of a rotor.  

Angular speed of shaft rotation 0  is constant and  it is rather great so that on a free 

surface of liquid gravitational acceleration appears negligible in comparison with centrifugal 

acceleration, and the free surface represents the cylinder concerning a rotation axis. The 

dempfied fundament in movement of system moves in the horizontal plane. Movement of liquid 

is described in the cylindrical system of coordinates connected with a rotating rotor. In a 

condition of dynamic balance the rotor and liquid rotate as a uniform firm body (figure 1).  

 



 
 

Figure  1 – Coordinates system definition  

 

 Deflections of an axis of a shaft in the direction of axes x and y motionless system of 

coordinates are relied the small. Liquid deviations from position of balance, derivatives on time 

from all amplitudes of fluctuations also are accepted by the small. Thus, for an assessment of 

stability of the related system the system of the linearized differential equations as a whole is 

considered.  

Taking into account forces of an external and internal friction, forces of liquid reaction on 

walls of the cylinder of the movement equation of an unbalanced rotor with the cavity which has 

been partially filled with liquid and the base, look like  
 

 2

1 0 1 1 0 0cos ,e i i k xmx n n x p x n y q x m t F                                         (1) 

 2

2 0 2 2 0 0sin ,e i i k ymy n n y p y n x q y m t F                                               (2) 

0 1 0 1 3e i i kA C r x s x  
2

0 0sinC A t M ,                                                                                               (3) 

0 2 0 2 4e i i kA C r y s y
 

2

0 0cosA C t M ,                                                                                              (4) 

3 3 3 1 0k k kM x p x r x s n x ,                                                                                                (5) 

4 4 4 2 0k k kM y p y r y s n y ,                                                                                              (6) 

 

0 0

0

1
2

i t i tU P
Qe iz e

t r
,                                                                           (7) 

0 0

0

1
2

i t i tP
U Qe z e

t r
,                                                                         (8) 



0

0

1
2

i tW P
i re

t z
,                                                                                         (9) 

0 under
rU W

const
r z

,                                                                    (10) 

with boundary conditions: 

on a wall, the top and bottom borders of the cylinder 

 

0U W ,      (11) 

 

on a free surface of liquid 
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Here is  ,Q x iy i . 
The equations of movement of rotor system and boundary conditions to them, linearized 

near stationary rotation, allow decisions proportional 0exp( )i t  and exp( )i t  where  is 

characteristic number 
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where 1 2,A A  и 3 4,A A  are respectively linear and angular complex amplitudes of fluctuations of 

the rotor, caused by action of own unbalance; amplitudes of the compelled fluctuations of the 

base; 1 2,B B , 3 4 5 6, , ,B B B B  are amplitudes of self-excited fluctuations of a rotor and base; 

Required frequency of fluctuations of a rotor  generally is the complex size which valid part 

defines frequency of self-oscillations, and the imaginary part characterizes degree of instability 

of system; the second members in the right parts of the equations (13)  express the fluctuations of 

the rotor caused by indignant movement of liquid concerning the cylinder.  

To exclude a time of arguments of trigonometrical and indicative functions at the solution 

of the main equations of movement, relative speed of a particle of liquid and function of pressure 

are accepted by the proportional exp ( )i t  where  is complex own meaning that results in 

expediency of creation of private decisions with the same dependence on time. Function of 

pressure and making speeds of a particle of liquid for any point of volume, and also expression 

for the hydrodynamic moment and force of reaction of liquid are as a result defined. 
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1J  and 1N   are Bessel and Neiman functions of 1
st
 order real argument;  k  – axial wave number;  

0,1,2,3,...k  

The unknown constants 0 0 1 2, , ,K KA B C C are defined by means of boundary conditions (11), 

(12). 

