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The structure and physical properties of porous silicon obtained by electrochemical etching of monocrystalline 
silicon with n-type conductivity in a mixture of hydrofluoric acid and ethyl alcohol were investigated. 
Experimental layers were formed by varying the etching parameters. Samples were studied using the methods 
of atomic force microscopy (AFM),scanning electron microscopy (SEM), Raman spectroscopy (RS) and 
photoluminescence spectrometry (PL). It was found that the PL intensity increased with increasing etching 
time.It was demonstrated that by varying of technological parameters and conditions of the etching process we 
can control the size of nanocrystals and manufacture nanostructuresof porous silicon film with improved 
properties. 

 
Key words: porous silicon, electrochemical etching, photoluminescence, nanocrystals. 
PACS numbers: 82.45.Vp, 78.55.Mb, 71.24.+q. 

 
 
 

1 Introduction 
 
Porous silicon (PS) attracted the attention of 

researchers for the most part due to its luminescent 
properties [1]. In addition, the extensive study of 
various properties of the PS has opened prospects 
for its numerous alternative applications in areas 
such as solar cells, biotechnology, sensors [2,3]. 
Well-developed method of electrochemical etching 
of silicon allows controllable vary parameters of 
porous layer in order to optimize its physical 
properties. The surface morphology of the PS film 
and its structural and optical properties depend on 
the such parameters like the concentration and type 
of impurity in the initial silicon substrate, the 
magnitude of the anodizing current and the duration 
of etching, the composition and temperature of the 
electrolyte, and other factors [4]. 

Using of Raman spectroscopy allows us to 
estimate the characteristic dimensions in PS 
nanocrystals and their dependence on technological 
regimes for producing PS with different properties. 
More information about the morphology of the 
surface of semiconductor films can be obtained 
using the method of atomic force microscopy [5,6]. 

This paper presents the results of studies of the 
structure, morphology and photoluminescence 
properties of porous silicon films grown on n-type 
crystalline Si substrates for different values of the 
duration and magnitude of the anodizing current. 

2 Experimental Details 
 
N-type silicon wafers with a phosphorus 

concentration 1018 cm-3 and the crystallographic 
orientation (100) were used for manufacturing PS. 
Before anodization a silicon wafers were placed to 
trichloroethylene for degreasing, were rinsed in 
deionized water, then after treatment in a solution of 
H2SO4: H2O2 (4: 1) at temperature 900C for 10 
minutes silicon wafers were etched in a mixture of 
HF and H2O (1: 50) for 10 seconds and thoroughly 
washed in deionized water. Etching occurred in the 
electrolyte containing hydrofluoric acid and ethyl 
alcohol in a ratio of 1: 1.5. 

To determine the differences in the structure and 
properties of PS three groups of samples were 
prepared at different anodizing current densities and 
with different anodization time: 1 – J = 1 mA/cm2, t 
= 20 min; 2 – J = 15 mA/cm2, t = 2 min and 3 – J = 
25 mA/cm2, t = 1 min. The power supply voltage for 
all groups of samples remained unchanged at 10 V. 
These modes provide approximately the same 1 
micron thickness of PS. Measurements of the 
structure and properties of the PS samples were 
performed after 10 days storage in the air. 

 
3 Results and discussion 

 
The morphology of the films was studied using 

atomic force microscope NT-MDT NtegraTherma. 
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The study of PS surface morphology using the 
method of AFM has revealed its dependence on 
etching modes. Figure 1 shows the 3D image (1a, 
2a, 3a) and the 2D image (1c, 2c, 3c) surface of PS 
films grown under the above conditions. Profile 
section along the center line shown in Fig. 1b, 2b, 
3b for the three groups of samples. 

Figure 1 shows that the prolonged etching under 
low current density of 1 mA/cm2 (Fig. 1b) results in 
developed surface having a smaller size of structural 
heterogeneities than typical structures with less 
etching time, but with large current densities of 15 
mA/cm2 and 25 mA/cm2 (Fig. 2b and 3b, 
respectively). 

