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INTRODUCTION

The quantum problem of three bodies with Cou�
lomb interaction is one of the most notable noninte�
grable problems in quantum mechanics. At the same
time, extremely accurate numerical solutions for the
problem of bound states for a system of three particles
may be obtained with modern computers. For exam�
ple, the nonrelativistic energy of the ground state of
helium with a nucleus of an infinite mass is now
known accurately to 46 significant digits [1].

In the present study, a version of the variational
method (the so�called “exponential” expansion) that
renders it possible to numerically solve the quantum
Coulomb three�body problem with a very high accu�
racy and is applicable to, among other things, states
with a nonzero angular momentum is considered. This
method is used to calculate the nonrelativistic ioniza�
tion energies of a helium atom for S, P, and D states. It
is shown that the developed method is an efficient and
flexible instrument for investigating Coulomb systems.
An analysis of convergence proves that the method is
highly accurate and demonstrates that nonrelativistic
energy values accurate to 20 significant digits may be
obtained easily.

The development of such high�precision methods
is also important for the reason that it may help solve a
wide variety of physical problems that are of interest in
practice. For example, atoms of antiprotonic helium

 are studied in physics of exotic atoms and mol�
ecules [2]. One of the electrons of helium is replaced
by an antiproton in this atom. Under certain condi�
tions, this antiproton forms metastable states with a
lifetime of several microseconds. Not only is this a
record lifetime for an antiparticle within a standard
(real) medium, but also an astronomical time by the
standards of atomic physics, where the lifetime of the
2P state of a hydrogen atom is only 10 ns. This allows

He+p

one to use precision laser spectroscopy to probe the
structure of the spectrum of an antiprotonic helium
atom.

Another very important aspect, namely, the cross
impact of atomic and nuclear physics [3], in the deter�
mination of statistical parameters of nuclei should be
noted. For example, the accuracy of the mean�square
helium charge radius that is determined experimen�
tally from electron–nuclei scattering is about 1–3%.
At the same time, the experimental determination of
the charge radius of 4He by muonic atom spectroscopy
allows one to reduce the error in the value of this
parameter by more than an order of magnitude.

The paper is structured as follows. The application
of the variational method to the stationary
Schrödinger problem (specifically, the variational
“exponential” expansion used in practical calcula�
tions) is discussed in detail in Sections 1 and 2. The
inverse iteration method, which is considered to be
one of the most efficient computational approaches to
a discretized problem with a finite basis, is reviewed in
Section 3. In the last section, the convergence of
numerical calculations is investigated, and the final
theoretical results for 11 states of a helium atom are
given.

VARIATIONAL METHOD

Let us first formulate the variational principle for
bound states and describe the variational method that
defines the form of basis functions of the solution
expansion and the choice of variational parameters in
the construction of wave functions. This method is
hereinafter referred to as the “exponential” expan�
sion.

The Hylleraas–Undheim variational principle,
which is better known in mathematics as the Ray�
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leigh–Ritz variational principle, is the starting point in
solving the stationary Schrödinger equation

(1.1)

for a certain Hamiltonian using variational methods.
This principle is considered a versatile method for
deriving an approximate solution. The problems of
determining the extrema or stationary values of func�
tionals are the basic problems of variational calcula�
tion. The essence of this method consists of substitut�
ing the problem of finding the stationary values of
functionals with a fundamentally less complex prob�
lem of finding the stationary values of functions of sev�
eral variables [4].

Let there be a self�adjoint operator defined within
the Hilbert space for which the following boundedness
condition is satisfied:

(1.2)

where c is a certain constant. Let us then define a func�
tional

(1.3)

that is bounded from below by c.
Theorem 1 [4]. Let H be a self�adjoint operator that

satisfies condition (1.2). Let us define

(1.4)

where χ⊥ is a subspace orthogonal to χ and D(H) is the
domain of operator H. One of the following assertions
is then true for any fixed n:

(i) n eigenvalues (degenerate eigenvalues are
counted according to their multiplicity) lying below the
essential spectrum boundary are present and μn(H) is
the n�th eigenvalue (with account of multiplicity); or

(ii) μn(H) is the lower boundary of the essential
spectrum.

