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This article discusses the effective interaction potentials in a complex dusty plasma. The

interaction of electrons with atoms and the interaction between dusty particles are studied by the

method of the dielectric response function. In the effective interaction, potential between electron

and atom the quantum effects of diffraction were taken into account. On the curve of the

interaction potential between dust particles under certain conditions the oscillations can be

observed. VC 2011 American Institute of Physics. [doi:10.1063/1.3646924]

I. INTRODUCTION

Plasma is the most common state of matter in the uni-

verse. It exists in a wide range of temperatures and densities.

The plasma may be observed not only in gases, but also in

solids. Charged particles interact via Coulomb forces which

are long range. Consequently, the physical properties of the

plasma significantly differ from those of ordinary neutral

gases. Collective effects that appear in the plasma due to the

long-range nature of Coulomb forces can be studied using

effective interaction potentials. Effective interaction poten-

tial of particles which takes into account many particle corre-

lation effects can be found by two methods. The first is a

method of hierarchy which leads to a generalized Poisson

equation and the second one is the method of dielectric

functions.

At present active investigations of the complex plasma

are performed in the different laboratories. Study of complex

plasmas for applications became especially important after

finding of dust structures in the plants of the plasma spray-

ing, because such structures have a negative impact on the

quality of deposited samples. More over it was known that

the complex plasma is widely distributed in the space.

Quantum effects in the complex low pressure gas-

discharge plasma do not play a big role, but they are important

in space plasma. Therefore, the study in the classical approxi-

mation is as urgent as in the semiclassical one. One or another

approach should be reflected in the interaction potential of

particles. For classical plasma screening at large distances is

most important effect in the interaction of charged particles,

whereas in the semiclassical approximation the diffraction

effects at small interparticle distances should be taken into

account as accurately as the screening. The interaction micro-

potentials of the charged particles taking into account the

effects of diffraction are presented in Refs. 1 and 2.

Interaction of electron and atom is connected with the

polarization of atom under the influence of an electric field

of the electron and quantum effects, including the symmetry

of the wave function. In Refs. 3 and 4, the screening poten-

tial of Buckingham is used as an effective potential. Interac-

tions of charged particles with atoms were considered in

detail in Refs. 5 and 6.

Different mechanisms of interaction between dusty par-

ticles in plasma are considered in Ref. 7, where it is shown

that the dominant mechanism of interaction depends on the

parameters of the surrounding plasma. The mechanism of

the dipole interaction between the dust particles is studied

and an estimation of it is given in Ref. 8.

In the most experiments on the complex plasma dust

component is strongly coupled, and the plasma environment

(buffer plasma), in contrast, is weakly non-ideal. The latter

justifies using of the theory of linear dielectric response in

order to find potential interactions. Interaction potentials of

electrons, ions, and atoms in a wide range of temperature

and concentration in classical and semiclassical approxima-

tions are considered in Refs. 9–12.

II. DIMENSIONLESS PARAMETERS

We consider the complex plasma, consisting of elec-

trons, ions, atoms, and dust particles. The average distance

between dust particles is determined by their concentration

a ¼ 3

4pn

� �1=3

:

Coupling parameter is defined as the ratio of interaction

energy to the energy of thermal motion

C ¼ ðZeÞ2=ðakBTÞ;

where Z is the charge number, T is plasma temperature, and

kB is the Boltzmann constant.

Density parameter: rS ¼ a=aB, here aB ¼ �h2=ðme2Þ is

the Bohr radius.

The degree of degeneracy is determined by the Fermi

energy

H ¼ kBT

EF
¼ 2

4

9p

� �2=3

Z5=3 rs

C
;

where EF is the Fermi energy of electrons.

III. PSEUDOPOTENTIAL OF THE ELECTRON-ATOM
INTERACTION

In a neutral atom, interacting with a free electron outer

electron cloud is polarized. At long distances, the interactiona)Electronic mail: ramazan@physics.kz.
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potential of the isolated atom with electron (see Ref. 13) is

given by

u0 ¼ �
e2a
2r4

: (1)

Singularity at small distance is removed for the finite size of

the atom. In this case, the cutoff radius is introduced

u0 ¼ �
e2a

2ðr2 þ r2
BÞ

2
; (2)

where rB ¼
ffiffiffiffiffiffiffiffi
aaB

2

4

r
is cutoff radius.