 
 

 

 

1a 1b 1c 

 

2a 2b 2c 

3a 3b 3c 
 

Figure 1 – AFM image of PS samples grown under different conditions for the three groups of samples: 
1 – J = 1 mA/cm2, t = 20 min.; 
2 – J = 15 mA/cm2, t = 2 min.; 
3 – J = 25 mA/cm2, t = 1 min. 
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For the mathematical characterization of the 
surface roughness we used the root-mean-square 
roughness Sq, defined as: 
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where N is the number of measured points, H


is the 

average height (zero level), )ˆ( HHi   is the relative 
height of i point. 

The measurement results showed that the mean 
square roughness Sqfor the sample groups 1,2 and 3 
were 2.96 nm, 1.85 nm, and 1.63 nm, respectively. 

Using image processing module of AFM height 
distribution functions for the investigated films were 
calculated for surface area of 2х2 μm2 (Fig. 2).  

 
 

 
 

Figure 2 – Height distribution function of PS films for 
samples 1, 2, 3. Dashed lines are results of approximation 

with Gaussian functions 
 
 

The distribution function for PS layers is well 
approximated by a Gaussian function centered at H1 
= 8.4 nm, H2=4.8 nm, H3 = 4.2 nm for samples 1, 2, 
3, respectively. For sample 3 with the shortest 
etching time characteristic size of heterogeneity was 
minimal.  

AFM images of the PS surface demonstrated 
that with increasing current density film surface 
becomes more smooth as compared with the PS 
produced at a current J = 1 mA/cm2. Similarly to [7] 
the calibration experiments of porosity 
determination showed that when current density  
 

increases from J = 1 mA/cm2 to J = 25 
mA/cm2porosity decreases from 50% to 30%, and 
typical dimensions are reduced from 8.4 nm to 4.2 
nm. 

Using an electron microscope FEI Quanta 200 
FEG SEM-images of PS surface and cross-sectional 
samples were obtained. Figure 3 shows a cross-
sectional view (a) and the surface of a PS (b), grown 
at a low current density. As seen in Fig. 3 the PS 
layers have sponge-like structure. The surface 
concentration of pores is uniform, and the sizes of 
pores were ranging from 7 nm to 9 nm. Samples 
obtained at high current densities characterized by a 
lower concentration of pores on the surface. 

 
 

 
 

Figure 3 – SEM-images of cleaved facet (a) and surface 
(b) of PS sample grown at J = 1 mA/cm2 for 20 min 

 
 

Photoluminescence (PL) in PS is the evidence of 
PS  band gap broadening due to the presence of 
nanoscale silicon clusters formed near the walls of 
the pores. Photoluminescence spectra were 
measured at room temperature using a spectrometer 
NT-MDT Ntegra Spectra, the incident laser power 
was about 25 mW at a wavelength of 477 nm. The 
diameter of the laser spot on the sample was about 2 
microns. 

Figure 4 shows the PL spectra for the three types 
of PS layers. For all samples, the shape of the PL 
spectrum is close to a Gaussian curve, maxima of 
the curves are in the range 650-680 nm, which 
corresponds to photon energy of 1.82 – 1.91 eV. 

These peaks correspond to radiation in the red 
region of the spectrum and are explained on the 
basis of quantum confinement model [8]. 
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The PL intensity of the peaks correlated with the 
duration of the etching, the maximum intensity was 
observed in the samples of group 1, which can be 
explained more porous, more advanced surface 
morphology and an increase in the concentration of 
nanocrystals. 

 
 

 
 

Figure 4 – Photoluminescence spectra of thePor-Si 
samples grown at different conditions: 

1 – J = 1 mA/cm2, t = 20 min.; 
2 – J = 15 mA/cm2, t = 2 min.; 
3 – J = 25 mA/cm2, t = 1 min 

 
 
Reflectance spectra for all three groups of 

samples were recorded on a spectrophotometer 
Shimadzu UV-3600 and are presented in Figure 5. 

