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Abstract

The main objective of the work is to determine the new resonances
in three-body system that consists of one neutron and two heavy nuclei.
New resonances are formed in the re-scattering of neutron on subsys-
tem of these nuclei. Such neutron resonances become stronger at par-
ticular values of the distances between the nuclei and the resonances
vanish if distances become larger or less than these resonance distances.
Theoretical analysis of the properties of new resonances in three-body
systems are given and calculations of the resonance characteristics are
provided. Possibilities for experimental studies of new resonance effects
are discussed. It is suggested to investigate new neutron resonances in
piezo-crystals that contain isotopes, which have resonances in the ther-
mal range. As the sample the isotopes of 113Cd are considered because
the corresponding the electric piezoeffect allows to vary the distances
between the nuclei.
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1 Introduction

In the recent years new resonance peaks were experimentally observed in the
spectra of neutron scattering at various nuclei in the thermal range [9] (see,
also https://www.ncnr.nist.gov/resources/activation/resonance.htm).

The interest towards these neutron resonances is stipulated by the nuclear
engineering and other applied tasks. Such experiments are informative for
nuclear physics, in particular for neutron star physics [11, 5]. The fact that
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almost impossible to run experiments for nuclear astrophysics in terrestrial
conditions, although it is possible to generalize some of the results to areas
of extreme conditions. That is why any laboratory experiment even partly
related to the phenomena or processes in the named above objects becomes of
vivid interest. This statement is equally correct for computer simulations and
analysis of processes and reactions in neutron star interiors (see, for example
[11, 5, 7]).

The theoretical consideration of the problem is presented below based on a
three-body quantum scattering theory [3], the Born-Oppenheimer approxima-
tion [4] for a system of two heavy nuclei and one particle with much smaller
mass (neutron), and the Breit-Wigner form of scattering amplitudes for pair
neutron-nucleus subsystems in the vicinity of their single resonances [2, 1]. In
the case when a neutron is scattered at a subsystem of two heavy nuclei, the
problem of formation of new type resonances has been considered [13, 14, 15].
It occurs when a third particle (neutron) interacts resonantly with each of the
heavy particles. The solutions show the resonance behavior of three body sys-
tems. An important feature of such solutions is their resonance dependence
on the distance between the heavy particles not only on the energy of the
light-mass particle [13, 14, 15, 16].

Obviously, a three-particle resonance effects are based on quantum inter-
ference in the states which takes place at specific conditions of the system.
These conditions are related to the superposition of the wave processes, and
to the mutual influence of the resonance sources.

Within the present work, the resonance scattering of neutron on subsys-
tem of two heavy nuclei has been considered in the low thermal range. New
quasi-stationary states formed at neutron scattering at a system of two non-
interacting nuclei are of interest in our case [14, 15].

In the next section, the main theoretical computations related to a quantum-
mechanical scattering problem for a three-body system (two heavy particles
and one particle with small mass) are given in brief form.

Section 3 presents the calculation results of the three-body resonances that
obtained on the base the neutron-nucleus resonance data in the low ther-
mal range for selected isotopes 149Sm,152 Sm,155Gd,157Gd and 113Cd. These
three-body resonances appear at distances between these isotopes that are
comparable with the interatomic distances in the crystal.

Here the possibility for experiments on thermal neutron scattering at piezocrys-
talline targets with isotopes of 113Cd are discussed. Since the piezocrystals
change their internal spatial parameters due to voltage, the phenomenon can
be used to control the alterations of distance between these isotopes.
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2 Theoretical background

The quantum scattering theory for systems of three and more particles is
based on Faddeev equations [3], where the existence and uniqueness of solution
conditions are satisfied. An important peculiarity of the Faddeev equations is
the sequential order where the equations for the components of the three-
particle T -matrices are expressed through the solutions for the two-particles
t-matrices:

Ti,j = ti δij +
∑

ti G0(E) δ̄i,l Tl,j, (1)

where ti matrices are given as known quantities, ti = Vi + ViG0 ti are associ-
ated with pair interaction potentials Vi and determined in the space of three
particles, (i, j, l = 1, 2, 3). In Eq. (1) G0(E) is the Green’s function for three
free particles and δ̄i,j = 1− δi,j, where δi,j is the Kronecker symbol. The total
T -matrix is the sum over the indices i and j; T =

∑
Ti,j.

