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Abstract

In the present work, classical electron–ion scattering, Coulomb logarithm, and stopping power are studied taking into
account the quantum mechanical diffraction effect and the dynamic screening effect separately and together.
The inclusion of the quantum diffraction effect is realized at the same level as the well-known first-order gradient
correction in the extended Thomas–Fermi theory. In order to take the effect of dynamic screening into account, the
model suggested by Grabowski et al. in 2013 is used. Scattering as well as stopping power of the external electron
(ion) beam by plasma ions (electrons) and scattering of the plasma’s own electrons (ions) by plasma ions (electrons)
are considered differently. In the first case, it is found that in the limit of the non-ideal plasma with a plasma parameter
Γ→ 1, the effects of quantum diffraction and dynamic screening partially compensate each other. In the second case,
the dynamic screening enlarges scattering cross-section, Coulomb logarithm, and stopping power, whereas the quantum
diffraction reduces their values. Comparisons with the results of other theoretical methods and computer simulations
indicate that the model used in this work gives a good description of the stopping power for projectile velocities v≲ 1.5vth,
where vth is the thermal velocity of the plasma electrons.

Keywords: Dense plasma; Dynamical screening; Scattering cross-section; Coulomb logarithm; Stopping power

I. INTRODUCTION

Currently, the dense plasma has been the subject of active
theoretical investigations (Ki & Jung, 2010Q3 ; Meister et al.,
2011; Benedict et al., 2012; Grabowski et al., 2013;
Ramazanov et al., 2013; Hong & Jung, 2015Q4 ; Kodanova
et al., 2015a; Moldabekov et al., 2015a, b; Reinholz et al.,
2015) due to its relevance to the inertial confinement
fusion. In particular, these investigations were triggered by
the experiments at the National Ignition Facility (Hurricane
et al., 2014) and magnetized Z-pinch experiments at
Sandia (Cuneo et al., 2012). To obtain a thermonuclear reac-
tion in the above-mentioned facilities it is necessary to study
such dynamical properties as the stopping power (Hoffmann,
et al., 1990; Jacoby et al., 1995; Hoffmann et al., 2005;
Barriga-Carrasco & Casas, 2013Q5 ; Nersisyan et al., 2014;
Frenje et al., 2015; Zhang et al., 2015; Zylstra et al.,

2015), thermal conductivity (Reinholz et al., 1995; Meister
et al., 2015, 2016), and electrical conductivity (Meister &
Röpke, 1982; Karakhtanov et al., 2011; Mintsev & Fortov,
2015 Q6; Reinholz et al., 2015; Meister et al., 2016) of dense
plasma. All these processes need understanding of micro-
scopic processes in the dense plasma.

In this work, we consider classical electron–ion scattering,
Coulomb logarithm, and stopping power for both plasma par-
ticles and external beam particles. To describe the electron–
ion interaction strength during collisions, the coupling
parameter β equal to the ratio of the characteristic interaction
energy between two particles to the kinetic energy of the pro-
jectile particle was used, β= Zione

2/(λDmv
2), here λD is the

screening length, Zion is the ion charge number, e represents
the elementary charge, and mv2 describes the initial kinetic
energy of the projectile far from the target. The initial kinetic
energy has to be taken as the mean kinetic energy of relative
motion. At low beam velocities, the kinetic energy reduces to
the electrons’ thermal energy with velocity vth =

���������
kBT/me

√
,

kB is the Boltzmann constant, and me is the electron mass.
As a weakly coupled plasma is considered, scattering of

1
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the plasma electron by a plasma ion is characterized by a
small coupling parameter β< 1, while the scattering of an
electron (ion) of the external beam on the plasma ion (elec-
tron) does not have such a limitation.
The quantum diffraction effect is considered using the

quantum potential (Deutsch, 1977; Ramazanov et al.,
2015), whereas the dynamic screening effect is taken into ac-
count by simple rescaling of the screening length (Hurricane
et al., 2014). Firstly, the impact of these effects is studied
separately, and then the resulting impact of both effects is
considered.
In Section II, the electron–ion effective interaction poten-

tial is considered taking into account the quantum diffraction
effect as well as screening by the surrounding plasma. In
Section III, the scattering processes in the hot dense
plasma are investigated. In Section IV, Coulomb logarithm
and stopping power are studied.