 

 
 

Figure 5 – Wavelength dependence of reflectance ofPS 
samples grown at different conditions: 

1 – J = 1 mA/cm2, t = 20 min .; 
2 – J = 15 mA/cm2, t = 2 min .; 
3 – J = 25 mA/cm2, t = 1 min 

Position of the interference maxima and minima 
are in good agreement for all samples, indicating 
that their thicknesses are equal. 

The Raman spectra of PS films is a good 
diagnostic tool for the study of structural phases and 
allows to evaluate the characteristic dimensions of 
the nanocrystals. The Raman peak from pure single-
crystalline silicon was at 520 cm-1, and its shape 
was nearly Lorentz an. This peak is associated with 
longitudinal optical (LO) modes [7]. For porous 
silicon, the broadening and downshift of Raman 
peak towards lower energy are connected with the 
presence of nanoscale features of the crystalline 
structures. The Raman scattering experiments are 
performed in the range of 400-600 cm−1 at room 
temperature using the spectrometer NT-MDT 
Ntegra Spectra and are shown in Figure 6. The peak 
at 514-518 cm-1 (instead of 520 cm-1) appears after 
etching the monocrystalline silicon and connected 
with nanoporous structure. Region 465-485 cm-1 is 
associated with the transverse optical (TO)modes in 
the amorphous silicon [9]. 

For all samples of the PSshift in the position of 
the peaks in the Raman spectra to lower energy was 
observed. The greatest shift to 514 cm-1 was 
observed for the PS layers with etching time of 20 
minutes, for the samples with etching time of 1-2 
minutes the peak shifts to 518 cm-1. 

Information on the average size of 
nanocrystallites in the PS can be obtained from the 
Cardona equation [10] 

 







Bd 2 (nm),                 (2) 

 
where B = 2.24 cm-1 for silicon,  – the peak shift 
of Raman scattering in the PS relative to the peak of 
crystalline silicon. In accordance with (2) the PS 
crystallite sizes of the samples decreased from 6.6 
nm to 3.8 nm with increasing etching duration of 
from 1 minute to 20 minutes.  

Figure 6 shows that a decrease in the size of 
nanocrystals is accompanied with crystal 
imperfection, an expansion of the spectral line, 
which becomes more asymmetric and its maximum 
shifts to the lower energy. The broadening of the 
Raman spectra with increasing etching time 
indicates the violation of the crystal structure of 
silicon source, the appearance of the amorphous 
phase and nanocrystalline clusters on the surface of 
the pores. 
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Figure 6 – Raman spectra of Por-Si samples grown at 
different conditions: 

1 – J = 1 mA/cm2, t = 20 min .; 
2 – J = 15 mA/cm2, t = 2 min .; 
3 – J = 25 mA/cm2, t = 1 min 

 
 

4 Conclusions 
 
In this work the dependence of structural and 

photoluminescent properties of PS layers on 
technological parameters of its fabrication were 
studied. Analysis of PS layers with the same 
thickness showed that increasing the etching time 
leads to a more advanced surface morphology and  

increased porosity. The films produced during the 
etching 1-2 minutes characterized by mean square 
roughness Sq = 1.63-1.85 nm and for specimen 
obtained within 20 minutes Sq = 2.96 nm; the 
characteristic size of the heterogeneity on the 
surface of the PS films increased from 4.2 nm to 8.4 
nm. Scanning electron microscopy confirmed that 
the concentration distribution of pores was 
uniformly over the surface, and pore size ranges 
from 7 nm to 9 nm. 

Applying Raman measurements, crystallite size 
was found to be 3.8 – 6.6nm; with increasing 
etching time from 1 minute to 20 minutes crystallite 
size was increased. It was found that the 
photoluminescence intensity is higher in samples 
with crystallite size of 3.8 nm, and the maximum 
was shifted to shorter wavelengths and was 
localized at 650 nm. 
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In this paper the results of optical and electrical characteristics of dielectric barrier discharge are presented 
where used “plane to plane” and “pin to plane” electrode configurations. The dynamic current-voltage 
characteristics of discharge at different electrode configurations were investigated. The plasma spectrum of air 
of dielectric barrier discharge was obtained by optical emission spectroscopy method. The results of 
measurement of the discharge current showed that the barrier discharge generated in the streamer mode, and 
the used pin electrode reduces the streamer channels and micro discharges. The plasma spectrum of air showed 
active components and radicals which can be used for treatment of living tissues and materials. 