Formally, the index i on the element Ti,j corresponds to the number of the
last surviving pair in the left asymptotic region - that is, it corresponds to
the number of the particle that leaves the interaction region first. Similarly,
the index j corresponds to the number of the last interacting pair in the right
asymptotic region. The Faddeev equations (1) guarantee uniqueness and
existence of solutions [3].

Our model related to the description of resonant phenomena at low ener-
gies is based on two simplifying assumptions: the pair t-matrix considered at
energies close to the neutron-nuclei resonance energy is considered in the Breit-
Wigner form; a description of neutron scattering at a system of two nuclei is
taken in the Born-Oppenheimer approximation.

So, for the ratio of the neutron mass m to the nucleus mass M we can
accept m/M → 0, assuming that the effective mass, like in the Mössbauer
effect, is equal to the mass of the whole crystalline domain. Assume that the
crystalline target is kept at very low temperature so thermal oscillations in the
crystal are minimal. Then the total kinetic energy of the system equals to the
kinetic energy of the neutron E = p20/2m , where p⃗0 = h̄k⃗0. We use below the

units c = h̄ = 1; then Vi=2,3 = VnA(k⃗, k⃗′).

Restrict our analysis by the elastic channel assuming the inelastic one be
closed or suppressed. In reality, consideration of other channels is not a big
challenge, since the inelastic channel (for instance, at neutron capture and
emission of gamma by excited nucleus) transforms the nucleus into a different
one with other properties. In this case the process of resonance re-scattering
of neutrons at given nuclei is aborted.

Neutron resonance scattering. Breit-Wigner t-matrix

For the non-relativistic two-body problem one can write the expression for
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the S-matrix in the vicinity of resonance as [2]

S =
E − ER − iΓ/2

E − ER + iΓ/2
= I − 2πiρ(E)t(E) (2)

and

t(E) =
1

πρ(E)

Γ/2

E − ER + iΓ/2
, (3)

where πρ(E) = 2mk0/4π , E = k2
0/2m .

In the case when low-energy neutron scattering at a nucleus is determined
by potential and resonant channels, then the complete t-matrix in the coupled
channel method can be written for the S-wave in the well-known form [1]:

t(E) =
2π

mk0

[
(1− exp(2iδpot))/2i+

Γ/2

E − ER + iΓ/2
· exp(2iδpot)

]
, (4)

where δpot is the phase shift of elastic potential scattering and can be written
at low energy in the form δpot = −k0a, a is a scattering length. The second
term in (4) corresponds to the interference of the resonance and the potential
parts of the t-matrix.

At the very low energies limit k0 → 0, the t-matrix (4) reduces to:

t(E) → 2π

m

[
1

κ+ ik0
+

1

k0

Γ/2

E − ER + iΓ/2

]
, (5)

where 1/κ is the neutron scattering length at the nucleus and in the case of
low energy, κ corresponds to the wavenumber of the neutron-nucleus bound
(κ > 0) or virtual (κ < 0) state.

One can present the resonance and potential parts of the t-matrix in a
separable form. Let us take into account the S-wave component only. The
potential part of the t-matrix can be written in the form:

t(E; k, k′) = ν(k)ηpot(E)ν(k′), (6)

where ν(k) = ν(k) =
√
2π/(mβ)/(1 + k2/β2) , ηpot = β/(κ + ik0). The value

β−1 corresponds to the radius of nuclear forces, i.e. this value is many times
less than the atomic size, therefore for thermal neutrons we can neglect k/β
in the expression for ν(k).