II. SCREENED INTERACTION POTENTIAL

The quantum interaction potential of particles, when screen-
ing is neglected, has the following form (Deutsch, 1977):

fab =
eaeb
r

[1− exp (−r/λab)], (1)

where λab = h− /
�����������
2πmabkBT

√
is the thermal wavelength,

mab=mamb/(ma+mb), T is the plasma temperature, a and
b denote an electron or an ion.
A thorough investigation of scattering processes in a

plasma requires that one takes the charge screening into ac-
count (Kilgore et al., 1993). In order to obtain the effective
screened potential, a well-known formula for the effective
potential in the Fourier space is used:

Φ̃ab(k) = f̃ab(k)
ε(k) , (2)

where f̃ab(k) is the Fourier transform of the potential (1) and
ε(k) is the static dielectric function of the plasma in linear re-
sponse approximation:

ε(k) = 1+ ne
kBT

φ̃ee(k) +
ni
kBT

φ̃ii(k). (3)

To account for the quantum diffraction effect, in Eq. (3) we
use the quantum (Deutsch) potential: (1) for the electron–
electron interaction. The static dielectric function of the
plasma in a linear response approximation has the form
(Ramazanov et al., 2015):

e(k) = 1+ k2e
(λ2eek2 + 1)k2 +

k2i
k2

. (4)

where ions are considered as point-like particles λii− 0 and

ki =
��������������
4πne2e/(kBT)

√
, ke =

��������������
4πne2i /(kBT)

√
.

From Eqs (1)–(4), performing an inverse Fourier transfor-
mation, the following screened interaction potential of the
electron with the ion was obtained (Ramazanov et al., 2015):

Φei(r) = − e2Zion

λ2eiγ
2

�����������������
1− (2kD/λeiγ)2

√
r

×
1/λ2ee − B2

1/λ2ei − B2
exp(−rB) − 1/λ2ee − A2

1/λ2ei − A2
exp(−rA)

( )

+ e2Zion
r

exp(−r/λei), (5)

where γ2 = 1/λ2ee + k2i , kD = (k2e + k2i )1/2 = 1/λD is the
inverse screening length, and

B = γ

�������������������������
1−

������������������
1− (2kD/λeiγ2)2

√√( )
,

A = γ

�������������������������
1+

������������������
1− (2kD/λeiγ2)2

√√( )
. (6)

If the quantum diffraction effect is neglected, Eq. (5) turns
into the well-known Debye (Yukawa) potential:

Φei(r) = − e2Zion
r

exp(−r/λD). (7)

If the contribution of ions (the third term) in Eq. (4) is
neglected, the inverse value of the dielectric function is
written as:

ε(k)−1 = k2(1+ λ2eek
2)

k2 + k2e + λ2eek
4
, (8)

where k2e = 4πnee2/kBTe is the screening parameter due to
electrons.
Recently, the exact expansion of the inverse value of the

Lindhard dielectric function of electrons in the long wave-
length limit was obtained (Moldabekov et al., 2015c). The
second-order result of this expansion has the following form:

ε2(k)−1 = k2[1+ (ã2/ã0)k2]
k2 + κ2Y + (ã2/ã0)k4 . (9)

The result for ã2/ã0 is

ã2
ã0

= I−3/2(η)
12θk2FI

2
−1/2(η)

. (10)

Here kF= (3π2n)1/3, In is the Fermi integral of order n, η= μ/
kBT, μ is the chemical potential of the electrons. k2Y = k2TFθ

1/2

I−1/2(η)/2 is the screening length, which interpolates between
Debye and Thomas–Fermi expansions, and θ= kBT/EF is
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the degeneracy parameter, which defines whether the plasma
is degenerate or classical.
From the viewpoint of the density functional theory, the

dielectric function (9) takes into account the first-order gradi-
ent correction of the contribution of the non-interacting ki-
netic energy to the free energy of electrons (Moldabekov
et al., 2015c). The first-order gradient correction correctly
predicts a finite cusp at the ionic center (Stanton & Murillo,
2015Q7 ). This is due to the quantum diffraction effect or accord-
ing to Dunn and Broyles (1967) quantum tunneling effect,
which allows particles to reach regions inaccessible for clas-
sical particles.
The second-order result of the Lindhard dielectric function

expansion (9) has the same form as Eq. (8). The difference is
only in constant coefficients. It allows us to conclude that in-
clusion of the quantum diffraction effect is realized at the
same level as the well-known first-order gradient correction
in the extended Thomas–Fermi theory. Additionally, this
allows us to generalize the effective pair interaction potential
(5) to the case of a plasma with degenerate electrons replac-
ing λee and kDe by

�������
ã2/ã0

√
and kY, respectively.

