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Abstract. The continuation inverse problem for a solution to an elliptic equation in cylindrical layer 

for a model of stationary diffusion process is considered. Cauchy data are given on the outer 

boundary of the cylindrical layer; need to recover a field at the inner boundary of the cylinder. The 

problem is reduced to three different Cauchy problems for a second order ordinary differential 

equation. On the base of necessary minimization conditions of the residual functional analytical 

formulas for a regularized quasisolution to the inverse problem are derived.  

Introduction 

General elliptic equation is a universal mathematical model to describe the set of natural and 

technological processes, including steady-state diffusion of the temperature field. The determination 

of the temperature at the inner boundary of the cylindrical layer is urgent problem in technological 

processes, if only the outer boundary is available for observation. A special case of a mathematical 

model for this problem is the Cauchy problem for the Laplace equation, which is a classic example 

of ill-posed problem (example Hadamard). Moreover, in the areas of simple form solution of the 

problem can be obtained in the form of a series [1], but this solution is exponentially unstable with 

respect to a perturbation of the Cauchy data. This fact allows us to assign this task to a highly 

uncorrected, according to the classification of inverse problems [2]. 

Over the past decade there has been significant progress in the solution of inverse problems, 

namely, the method of quasi-solution [3] and regularization [4] which allows us to solve the task 

with acceptable accuracy now. In many cases the gradient of the residual functional is expressed in 

terms of the solution to the adjoint problem [5-7] The method of minimizing the residual functional 

based on gradient methods is standard method in the numerical solution of the inverse problem. 

However, analytical methods have an advantage over the numerical methods in accuracy of results 

and the analysis depending on the parameters of the problem. Analytical formulas for regularized 

solutions of the initial-boundary value problem for the Laplace equation in a rectangle were 

obtained for the first time in [8]. The method is based on the system of necessary conditions for a 

minimum residual functional and construction of the solution of this system in final form. In this 

paper, we implement this way for the solution of the inverse problem for the three-dimensional 

steady heat conduction in the medium with cylindrical geometry for the elliptic equation with 

variable coefficients for second derivatives.  

Statement of the Problem 

Suppose that the external part of the cylinder with the radius 2R  and height H  available for an 

observer. the cylinder is made from heterogeneous material and the coefficient of thermal 

conductivity of it depends on the radius r . Finding of the temperature at the inner boundary of the 
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cylinder r  = 1R  is required, if you know the heat flux and the temperature at the outer boundary           

r  = 2R . 

We write the mathematical model of the problem. Stationary temperature distribution in a 

cylindrical layer is described by an elliptic equation of the form: 
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and  the periodicity conditions for φ: 
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Need to find a solution on the boundary r  = 1R :          

 .?),(),,( 1 −= zqzRu ϕϕ                   (6) 

Here, the function )(ra describes the thermal diffusivity of the medium and assumed the known 

smooth positive function )(ra is strictly bounded away from zero and bounded above. 

The problem is solved by quasisolution method, namely, by minimizing the regularized residual 

functional: 
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It can be shown that the operator of inverse problem is self adjoint, which implies the convexity 

of the residual functional. Adding the second summand to the functional provides a strongly 

convexity of it. This implies the existence and uniqueness of the solution of the minimization 

problem (7) on the convex set of the integrable functions with square of q (z) [9]. Can be also 

shown, as in [10], what considered functional is differentiable, so the solution of the minimization 

problem can be found by equating to zero of  the Frechet derivative of the functional. 

Method of the Solution 

We can obtain the condition of minimum residual functional, expressed as a system of equations of 

the direct and adjoint problems following on the methods of optimization theory, as in [6], [11]: 

Q z),(r,   ,0   ,0 ∈=Λ=Λ ϕvu                                                  (8) 

The boundary conditions have the following form: 
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The Solution of (8) - (9) allow us determine the desired solution of the inverse problem - 

function ),,( 1 zru ϕ . Let have a certain number of harmonics K, L the angle φ and z, and we seek a 

solution of problem (8) - (9) in the form of series: 
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For each k, l introduce auxiliary functions U (r), W (r), V (r), which are the solutions of the 

Cauchy problem  
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and 
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The solution of the above problems can be obtained by the Runge-Kutta methods, either 

analytically, based on the apparatus of the Bessel functions if the thermal conductivity is constant. 

Equations for the functions U , V , W  are identical, they are reduced to the formation: 
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Expanded in a Fourier series data Cauchy (2) - (3), calculate the coefficient of double series: 
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After substituting the solution in the form (10) and the boundary conditions in the problem (8) - 

(9) we obtain a system of two-point boundary value problems for functions )(rukl  and )(rvkl : 
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We seek a solution of problem (16) - (17) for each pair (k, l) as a linear combination of solutions 

of auxiliary problems (11) - (13):  

),()()( rCWrAUrukl += )()( rBVrvkl =                                             (18) 

We substitute the expression (18) in terms of (17) for each pair of values (k, l), from which we 

obtain a system of linear equations for the unknown coefficients A , B , C : 
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Hence it follows that: 
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We write the partial sum of the series (10) at the point R1, thereby determining the desired 

temperature at the inner boundary of the cylinder: 
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Summary 

Numerical implementation of the method we have described above will be the subject of a separate 

publication. Here, as an illustration, we show in Figure 1, the results of calculating the temperature 

on the surface of a cylinder of radius 1R  = 1, 2R  = 2, height H . 

 We have implemented the above algorithm for solving the inverse problem for the environment 

with a constant coefficient of thermal conductivity. In Figure 1 we compare the result of the 

restoration with the exact solution. On the result of the calculation is influenced by both the 

parameters of the problem and the regularization parameters β and the number of harmonics 

accounted L. 
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Preliminary calculations show that our method allows to accurately solve the Cauchy problem 

for an elliptic equation in a cylindrical layer for smooth data of the problem. Note that the method 

does not allow a good accuracy restore discontinuous functions. 

Fig 1 - The result of the inverse problem solution for parameters calculation: 

1R = 1, 2R  = 2, the number of harmonics of L = 10, β = 0. 
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