It is known that in the plasma, any electrostatic interac-

tion is screened at large distances. A semi-empirical poten-

tial taking into account the screening effect is presented in

Ref. 14

UðrÞ ¼ � e2a

2ðr2 þ r2
BÞ

2
exp � 2r

rD

� �
1þ r

rD

� �2

; (3)

where rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=4pne2

p
is the Debye length. In Ref. 9, the

effective interaction potential with taking into account the

screening and diffraction effects was obtained

UðrÞ ¼ � e2a

2r4ð1� 4�k2=r2
DÞ

e�Brð1þ BrÞ � e�Arð1þ ArÞ
� �2

;

(4)

here, �k ¼ �h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmekBT
p

is the thermal electron de Broglie

wavelength because me << ma.

A2 ¼ 1

2�k2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�k2=r2

D

q� �
;

B2 ¼ 1

2�k2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�k2=r2

D

q� �
:

We try to find an interaction pseudopotential in the random

phase approximation on the basis of micropotential (1).

From linear response theory, it is known that Fourier trans-

form of the pseudopotential is obtained from the relation

~UðqÞ ¼ ~uðqÞ
eðqÞ ; (5)

where eðqÞ is the Fourier transform of dielectric functiona,

~uðqÞ is the Fourier transform of the micropotential. The Fou-

rier transform is calculated as

~uðqÞ ¼ 4p
q

ð1
0

ruðrÞ sinðqrÞdr: (6)

eðqÞ in the random phase approximation can be expressed as

eðqÞ ¼ 1þ
X

a

na
~UðqÞ=kBT: (7)

The Fourier transform of micropotential (2) founded by the

formula (6) is

~uðqÞ ¼ � p2e2a
2rB

expð�qrBÞ: (8)

In the case of the Coulomb interaction in the classical limit,

the dielectric function is

eðqÞ ¼ q2 þ k2
D

q2
; (9)

where k2
D ¼ 1=r2

D. From Eq. (5) using Eqs. (8) and (9), one

can obtain

UðrÞ ¼ � e2a

2ðr2 þ r2
BÞ

2
þ e2a

4rBr2
D

iGðrÞ
r

;

here

GðrÞ ¼ e�irB=rD Eiððr þ irBÞ=rDÞ � Eið�ðr � irBÞ=rDÞð Þ
þ eirB=rDðEið�ðr þ irBÞ=rDÞ � Eiððr � irBÞ=rDÞÞ;

EiðzÞ ¼ �Cð0; ze�piÞ ¼ �
Ð�1

z
et

t dt is the exponential inte-

gral function.

One can expand special functions into a series and retain

only terms up to third order and then obtain

UðrÞ ¼ � e2a

2ðr2 þ r2
BÞ

2
þ e2a cosðrB=rDÞ

4rBr2
D

p=2� arctgðrB=rÞ½ �
r

;

(10)

where rD > rB. First term in Eq. (10) is equal to the micropo-

tential (2), while the second term describes the screening at

large distances, and tends to zero at short ones. When the

potential of Deutsch / ¼ e2 exp½��k=r�=r is selected as

micropotential for electrons interaction, one can obtain the

dielectric function in the semiclassical limit

eðqÞ ¼ q2ðq2 þ 1=�k2Þ þ k2
D=�k2

q2ðq2 þ 1=�k2Þ
: (11)

From formula (5), using Eqs. (8) and (11) and performing

calculations similar to the definition (10) it is possible to find

UðrÞ ¼ � e2a

2ðr2 þ r2
BÞ

2

þ e2a cosðrBC2Þ � cosðrBC1Þð Þ

4rBr2
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�k2=r2

D

q p=2� arctgðrB=rÞ½ �
r

;

(12)

here

C2
1
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�k2=r2

D

q� �
=ð2�k2Þ;

C2
2 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�k2=r2

D

q� �
=ð2�k2Þ; (13)

where rD > rB. The second term in Eq. (12) describes the

screening effects at large distances and diffraction at small.

Fig. 1 shows micropotential (2) and the effective inter-

acting potential (10) for the electron and hydrogen atom
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(a ¼ 4:5a3
B) at C ¼ 0:2; rs ¼ 10. It is evident that the poten-

tial (10) lies above the potential (2) what is due to the screen-

ing effect. Fig. 2 shows plots for the potentials (2), (10), and

(12) at C ¼ 1; rS ¼ 10. At large distances, potentials (10)

and (12) coincide, and at the small ones, curve (12) lies

above the curve (10) due to the effects of diffraction. Poten-

tials (2), (10), and (12) coincide again when r ¼ 0. It is

approximately assumed that a is constant at any distance.