In the limit θ≫ 1, the coefficient
�������
ã2/ã0

√
is equal to h− /�����������

12mekBTe
√

. This is different from the thermal wavelength
used in the quantum pair interaction potential (1) by Deutsch
(1977), Dunn and Broyles (1967)Q8 , and Kelbg (1963). Here, it
is necessary to keep in mind the fact that the Lindhard dielec-
tric function does not take into account plasma non-ideality
(electron–electron interaction), whereas the thermal wave-
length in the quantum pair interaction potentials obtained
as the result of the semiclassical consideration of the
weakly non-ideal plasma does. Particularly, recently it was
shown that the quantum pair interaction potential in the
form of Eq. (1) correctly reproduces the Montroll–Ward
contribution to the plasma equation of state in the limit
λeekD≪ 1. As we consider a weakly coupled semiclassical
plasma, in this work the effective potential (5) is used to
study the scattering process and stopping power.
Figure 1 shows the effective screened interaction potential

(5). The effective potential (5) takes into account screening at
large distances and quantum diffraction effect at short
distances.
In order to take into account the effect of dynamic screen-

ing we use a recipe recently suggested on the basis of highly
accurate molecular dynamics data obtained by Grabowski
et al. (2013). Following this work the screening length was
rescaled as

λD � λD

�������������������������
1+ (v/vth)2(1+ Γ3)1/4

√
, (11)

here vth =
���������
kBT/me

√
, and Γ= e2/akBT is the plasma non-

ideality parameter, a= (3/4πne)
1/3 is the average distance

between the particles.
Such a rescaling procedure was first suggested by

Zwicknagel et al. (1999) [λD
������������
1+ (v/vth)

√
], the formula

(11) extends the approach to strong coupling. Recently Dzhu-
magulova et al. (2013) used Zwicknagelâ€™s rescaling

procedure to calculate scattering cross-sections within the
first Born approximation.

More accurately, to include dynamic screening effects in
the weakly non-ideal plasma the following scheme suggested
by Gould and DeWitt can be used (Kraeft & Strege, 1988 Q9;
Gericke et al., 1996):

∂〈E〉
∂x

= ∂〈E〉staticTmatrix

∂x
+ ∂〈E〉dynamic

Born

∂x
− ∂〈E〉staticBorn

∂x
. (12)

In Eq. (12), the stopping power is calculated by the sum of
the T-matrix and the dynamic random phase approximation Q10
(RPA) subtracting the static first Born term to avoid double
counting. In this approximation, strong binary collisions
are taken into account by the T-matrix contribution, but the
dynamic screening is accounted for in the weak-coupling
limit. Further, this ansatz is referred to as combined model.
For more details we refer the reader to the works of
Zwicknagel (2009), and Gericke and Schlanges (1999).

In order to check the quality of the description of the
plasma properties on the basis of the effective potential (5),
the comparison of the stopping power calculated using the
combined model based on T-matrix and first-order Born ap-
proximation with the results obtained using the effective po-
tential (5) with the rescaled screening length is given below.

Furthermore, the effective potential with the rescaled
screening length will be referred to as the dynamic screened
potential.

III. ELECTRON–ION SCATTERING PROCESS

The classical scattering angle for two particles with masses
m1, m2 and with the interaction potential U(r) for a given
impact parameter ρ is equal to

χ(ρ) = π− 2φ(ρ)∣∣ ∣∣, (13)
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Fig. 1. Interparticle interaction potentials in units of the thermal energy kBT.
Line 1 is the Yukava potential (7), line 2 is the effective potential (5) at dif-
ferent values of the parameter d= λei/λD.
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where

φ(ρ) = ρ

∫∞
rmin

dr

r2
���������������
1− Ueff (r, ρ)

√ , (14)

and Ueff is the effective interaction energy in the units of ki-
netic energy of the projectile, E=mv2/2 has the following
form:

Ueff (r, ρ) = ρ2

r2
+ 2U(r)

mv2
. (15)