Generalizing the expression (3), one can write the resonance t-matrix as:

ta,b(E; k, k′) = νa(k)ηres(E)νb(k
′), (7)

where νa(k) =
√
2πΓa/mkΓ , νb(k) =

√
2πΓb/mk′Γ, and ηres(E) = (Γ/2)/(E−

ER + iΓ/2). Here the indexes a and b denote inlet and outlet channels; and Γ
is the total width of the open channels.
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Note that the sum of a finite number of separable terms can describe the
short-range potentials of complicated forms. The solutions in these cases can
also be written in an analytical form.

Within this work we do not consider contributions from the neighboring
resonance levels, coupled or virtual states located far from the considered low-
energy resonance. It would be noted that their contributions to the considered
effects should be small.

Solution of the problem for neutron scattering at a system of two
nuclei

In the case of the separable form of pare t-matrices (6) and (7) the three-
body T -matrix can be written in the following form [13]:

Ti,j = νiηiδi,jνj + νiηiMi,jηjνj, (8)

and one can get the system of simple equations for the components Mi,j:

Mi,j = Λi,j +
∑
l=2,3

Λi,l ηl Ml,j, (9)

where
Λi,j =< νi|G0(E)|νj > δ̄i,j . (10)

Here Λi,i ≡ 0, what excludes repeated interactions in the pairs and creates
sequential inclusions of interactions from different pairs. When a neutron is
scattered at two fixed nuclei in the lattice nodes, the equation (9) describes a
sequential scattering of a neutron at each of these two nuclei. It is assumed
that the nuclei in the lattice do not interact with each other via nuclear forces.

Using the conservation of the total momentum in three body system, k⃗ =
k⃗1 = −k⃗2 − k⃗′

3, one can write Eq. (10) in the integral form

Λi,j(k⃗2, k⃗
′
3; k0) =

∫
dr⃗ exp(ir⃗k⃗2)Ji,j(r⃗) exp(ir⃗k⃗

′
3) , (11)

where

Ji,j(r⃗; k0) = 2m
∫

dk⃗ exp(i⃗kr⃗)
νi(k)νj(k)

k2
0 − k2 + iγ

. (12)

Using the Fourier transformation for Mi,j(k⃗, k⃗
′)

Mi,j(r⃗, r⃗′) =
∫ ∫

dk⃗dk⃗′ exp(−ir⃗k⃗)Mi,j(k⃗, k⃗
′) exp(ir⃗′k⃗′) , (13)

and taking into account relations Eqs. (11) and (12) we rewrite Eq. (9) for
the re-scattering matrixes in the coordinate form [13]:

Mi,j(r⃗, r⃗′) = Ji,j(k0; r⃗)δ(r⃗ + r⃗′) +
∑
l

Ji,l(k0; r⃗)Ml,j(−r⃗, r⃗′) , (14)



6 N. Takibayev and B. Abdykadyrov

where for simplicity, we omit indexes for r⃗ and r⃗′.
The coordinates r⃗ and r⃗′ correspond to the locations of the nuclei which

take place in neutron re-scattering and are taken relative to the center of sym-
metry in the system of two heavy nuclei. The amplitudes Mi,j(r⃗, r⃗′) represent
an effective interaction of nuclei created by re-scattering of a light particle
(neutron) at them. Mi,j(r⃗, r⃗′) can be written in the form:

Mi,j(r⃗, r⃗′) = M+
i,j(r⃗)δ(r⃗ + r⃗′) +M−

i,j(r⃗)δ(−r⃗ + r⃗′). (15)

Since Eq. (15) includes the delta-functions, they eliminate integrations in the
right part of (13) and (14). Then, the equations for the matrices M±

i,j(r⃗) take
the following simple forms:

M+
i,j(r⃗, k0) =

1

Di,i(r⃗; k0)
Ji,j(r⃗, k0) , (16)

and

M−
i,i(r⃗, k0) =

1

Di,i(r⃗; k0)
Ji,l(r⃗, k0)ηl(k0)Jl,i(−r⃗, k0). (17)

In Eq. (16) and (17) the matrix D is a diagonal one

Di,i(r⃗; k0) = 1−
∑
l

Ji,lηl(k0)Jl,i(−r⃗, k0)ηi(k0) (18)

and its non-diagonal elements when i ̸= j, are equal to Di,j(r⃗; k0) = 0
Consider the simple case when two nuclei are located in neighbor nodes of

a crystal lattice. The wave functions of these heavy particles could be written
in the form

Ψi(r⃗) = C exp[−(r⃗ − r⃗i)
2

2∆2
], (19)

where i is the number of nucleus, r⃗i is the coordinate of the node, C is the
normalized factor satisfying the normalization condition < Ψi|Ψj >= 0 if i ̸= j
and < Ψi|Ψi >= 1, so that C2 = ∆−3π−3/2. The limit ∆ → 0 means that
nuclei will be strictly fixed at the points r⃗2 and r⃗3. It is convenient to take
the starting point at the center of symmetry of the system. In this case, one
nucleus will be located at the point r⃗ and the another one at the point r⃗′ = −r⃗.

As a result, the total T -matrix for neutron scattering on the system of two
nuclei takes the form:

< T >=
∑
i

νiηiνi +
∑
i,J

νiηi < Mi,j > ηjνj . (20)

Here, the first term on the right-hand side of Eq. (20) corresponds to the sum
of independent neutron scatterings ti-matrix on every separate nucleus of the
considered pair, while the second term corresponds to the neutron scattering
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on the two-center system. The < Mi,j > form means that the matrix is taken in
the brackets of the wave functions Ψi and Ψj: < Mi,j >= Mi,j(r⃗i) = Mi,j(−r⃗j).

For simplicity, we omit indices, take the form: r⃗i = r⃗ and r⃗j = r⃗′ = −r⃗.
This approach brings us to the effect related to interference of two close

resonance sources which generate additional resonance levels [14, 15, 16]. New
resonance levels occur at specific distances between these sources L = Lres,
where L = |r⃗ − r⃗′| = 2r. One should note here that at lower, or, vice versa,
larger distances these resonances disappear abruptly.

3 Calculations of new neutron resonances in

the low thermal range

There are only few isotopes, which have the single neutron resonances in the
low thermal range (See Table 1 and details at the site https://www.ncnr.
nist.gov/resources/activation/resonance.html).

Table 1: Isotopes with low resonance energy

Isotope Neutron wa- Energy kres
velength (Å) (meV) in Å−1

155Gd 6.44 1.97 0.975
157Gd 6.18 2.14 1.016
149Sm 6.02 2.26 1.044
113Cd 5.44 2.77 1.157
152Sm 2.72 10.93 2.298

These data are taken as basic ones in our assessments of resonance neutron
scattering at a subsystem of two neighbor nuclei in the crystalline lattice.
Take into account only the selected isotopes that have resonances in the lowest
thermal range [12, 6, 10]. The contribution of other isotopes, which can be
incorporated into the crystal structure, is very small and could be disregarded.
In Table 1 and Figs 1-4, wavenumbers are given in Å−1.

The dependences of structure neutron resonances on the distances between
two the same or different heavy isotopes were calculated.

