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In this work the semiclassical potential for plasma particles pair interactions, which takes into account the
diffraction effects due to the uncertainty principle in two-component plasma (the region of temperatures 104K <
T < 108K and densities 1021cm−3 < n ≤ 1024cm−3), was proposed. The values of this potential were nu-
merically calculated and an interpolation formula was obtained.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The theoretical study of the quantum effects in a dense high-temperature plasma is important for investigation and
explanation of the phenomena in a so-called semiclassical plasma, for example, in space plasmas, in laser shock
plasma etc. Properties of the semiclassical plasma can be studied on the basis of the theoretical and computer
simulation methods, which use an interaction potential taking into account the quantum effects. For the two-
component system in work [1] the pair interaction potential taking into account the quantum effects in a wide
region of temperatures was obtained by means of the generalization of the Kelbg potential (see work [2]). Now,
the Deutsch potential [3], which takes into account the diffraction effects and has a very simple form, is widely
used. The Deutsch potential is valid only for a dense plasma at high temperatures (T > 106K). In this paper the
semiclassical potential, which takes into account the diffraction effects and is valid for temperatures (T > 104K),
was obtained. It should be noted, that this potential additionally takes into account the influence of the density
effects on the diffraction term. So, this potential depends on temperature and density. It was obtained on the basis
of the Slater sum:

S(r1, ..., rN ) = c
∑
n

Ψ∗ne
−βEnΨn , (1)

here:

c = ΠNν !λ
3Nν
ν , λ2

ν = 4πανβ, αν = �
2/8π2mν , β = 1/kT (2)

In these equations Nν is the number of particles of the ν-th sort, which have a mass mν and thermal wavelength
λν . The wave function is a properly symmetrized eigenfunction for the total macroscopic system with eigenvalue
En, where n represents a complete set of quantum numbers. In order to derive the semiclassical potential the
Slater sum eq.(1) is equated to the classical Boltzmann factor (see work [4]).

2 Differential equations for the semiclassical potential

The Thomas Fermi approximation for wave function was used [4]. The Hamiltonian is

H = −
∑
j

αj∇2
j + V, (3)
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where
∑

j αj∇j is 3N -dimensional vector operator and the interaction potential V is:

V =
∑
i<j

uij =
∑
i<j

ZiZje
2/rij . (4)

One can write S = e−B and expand B in terms of the two-body functions, the three-body functions, etc. :

B =
∑
i<j

ωij +
∑

i<j<k

ω
(3)
ijk... (5)

In the limit of the infinite temperature the Slater sum transforms to the classical Boltzmann factor : ωij → βvij ,
where vij is the Coulomb potential.

Since the Slater sum is invariant under unitary transformation eq.(1) can be rewritten as :

S = c
∑
n

(e−βH/2Ψn)
∗(e−βH/2Ψn) (6)

After differentiating (6) by β the following expression can be found:

∂B

∂β
= V + 1/2

∑
j

αj∇2
jB − 1/4

∑
j

αj∇jB∇jB + Y, (7)

where:

X = c
∑
n

(
∑
j

αj∇je
−βH/2Ψn)

∗(
∑
j

αj∇je
−βH/2Ψn), (8)

Y = X/S − 3N/2β − 1/4
∑
j

αj∇jB∇jB. (9)

The same procedure was used to derive the equation like (7) for the mixture of the gases:

∂BI

∂β
= V + 1/2

∑
j

αj∇2
jBI −

∑
j

αj∇jBI∇jBI + YI , (10)

Taking the difference of (7) and (10) one can obtain for U = B −BI :

∂U

∂β
= V + 1/2

∑
j

αj∇2
jU − 1/4

∑
j

αj∇jU∇jU − 1/2
∑
j

αj∇jU∇jBI + Y − YI , (11)

BI is the symmetry effective potential. So, U takes into account only the diffraction effect. Let us substitute
the following expressions instead of BI , U and Y − YI :

BI ≈
∑
i<j

sij , (12)

UI ≈
∑
i<j

uij , (13)

Y − YI ≈
∑
i<j

yij , (14)

By the Fourier transforming the following differential equation for Fourier transformations denoted as ũ was
obtained:

∂ũab

∂β
= ũ− 1/2(εa + εb)ũab − Q̃ab − 1/2(αa − αb)(∇ũab∇sab + ỹab)
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−1/2 1
Ω

∑
k

εk(ũakũbk + ũaks̃bk + ũbks̃ak)) , (15)

where: εa = αax
2, Qab(r) = 1/4(αa − αb)∇uab(r)∇uab(r)

The equations for the Fourier transforms of the semiclassical interaction potentials of the two component
plasma particles can be written as:

∂ũii

∂β
= ũ− δεũii − Q̃ii − 1/2δρεũ2

ii − 1/2ρεũ2
ie + ỹii, (16)

∂ũie

∂β
= −ũ− 1/2(1 + δ)εũie − Q̃ie − 1/2δρεũieũii − 1/2ρεũie(ũee + 1/2s̃) + ỹie, (17)

∂ũee

∂β
= −ũ− 1/2εũee − Q̃ee − 1/2δρεũ2

ie − 1/2ρεũee(ũee + s̃) + ỹee, (18)

where: δ = me/mi, ε = εe = εi/δ.

3 Semiclassical potential

Fig. 1 Proton-electron pair interaction potential.
Where: 1 is the potential (21), 2 is the semiclassical
potential (20), 3 is the numerical data. R = r/aB ,T =
3.16 · 106K

Fig. 2 Proton-electron pair interaction potential.
Where: 1 is the potential (21), 2 is the semiclassical
potential (20), 3 is the numerical data. R = r/aB ,T =
210000K

The equations (16)-(18) were solved numerically using the boundary conditions :

ũab(x)|β→0 =
4πβZaZbe

2

x2
(19)

For a wide range of temperatures and densities the following interpolation formula was obtained:

uab(r) =
ZaZbe

2

r

(
1− tanh

(√
2

λ2
ab

a20 + br2

)
e−tanh(

√
2λ2

ab/(a
2
0+br2))

)(
1− e−r/λab

)
(20)

where a0 = (3/4πn)1/3 is an average interparticle distance, b = 0.033, λab = �/
√
2πμabkBT is the thermal de

Broglie wave-length of a− b pair, μab is the reduced mass of a− b pair.
In the limit β → 0 the potential (20) coincides with the Deutsch potential:

uab(r)|β→0 =
ZaZbe

2

r
(1− exp[−r/λab]) (21)

Figures 1 and 2 show the curves for semiclassical pair interaction potential (20) and numerical data obtained
by solving eqs.(16)-(19) for the different temperatures.
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4 Conclusion

Semiclassical interaction potential for particles of the two-component plasma was obtained. It takes into account
the diffraction effects in a wide region of temperatures and densities. Semiclassical potential at high densities
and temperatures has good agreement with the Deutsch potential.
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