The effective potential (15) takes the centrifugal force into
account. In Eq. (14), rmin corresponds to the distance of a
minimal approach at the given ρ and is obtained from the
equation Ueff(rmin, ρ)= 1. Using χ(ρ) the scattering cross-
section can be obtained from the well-known formula:

σ = 2π
∫∞
0

1− cosχ(ρ)[ ]
ρdρ. (16)

As the potentialU(r) we took the screened electron–ion inter-
action potential (5). The scattering process is described by
the coupling parameter β and the parameter d= λei/λD,
that is, the ratio of the thermal wavelength to the Debye
radius. The scattering angle and the scattering cross-section
obtained using the effective potential (5) with and without
dynamic screening are presented below. For comparison,
the scattering angle and the scattering cross-section obtained
based on the Yukawa potential (7) with and without dynamic
screening are given.

a. Influence of the quantum diffraction effect.
First of all, in Figure 2 the results for the Yukawa po-
tential and the effective potential (5) are shown with-
out dynamic screening. It is seen that both the
scattering angle and the scattering cross-section de-
crease with an increase in the parameter d for β< 5.
The scattering angle is close to zero for ρ→ 0, the
possible diffraction of the projectile by the target par-
ticle at small impact parameters is related to the finite
values of the interaction effective potential at small in-
terparticles distances. Previously, we obtained this
effect in (Kodanova et al., 2015a) where the impact
of the quantum diffraction effect on transport proper-
ties was considered for β< 1. Here we extend our cal-
culations to the strong coupling limit. On the contrary,
at β> 5 the scattering cross-section increases with
increasing parameter d. Such a behavior can be
explained by the fact that at strong coupling the scat-
tering takes place at a large distance in the Yukawa-
type tail of the effective potential (5) (Khrapak
et al., 2003; Kodanova et al., 2015b). The quantum
effect of non-locality makes screening at large distanc-
es weaker than in the classical case (7) (see Fig. 1), as
a result, in the strong coupling limit β> 5 the

scattering cross-section increases with an increasing
impact of the quantum diffraction effect.

b. Influence of the dynamic screening on the beam–plas-
ma scattering. Here, we take into account both the
quantum diffraction effect and the dynamic screening
effect. Let us first consider scattering of an external
beam electron (ion) by a plasma ion (electron).
Thus, two parameters Γ and β are independent of
each other. For β< 1 we found that when the param-
eter Γ is close to unity the quantum diffraction effect
and the dynamic screening effect compensate each
other and together give nearly a null resulting effect
such that the effective potential (5) with a rescaled
screening parameter gives approximately the same
scattering cross-section (dashed line in Fig. 3b) as
the Yukawa potential (7) does (solid line in Fig. 3b).
It is seen in Fig. 3 where λ∗D is a rescaled screening
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Fig. 2. Top panel (a): Scattering angle at β= 0.8 obtained on the basis of the
Yukawa potential (full line 1) and on the basis of the interaction potential (5)
(dotted lines 2). Bottom panel (b): Scattering cross-section obtained on the
basis of the Yukawa potential (full line 1) and on the basis of the interaction
potential (5) (dotted lines 2). Here, Γ= 0.8.
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parameter and Γ= 0.8, d= 0.4. For β≫ 1 the effect
of dynamic screening is not important.

At small values of Γ the dynamic screening and the quan-
tum diffraction effects are unable to compensate each other as
it is demonstrated in Fig. 4, where calculations have been
done for Γ= 0.2 and Γ= 0.4. In general, the dynamic screen-
ing tends to increase the cross-section, while the quantum
diffraction effect tends to reduce the scattering cross-section.

c. Influence of the dynamic screening on the scattering of
the plasma particles by each other.
Finally, we consider the electron–ion scattering in the
case when both the projectile and the target belong to
the plasma and scattering is caused by thermal
motion of particles, therefore we take β< 1. Here, the
parameters Γ and β depend on each other as Γ= (β/
Zion)

2/36−1/3. As it is seen from Fig. 5a, the general

behavior noted above remains valid, the dynamic
screening makes the cross-section larger and the quan-
tum diffraction makes the scattering cross-section
smaller. Thereby, the quantum effect of diffraction
and the dynamic screening have opposite impact on
the scattering at β< 1.