IV. THE POTENTIAL INTERACTION BETWEEN
CHARGED PARTICLES WITH A DIPOLE MOMENT

Lets consider a system of two dust particles which have the

same charges Ze. It is known that in plasma dust particles can

have dipole momentums (see Ref. 8). The first dust particle is

situated in the field of second one. The mutual distance between

dust particles is larger than their sizes. Then, the total potential

energy of the system can be expanded in series (see Ref. 15)

U ¼ U0 þ U1 þ ::: : (14)

Here, U0 ¼ u0

P
eZ ¼ e2Z2

r �
~d1~n
r2 eZ,

U1 ¼ �~d2
~E0 ¼

eZ

r2
~n~d2 þ

~d1
~d2 � 3 ~n~d1

� �
~n~d2

r3
; (15)

~d1; ~d2 are the dust particles dipole momentums, and at the

condition 2aD

r << 1 (aD is the size of the dust particle), the

following expression is obtained

U � e2Z2

r
þ eZ

r2
~d2 � ~d1

� �
~n: (16)

One can denote ~nD~d ¼ mij and take the following expression

as interaction micropotential of dust particles

uðrÞ ¼ eZ

r
eZ þ mij

r

� �
: (17)

Its Fourier transform has the following form:

~uðqÞ ¼ 4pe2Z

q2
� 2p2eZmij

q
:

The dielectric function is taken as

e ¼ 1þ ne

kBT
~/eeðqÞ þ

nd

kBT
~/deðqÞ: (18)

Here, ~/eeðqÞ and ~/edðqÞ are the Fourier transforms of interac-

tion micropotentials between electron-electron and electron-

dust particle. For potential /de rð Þ ¼ e2Z
r � e~d~n

r2 , the Fourier

transform for electron—dust particle interaction is

~/deðqÞ ¼
4pe2Z

q2
� 2p2epi

q
;

where pi ¼ ~d~n. The Fourier transform for electron—electron

interaction is

~/eeðqÞ ¼
4pe2

q2
:

With l ¼ kBT
2p2ndepi

, the Fourier transform of the effective

screened potential is obtained as

~UðqÞ ¼ ~u
e
¼ 4pe2Z2 þ 2p2eZmijq

q2 � q=lþ ndZ=ðner2
DÞ þ 1=r2

D

:

FIG. 1. Interaction potentials between electron and atom. Curve 1 presents

the micropotential (2) and curve 2 presents the effective potential (10).

C ¼ 0:2 and rs ¼ 10.

FIG. 2. Interaction potentials between electron and atom. Curve 1 presents

the micropotential (2), curve 2 presents the effective potential (10), and

curve 3 presents the effective potential (12). C ¼ 1 and rs ¼ 10:
FIG. 3. (Color online) The curve of U� ¼ U=kBT obtained by expression

(19) as dependence on the distance R ¼ r=rDe and parameter l at mij < 0.
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After Fourier transformation, one can obtain the formula

for effective interaction potential between two dust

particles

UðrÞ ¼ 1

r
Ah K1rð Þ þ Bh K2rð Þ½ � þ eZmij

r2
: (19)

For convenience, we define the following function and the

coefficients

h arð Þ ¼ cos arð Þ pþ Si arð Þð Þ � Ci arð Þ sin arð Þ;

A ¼ 2p2e2Z2 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Zl2=r2

D

p
 !

þ eZmij

l
1þ 1� Zl2=r2

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Zl2=r2

D

p
 !

; (20)

B ¼ 2pe2Z2 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Zl2=r2

D

p
 !

þ eZmij

l
1þ 1� Zl2=r2

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Zl2=r2

D

p
 !

;

K1=2 ¼
1

2
1=l6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2 � 4Z=r2

D

q� �
:

Figs. 3 and 4 show curves U� ¼ U=kBT depending on the

distance R ¼ r=rD and l for the different signs of mij.

In the case of mij < 0, positive ions in the cloud of first

particle and negatively charged second particle are on one

side, resulting in predominant attraction, otherwise, when

mij > 0, the repulsion prevails. Let us consider case mij ¼ 0.

In Fig. 5 is a graph which shows that on the curve of interac-

tion, potential oscillations may occur.

Based on behavior analysis for the effective potentials

obtained in present work, one can make the following

conclusions:

1. In this paper, the effective interaction potentials of par-

ticles in complex plasmas are considered. Pseudopoten-

tials of electron-atom interaction in the classical and

semiclassical approximations are obtained. It was shown

that with taking into account the effects of diffraction, the

effective interaction potential matches to screened classi-

cal potential at large distances but differ at small.

2. The interaction of dust particles in plasma-dust structures

is considered. The analysis of the character of interaction

at various parameters is performed. It is shown that under

certain conditions, a force of attraction between dust par-

ticles may appear.

For all considered interactions, the method of linear

dielectric response is usable.
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