The determination of eigenvalues (i.e., the energy
of bound states of the stationary Schrödinger equa�
tion) comes down to calculating the saddle points of
functional (1.4). The assertion of the theorem is
known as the minimax principle.

Let us now consider a method that uses the Ray�
leigh–Ritz variational principle to solve practical
eigenvalue problems and is called the Ritz process. Let
φk be a complete sequence of vectors in the Hilbert
space subject to the following conditions:

(i) vectors φk belong to the domain of operator H;
(ii) vectors φ1, φ2, …, φn are linearly independent at

any n.

Let us assume that un =  where xk are

scalar coefficients. Inserting un (at fixed n) into func�

Hψ Eψ=

H cI,≥

Φ ψ( ) ψ Hψ,( )
ψ ψ,( )

�����������������,=

μn H( ) max
dimχ n 1–=

min
Ψ∈� H( )

Ψ∈χ
⊥

Φ Ψ( ),=

xkφk,
k 1=
n∑

tional Φ(⋅), we obtain a function that depends on a

finite set of parameters 

where

The determination of minimax solutions is thus
reduced to calculating the corresponding eigenvalues
of the generalized eigenvalue problem:

(1.5)

where matrices A and B are composed of coefficients
aij and bij, respectively.

Vectors φk may depend on nonlinear parameters ω.
If this is the case, problem (1.5) is solved for each fixed
ω and each eigenvalue number k, λk(ω) is chosen, and
this value is then minimized by all values of nonlinear
parameters:

One important condition is satisfied for Ritz esti�
mates:

(1.6)

It follows from there that Ritz estimates are upper
bound ones. Inequality (1.6) for basis functions
dependent on nonlinear parameters follows from

A rigorous proof of the applicability of Theorem 1 to
the problems of nonrelativistic quantum mechanics
with a Hamiltonian of the form

(1.7)

and a potential of a sufficiently general form that
includes, among others, the Coulomb potential of
interparticle interaction was derived by Kato [5].

GENERALIZED HYLLERAAS EXPANSION

We use the generalized Hylleraas expansion [8] for
the states with arbitrary values of total orbital moment
L of the system:

(1.8)

xn{ }1
n
:

Φ x( ) aijxixj
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n
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where � = L for the states of “normal” spatial parity
Π = (–1)L and � = L + 1 for the states of “anoma�

lous” spatial parity Π = (–1)L+1. The  functions
are regular bipolar spherical harmonics [6] that
depend on two angular coordinates:

and spatial parity operator Pψ = πψ acts on the spatial
coordinates in the following way: P(r1, r2) → (–r1, –r2).

The ease of use of the  functions stems from the
fact that they correctly reproduce the behavior of the
wave function at r1 → 0 (or r2 → 0) and retain the rea�
sonable requirement of boundedness of the function
within the region of variation of variables for the
expression within square brackets in Eq. (1.8).

The “normal” and “anomalous” spatial parities
were designated this way for the following reasons. It
can be seen from expansion (1.8) that “anomalous”
parity states may decompose into clusters with angular
momentum of the bound pair l ≥ 1. In atomic physics,
the ground state of a pair of particles has zero angular
momentum, while the boundary of the continuous
spectrum in a system of three particles is defined by the
ground�state energy, the energy of the pair with the
lowest energy level, or zero energy (if no bound pairs
are present). It follows that bound “anomalous” parity
states are located below the threshold of the cluster
with the excited pair state and normally lie within the
continuous spectrum of a three�particle system.
Therefore, after the inclusion of any interaction oper�
ator that violates spatial parity into the Hamiltonian,
these states blend into the continuous spectrum and
form resonances.