Figure 5b shows the comparison of the scattering cross-
section obtained on the basis of the effective potential (5)
(without rescaling of the screening length) with the cross-
section calculated in the first Born approximation and with
the data of Zwicknagel (2009) obtained in terms of classical
scattering of particles interacting by the Yukawa potential.
As it is seen from Figure 5b, the effective potential (5)
gives good agreement with the first Born approximation at
low values of the collision coupling parameter β. This clearly
indicates that the quantum effect of diffraction is correctly
described by the effective potential (5).
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Fig. 4. The same as in Fig. 3b but for Γ= 0.2 (top figure) and for Γ= 0.4
(bottom figure).
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Fig. 3. Top panel (a): Scattering angle at β= 0.8 obtained on the basis of the
Yukawa potential (full line 1) and on the basis of the interaction potential (5)
(dotted lines 2). Bottom panel (b): Scattering cross-section obtained on the
basis of the Yukawa potential (line 1) and on the basis of the interaction
potential (5) (line 2). Here λ∗D is the rescaled screening length, Γ= 0.8 and
d= 0.4.
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These features of the scattering cross-section enable us to
understand the dependence of the Coulomb logarithm and
stopping power in semiclassical plasma on β and d parame-
ters, as both the Coulomb logarithm and the stopping
power are related to the cross-section Ec∼Λei∼


sin2(χ/2)

σ′dΩ (hereΩ is the scattering solid angle, and σ′ is the differ-
ential scattering cross-section).

IV. COULOMB LOGARITHM AND STOPPING
POWER

One of the most important parameters used to describe the
interaction of ions with matter is the energy of projectiles.

The stopping power is a parameter characterizing the rate
of loss of the average energy of fast electrons or ions in
plasma. Consequently, the stopping power in the binary col-
lision approximation (Ordonez & Molina, 2001 Q11; Ramazanov
& Kodanova, 2001 Q12):

dE

dx
= 8πn

μei
mi

( )
· Ec · b2⊥ · Λei, (17)

here Ec= (1/2)μeiυ
2 is the energy of the center of mass of

the colliding particles, υ is the relative velocity of the scat-
tered test particle, b⊥= Zione

2/(2Ec), Λei is the Coulomb
logarithm.
Based on the effective interaction potential, the Coulomb

logarithm is determined by the scattering angle of the pair
Coulomb collisions. Introducing the center of mass in the
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Fig. 6. Top panel (a): Coulomb logarithm obtained on the basis of the
Yukawa potential (line 1) and on the basis of the interaction potential (5)
(line 2). Bottom panel (b): Stopping power obtained on the basis of the
Yukawa potential (line 1) and on the basis of the interaction potential (5)
(line 2) (Γ= 0.8). The stopping power is given in units of kBT/λD.
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Fig. 5. Top panel (a): Scattering cross-section obtained on the basis of the
Yukawa potential (line 1) and on the basis of the interaction potential (5)
(line 2). Here λ∗D is the rescaled screening length, Γ= (β/Zion)

2/36−1/3 and
d= 0.4. Bottom panel (b): Scattering cross-section obtained using the
effective potential (5) (solid line) within the first Born approximation
(dashed line) (Zwicknagel, 2009), and the result of Zwicknagel (2009)
(dashed-dotted line) obtained in the framework of classical scattering of par-
ticles interacting via the Yukawa potential at Γ= 0.1, d= 0.2. In the nota-
tions of Zwicknagel (2009) the cross-section is calculated for the parameter
κ = Ze2μieλD/h�

2 = 1, where μei is the reduced mass.
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collision process the Coulomb logarithm is written as
(Belyaev et al., 1996; Golubev & Basko, 1998Q13 ):

Λei = 1
b2⊥

∫∞
0
sin2

χ(ρ)
2

( )
ρdρ. (18)

We start from the influence of the quantum diffraction effect
on the Coulomb logarithm and stopping power in the case of
beam–plasma scattering of the particles. As one can see from
Figure 6, at β< 5, the inclusion of the quantum diffraction
effect decreases the value of the Coulomb logarithm and
the stopping power. It is due to the lower value of the scatter-
ing cross-section in comparison with the case when the quan-
tum diffraction effect is neglected. At β> 5, both the
Coulomb logarithm and the stopping power increase with in-
crease in the parameter d. This result can be also explained by

a larger cross-section than in the case λ= 0 (Yukawa
potential).

