Quantum chemical modeling of desulfurization process

Zh.K. Kaiyrbekov^a, A.M. Gyulmaliev^b, Zh.K. Myltykbayeva^a, D. Kanseitova^a, T.M. Andizhanova^a,

^aAl-Farabi Kazakh National University, 71 Al Farabi av., Almaty 020040, Kazakhstan ^bA.V.Topchiev Institute of Petrochemical Synthesis, 29, Leninskyprospekt Moscow 119991

*E-mail: zhannur.myltykbaeva@gmail.com

1. Introduction

Progress in the development of quantum chemical methods and software, as well as the development of computer technology provided the use of computer modeling in various fields of chemistry [1, 2]. The study of the mechanisms of catalytic reactions with supercomputersis of particular interest, which allows to carry out the screening of substances by their catalytic properties for a relatively short period of time.

Ni-skeletal catalysts commonly used in hydrogenation processes in the chemical industry. [3] The application of these catalysts in hydrotreatingofr petroleum refinery products, particularly, in the removal of sulfur from diesel fuel. Thermodynamic calculations of the equilibrium compositions of sulfur-containing model compounds: mercaptans, thiophene derivatives, thioalkanesindicate that thiophene and its derivatives are the most thermodynamically stable.

In this work we investigate the characteristics of the synthesis and structure of nickel - skeletal catalysts and quantum-chemical modeling of intermolecular interaction of thiophene molecules withnickel - skeletal catalysts.

2. Experimental

We investigated the diffraction patterns of samples of nickel - skeletal catalysts on a DRON-3M with copper radiation. Shooting mode samples the following: X-ray tube voltage is 30 kV, tube current is 30 mA, step movement 0.05° 20 goniometer and time measuring of the intensity of the point - 1.0 seconds. Sample rotation on its own plane is about 60 turnover / min. The main phase is nickel. Galo with a maximum angle of 20 equal to 18.0° belongs ebony cell. Nickel crystallite size is L = 40 Å.

3. Results and discussion

The object of study was a Ni Raney catalyst obtained from the alloy -51.1% Ni, Al - 46,9%, Fe - 0.075%, Cr - 0.893%, Ti - 0.914%. For the preparation of skeletal nickel catalyst by a complete leaching, the alloy was pulverized in a mortar, and sieved. Then a certain fraction of powder weighing 1 g was treated in a Kjeldahl flask with 20% sodium hydroxide solution while heating in a water bath for 2 hours, then drained and obtained alkali powder was washed with distilled water by decantation. Freshly prepared Ni-Raney catalyst was investigated by X-ray phase analysis.

The analysis shows that nickel forms a face-centered cubic lattice with the period a = 0,35352 nm (space group Fm3m).