The calculation of matrix elements comes down to
evaluating integrals of the following form:

(1.9)

Differentiating with respect to α under the integral
sign, we obtain the following:

Thus, all integrals may be evaluated from Γ000 by sim�
ple differentiation:

(1.10)

�LM

l1 l2

�LM

l1 l2 r1r2( ) r1

l1r2

l2 Yl1
r̂1( )�Yl2

r̂2( ){ }LM,=

�LM

l1 l2

Γlmn α β γ, ,( ) r1
l r2

mr12
n e

αr1– βr2– γr12–
dr1dr2dr12.∫∫=

∂
∂α
�����–⎝ ⎠

⎛ ⎞ Γl 1 mn,– α β γ, ,( ) Γlmn α β γ, ,( ).=

Γlmn α β γ, ,( ) ∂
∂α
�����–⎝ ⎠

⎛ ⎞
l ∂

∂β
�����–⎝ ⎠

⎛ ⎞
m ∂

∂γ
����–⎝ ⎠

⎛ ⎞
n

=

× Γ000 α β γ, ,( ) ∂
∂α
�����–⎝ ⎠

⎛ ⎞
l ∂

∂β
�����–⎝ ⎠

⎛ ⎞
m ∂

∂γ
����–⎝ ⎠

⎛ ⎞
n

=

× 2
α β+( ) β γ+( ) γ α+( )

�������������������������������������������� .

Following [7], we then use recurrence relation

Applying it successively to each pair of variables α, β,
and γ, we arrive at the recurrence scheme for integral
evaluation for nonnegative values of parameters (l, m, n):

(1.11)

The fact that the Almn, Blmn, and Γlmn values in rela�
tions (1.11) are positive is an important feature of these
relations that makes recurrence scheme (1.11) for
integral evaluation resistant to the rounding errors in
computer calculations.

The averaging over angular variables for the states
with a nonzero total orbital moment of the system was
analyzed by Drake [8]. This averaging reduces the cal�
culation of matrix elements to integrals (1.9). A com�
pact and efficient recurrence scheme that implements
this reduction was proposed later by Efros [9].

The efficiency of the above�described variational
expansions is the highest when they are applied to sys�
tems composed of two electrons and a heavy nucleus.
Let us now study this version (“exponential” expan�
sion) in more detail. This expansion assumes the fol�
lowing form for S states:

(1.12)

where the parameters in the exponent are chosen in
one way or another. In early studies [10] that used
expansion (1.12), the obtained representation was
associated with the discretization of the integral repre�
sentation of the wave function

(1.13)

that was proposed by Griffin and Wheeler [11] in 1957.
The αn, βn, and γn parameters were chosen in accor�
dance with various quadrature integration formulas
(1.13). The systematic study of expansion (1.12) with
parameters generated using pseudorandom numbers
was carried out in [12]. In the proposed approach,
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nonlinear parameters from Eq. (1.12) are generated
using the following simple formulas:

(1.14)

where ⎣x⎦ is the fractional part of x and pα, pβ, and pγ
are certain prime numbers. These simple generators of
pseudorandom numbers have their advantage in the
reproducibility of the results of variational calcula�
tions. The convergence rate of the exponential expan�
sion with a pseudorandom strategy for choosing non�
linear parameters (1.14) is exceptionally high at the
sets of basis functions of moderate dimensionalities
(up to 100–200 test functions). Rapid basis degenera�
tion that results in the loss of computational stability in
the double precision arithmetic by basis dimensional�
ity N = 200 is among the disadvantages of the method.

Let us write out for convenience the exponential
variational expansion in its complete form with
account for the angular dependence of the wave func�
tion that describes the rotational degrees of freedom:

(1.15)

where � = L or L + 1 (depending on the spatial parity
of the state) and the complex parameters in the expo�
nent are generated in a pseudorandom way (1.14).