Now let us consider the influence of the dynamic screening
on the beam–plasma scattering. From Figure 7, it is clear that
the inclusion of both the dynamic screening and the quantum
diffraction effect leads to partial compensation of the impact
of these two effects at β< 5. At large values of the parameter
β≫ 1, the effect of the dynamic screening can be neglected,
while the quantum effect of diffraction remains important as
it was discussed in the previews section.

Finally, consider the influence of the dynamic screening
on the scattering of the plasma particles by each other. In
this case, the impact of the dynamic screening increases as
the value of the parameter β becomes larger due to the in-
crease of the coupling parameter Γ= (β/Zion)

2/36−1/3, in
contrast to the case the beam–plasma scattering.

The comparisons of the calculated values of the stopping
power using the effective potential (5) with the results of
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Fig. 8. (a) Coulomb logarithm and (b) stopping power obtained on the basis
of the Yukawa potential (line 1) and on the basis of the interaction potential
(5) (line 2). Here λ∗D is the rescaled screening length, Γ= (β/Zion)

2/36−1/3

and d= 0.4. The stopping power is given in units of kBT/λD.
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Fig. 7. Top panel (a): Coulomb logarithm obtained on the basis of the
Yukawa potential (line 1) and on the basis of the interaction potential (5)
(line 2). Bottom panel (b): Stopping power obtained on the basis of the
Yukawa potential (line 1) and on the basis of the interaction potential (5)
(line 2). Here λ∗D is the rescaled screening length, Γ= 0.8 and d= 0.4.
The stopping power is given in units of kBT/λD.
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the combined model, T-matrix model, the first Born approx-
imation, dynamic RPA, and particle-in-cell simulation are
shown in Figures 9 and 10.
From these curves one can see that without rescaling of the

screening length the effective potential (5) gives good de-
scription of the stopping power at v ≲< vth. Rescaling of
the screening length extends this range up to v≲ 1.5vth.
For comparison, the combined T-matrix model including
dynamic screening leads to a reasonable agreement with
the simulation data at velocities v≲ 3vth. At high velocities
our results become closer to the Born approximation.
The failure of the simple rescaling of the screening length

to correctly reproduce the dynamic screening effect at high
velocities is expected, as the potential around the ion in
this case has strong deviations from the Yukawa-type poten-
tial and has a negative trailing potential minimum behind the

ion, which may lead to the attraction between the charged
atoms (Moldabekov et al., 2015a, b).

V. CONCLUSION

Classical electron–ion scattering, Coulomb logarithm, and
the stopping power were considered taking into account
both the quantum diffraction effect and the dynamic screen-
ing effect. It was shown that at β< 5, the dynamic screening
leads to an increase in the scattering cross-section, Coulomb
logarithm, and stopping power. The quantum diffraction
effect makes these values smaller than those obtained using
the Debye (Yukawa) potential. In contrast, at β> 5 the quan-
tum effect of diffraction enlarges the scattering cross-section
as well as the Coulomb logarithm and stopping power,
whereas the dynamic screening becomes unimportant
(within used model). It is also found that at β< 1 in a
dense plasma, when the parameter Γ is close to unity, the
considered effects can partially cancel each other.
The comparison of the values of the stopping power calcu-

lated on the basis of the model presented in this paper with
the results of the combined model, T-matrix method, static
Born approximation, and dynamic RPA revealed that our
model gives good description of the stopping power at veloc-
ities v≲ 1.5vth and has correct behavior at all values of the
considered velocities.
These results provide useful information on quantum

shielding, collective, and quantum-mechanical effects in
the collision processes in dense plasmas.
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Fig. 10. Stopping power obtained on the basis of the effective interaction
potential (5) with and without rescaling of the screening length in compari-
son with the results of different theoretical approaches (Gericke et al., 1999)
for Z= 5. The stopping power is given in units of 3kBT/λD.
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Fig. 9. Stopping power obtained on the basis of the effective interaction po-
tential (5) with and without rescaling of the screening length in comparison
with the results of different theoretical approaches (Gericke & Schlanges,
1999Q14 ) for (a) Z= 1 and (b) Z= 10. In (b) the stopping power is given in
units of 3kBT/λD.
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(2016) aimed to develop a software package for the study of the
transport and dynamic properties of a dense ICF plasmas.
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