The solution proportional 0exp( )i t
 

gives the chance calculation of the compelled 

fluctuations of the rotor caused by its own unbalance, and the compelled fluctuations of the base 

by means of system of the equations which in a matrix form looks like: 
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where ( )a  is coefficients matrix, A  is vector column of unknown amplitudes of the compelled 

fluctuations, b  is vector column of free members:  
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The equation for determination of critical speeds is deduced from an equality condition to 

zero of a determinant of a square matrix ( )a  in the absence of a friction also is a polynom of the 

12th degree of an even order. Twelve critical speeds are in the case under consideration possible, 

from which six there correspond to the direct preсession, six following are the return precession 

caused by a rotor unbalance.  

 



3 Solution Results Analysis 

 
For research of features of the compelled fluctuations of rotor system taking into account 

spatial movement of the ideal liquid filling a cavity of a rotor, system of the equations (20) 

without difficulties is solved analytically, for example, by Gauss method or number on the 

computer. Some results of the solution of the equation (20) are shown in figures (2)-(3). At 

increase in the relation of weight of a rotor to mass of the base  as the amplitude of the 

compelled fluctuations of a rotor and the base increases and moves to higher values of angular 

speed of system. At the smallest relation of weight of a rotor to mass of the base the amplitude of  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Amplitude *
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Required frequency of fluctuations of a rotor  generally is the complex size which valid 

part defines frequency of self-oscillations, and the imaginary part characterizes degree of 

instability of system. Stability of stationary movement of system is determined by character of an 

imaginary part of complex roots of the characteristic equation. The mode of stationary rotation is 

unstable if possible values of the characteristic equation  have a negative imaginary part.  

The common numerical decision of the characteristic equation  is inconvenient, as required 

values    are included in arguments of Bessel functions.    

For of the confidant definition of a zone instability we will accept 0k , i.e. when rotor raises 

waves only on a flat surface of liquid. In this case the axial component of speed of a particle of 

liquid is equal to zero 0W  and the characteristic equation  after transformations becomes a 

polynom of the twentieth degree with complex factors. Roots of this polynom will serve as zero 

approach of roots of the transcendental characteristic equation where space movement of liquid 

is considered at 0k . In a considered task, as well as in many problems of mechanics and 

equipment, research of stability of system at its not conservatism has paramount value. Stability 

of movement of a rotor is determined by character of roots of the characteristic equation of 

system, i.e. by Lyapunov's method. Some results of the solution of these equations, are presented 

in Figure 4 where dependences of a material part are shown 
*
 from angular speed of rotor *

0  

under filling 1,5q  in case of anisotropic support. On speed intervals 1 1A A , 2 2A A  и 3 3A A  

among roots of the equation  there are roots with a negative imaginary part. Therefore, intervals 
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of speeds of a rotor 1 1A A , 2 2A A  и 3 3A A  limit zones of system instability. One root lying in the 

top semi-plane material, is close to zero and in drawing isn't shown. The following ten roots of 

the equation lie in the bottom semi-plane and in drawing also aren't shown. Critical speed of 

system is defined graphically by line crossing * *

0  with schedules of frequencies 

* * *

0
. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Dependence of material part   *  angular   

speed at  1,5q ; 0,4 ; / // / //

1 1 2 2c c c c
 

 

Emergence of three zones of instability is a direct consequence of asymmetry of 

installation on shaft of rotor, oscillation of the fundament, anisotropism of support and internal 

resistance. With extent growth of filling at the fixed values of other parameters, the width of all 

zones of instability at first extends, their borders move to higher speeds of rotor rotation then are 

narrowed. When the rotor is completely filled with liquid, zones of instability disappear. 

 

4 Conclusions 
Analytically generalized dynamic model of the Rotor-Liquid-Fundament system being 

generalized and for systems without liquid, and also without interrelation of a rotor and the base 

is solved. Exact solutions of the linearized equations of liquid movement, giving the chance 

studying and estimating effect of wave properties of a free surface of liquid on movement of 

rotor system are found. Elastic installation of the base allows enter the external damping 

necessary for obtaining of the best characteristics, than at its rigid installation. 
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