It was already noted that the convergence rate is
reduced when the ground state of a helium atom is cal�
culated. This may be attributed to the fact that the
wave function has a logarithmic singularity at r1, r2 → 0:

ρ2lnρ, where ρ =  is the hyperradius of two
electrons [13]. In order to remedy the situation, one
should construct a multilayer variational expansion
composed of several independent sets of basis func�
tions, the optimum variational nonlinear parameters
for which are found independently. Thus, each set of
basis functions defines the optimum approximation in
a certain region of coordinates of the system. In the
case of a helium atom, the regions should be enclosed
within each other and be more and more compact in
terms of the hyperradius (ρ < ρn = an, where a ≈ 0.1
and n = 1, 2, 3, …). This strategy makes the exponen�
tial expansion an efficient and versatile solution
method for bound states in the quantum three�body
problem with Coulomb interaction. The capabilities
of this method were demonstrated in [14, 15].
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INVERSE ITERATION METHOD

It was shown in Section 1 that the stationary
Schrödinger equation is reduced to the generalized
symmetrical eigenvalue problem with the help of the
Ritz procedure:

(1.16)

where A is a symmetric matrix and B is a symmetric
positive�definite matrix. The standard diagonalization
procedure may be used to solve Eq. (1.16). In order to
do that, matrix B = L ⋅ LT is expanded into a product
of upper and lower triangular matrices, and the prob�
lem is reduced to the standard symmetrical eigenvalue
problem:

(1.17)

and

(1.18)

However, this method is too laborious (~20N 3 multi�
plication operations) and is less resistant to calculation
errors. If only a single eigenvalue (eigenvector) is
needed, the solution may be obtained efficiently
(~N3/6 multiplication operations) with the help of the
inverse iteration method:

(1.19)

where scalar factor s(n) is chosen in such a way that

 = 1. If μ is close to exact eigenvalue λk, vector

sequence  converges rapidly to exact eigenvector

xk, and  converges rapidly to exact
value λk.

In order to illustrate this, one may assume, without
a loss of generality, that matrix A is a diagonal one. The
solution may then be written down in the explicit
form:

(1.20)

It can be seen from Eqs. (1.20) that all components of

vector  (except for uk, which remains equal to
unity) tend to zero under the given normalization con�
ditions. Practical calculations demonstrate that this
method is also the most resistant to rounding errors
(calculation errors).

RESULTS AND DISCUSSION

The results of numerical calculations of the ioniza�
tion energies for S, P, and D states of a helium atom
are listed in Table 1. These calculations were carried
out using the inverse iteration method. Variational
parameters were optimized manually. It should be
noted that the optimum variational parameters for dif�
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ferent states differ from each other, and the calculation
accuracy depends to a considerable extent (5–8 digits)
on the choice of the optimum variational parameters
for the given bound state. Bases with N = 1500, 2000,
2500, and 3000 functions were used to optimize the
variational parameters. When the states listed in the
table were calculated, 3–5 “layers” of basis functions
were used.

Program modules of quadruple and sextuple preci�
sion (32 and 48 decimal digits, respectively) that were
developed by one of the authors of the present paper
were used in order to remedy the problem of the numer�
ical instability of calculations at large values of N.

The convergence of the nonrelativistic energy value
is studied in Tables 2 and 3 as a function of number N
of basis functions. The difference between two neigh�
boring values (calculated for the last digits given in
Tables 2 and 3) is listed in the third column. It is seen
clearly that the convergence rate is high. This allows
one to obtain highly accurate results.

CONCLUSIONS

Variational wave functions of bound states were
obtained by solving the Schrödinger equation for the
quantum three�body problem with Coulomb interac�
tion using a variational approach based on exponential
expansion with the parameters of exponents being
chosen in a pseudorandom way. The results of calcula�
tions of the nonrelativistic energy levels for a helium
atom were presented. The numerical calculation
results are listed in Table 1. The convergence was stud�
ied as a function of the number of test functions. The
results of these studies demonstrated that the energy
values were accurate to 19–20 significant digits. This
accuracy allows one to obtain reliable theoretical pre�
dictions.
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