Determine the enhancement factor F (k0, r) in the following form:

F (k0; r⃗) = |
∑
i,j

νiηiMi,jηjνj/(tiδi,j|2 , (21)

in order to estimate the action of three-body resonances in comparison with
two-body one. This expression could be obtained using the relations given in
(18 - 20).
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Figure 1: F (k0, r) for the system n +113 Cd +113 Cd; kres = 1.157 is the
wavenumber of the n+113 Cd resonance; y = k0/kres − 1

I II III

1 2 3 4 5 6 7 rHA
ë

L

2

4

6

8

10

12

14

Figure 2: F (k0, r); the system n +155 Gd +157 Gd; the curves I, II, III corre-
spond to k0 = 0.87; 1.013; 1.126, accordingly

The factor F (k0, r) = σ3/σ2, where σ3 means the three-body cross-section
and σ2 is a sum of two-body cross sections. If the re-scattering of a neutron
on two-nuclei subsystem becomes negligible, then F (k0, r) → 1. We mark
the cross sections as σ2 in the case when every nucleus interacts with neutron
independently, for instance, at large r. The results of the calculations are
shown in Fig. 1-4, which demonstrate that F (k0, r) has a resonance behavior
at the certain values of the distance between two neighbor isotopes.

Table 2 contains the parameters of CdS and CdSe crystals with a hexagonal
(h) and a face-centered cubic (c) structures [12, 18]. The parameter L is the
distance between two neighbor Cd nuclei.

The estimation of minimal distances between Cd nuclei is in agreement
with the results obtained using the VESTA program [8] and experimental
data [18, 17]. It is noteworthy that the values for the distances L between the
nuclei of cadmium proved to be close to the values of the area for new neutron
resonances (Fig. 1 - 3).
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Figure 3: F (k0, r); the system n+113Cd+113Cd; here I, II, III mark the cases
with k0 = 0.988; 1.15; 1.278

Table 2: Parameters of Cd crystals

Phase a = b (Å) c (Å) L (Å)
CdS; h 4.13 6.71 4.116
CdS; c 5.3 5.3 3.748
CdSe; h 4.29 7.01 4.292
CdSe; c 5.54 5.54 3.917

Note that at high energy the new neutron resonances disappear because
their wavelengths become very small in comparison with lattice parameters.
But in the case of overdense crystall the lattice parameters become comparable
again with resonance neutron wavelengths that exist up to 1 MeV. And the
neutron resonances should be significantly reinforced.

Of course, the neutron resonance in the crystalline structure depends on
parameters of neutron resonances, including the resonance energy and width,
its quantum numbers etc.

4 Conclusion

We have performed the calculations of the new neutron resonance at systems
of two nuclei in the energy range close to conventional neutron-nucleus reso-
nances. Our goal is the study of the three-body resonance effects in the scat-
tering of neutrons at subsystem of two isotopes in the dependence of distances
between these nuclei.

Three-dimensional picture (Fig. 1) demonstrates the behavior of the en-
hancement factor for the system n + Cd113 + Cd113. Remarkable that when
the neighbor isotopes have the resonance levels with nearby energy, the en-
hancement factor for structural resonance (Fig. 2) becomes more significant
at certain distances. In the opposite case (Fig. 4) the enhancement factor is
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Figure 4: F (k0, r); the system n +149 Sm +152 Sm; I, II, III correspond to
k0 = 1.954; 2.275; 2.528, accordingly

small.
All stated above opens up opportunities to use the specialized piezo-crystals

and provide the control over the target’s parameters in the experiments with
thermal resonance neutrons. For example, it is possible to provide the experi-
ments with different targets: the thermal neutron scattering at CdS and CdSe
crystals.

The calculated data indicate that there is the real possibility to investigate
the new resonance effects in the neutron scattering in the thermal range at
different crystals containing the selected isotopes.

It must be noted that the new neutron resonances are created by interac-
tions in three-body systems. They supplement the well-known phenomena as
Bragg’s scattering (Bragg’s law and neutron diffraction) or the crystal vibra-
tions at neutron scattering. The influence of new resonances would increase
and become very important in the case of overdense matter, for example in
neutron stars.

The research project of IPS-3106 is supported by MES RK. N.T. thanks
W. Snow, K. Kato, R. Kezerashvili and S. Kornstein for valuable advices.
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