 
Key words: dielectric barrier discharge, dynamic current-voltage characteristics,plasma spectrum 
PACS numbers: 52.80.Tn, 52.25.-b 
 
 
 
1 Introduction 

 
The dielectric barrier discharge (DBD) is a 

discharge that is producedat atmospheric pressure 
between two metal electrodes, one of which is coated 
with a dielectric [1]. In recent decades, low 
temperature barrier discharge plasma is widely used 
for treatment of living tissues and destroy cancer cells 
[2, 3], for sterilizing instruments, packaging and seeds 
of various crops [4], to improve the surface properties 
of polymeric materials and textiles, as well as for 
deposition of various thin-films [5]. An important role 
in the generation of plasma at atmospheric pressure in 
dielectric barrier discharge plays a form of dielectric 
and metal electrodes. There are different geometric 
configurations of electrodes as "plane-to-plane", "pin-
to-plane", "surface electrodes (surface DBD)", "co-
axial arrangement of the electrodes," and etc. The 
electrode system determines the basic electrical, 
optical and energetic properties of the barrier 
discharge. In work [6] the AC corona discharge with 
barrier electrode was investigated experimentally. One 
of the electrodes had a flat geometry, which was 
covered with an insulator whereas the second electrode 
had the shape of the tip. Experiments were carried out 
at atmospheric pressure in air, helium, argon and 
nitrogen. The results showed that with pin like 
electrodes the breakdown voltage decreases in 

comparison with the plane to plane barrier discharge, 
but the current is considerably increase. Different 
modes of discharge at the pin-to-plane geometry of the 
electrodes were investigated in [7]. Various modes of 
discharge were obtained at an applied voltage of 3 kV 
and 6 kV and at the positive and negative half-cycles. 
It was shown that micro-glow discharges have a 
hierarchical structure like in a low-pressure glow 
discharge. In work [8] the characteristics of modified 
dielectric barrier discharge (i.e., pin-to-plane 
electrodes) in helium was studied in dependence on the 
applied AC voltage, the distance between two 
electrodes and the type of pin electrodes. The power 
consumption of the discharge was investigated at 
different densities of high voltage pin electrodes. In [9] 
the static current-voltage characteristics of the barrier 
discharge at pin-to-plane electrode configuration were 
studied and had been shown that the discharge current 
decreases with increasing the distance between the 
electrodes. In [10], the two-dimensional model of the 
barrier discharge in nitrogen for pin–to–plane 
geometry is made up based on the continuity equation 
and the Poisson’s equation for the electric field. The 
results of numerical analysis shown that the 
characteristics of the discharge determine by the 
distribution of variable electric field, which is more 
near from the pin electrode due to its curvature. For 
dissociation of carbon dioxide molecules the different 
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Figure 3 – The dynamic current-voltage characteristics  
of dielectric barrier discharge: the top –"plane-to-plane", 

the bottom – "pin-to-plane" 

 
From the current waveform, it can be seen that 

in the case of “plane-to-plane” electrode geometry 
set of peaks observed at the start of each half-cycle 
of applied voltage. These peaks correspond to a 
plurality of multi microdischarge (streamer) in the 
discharge gap. In the case when a ground plane was 
replaced by a sharp metal electrode on the current 
waveform only single pulses can be seen. They 
correspond to a single streamer channel. It should be 
noted that the current through this channel is 
relatively high about 4 mA, whereas in the case of 
flat electrodesand the plurality of microdischarges 
current does not exceed 2.5 mA. Also it can be seen 
that at the “pin-to-plane” electrode geometry the 
current flows through the discharge gap only in the 
negative half-cycle voltage. This means the 
accumulation of charges on the plane electrode 
surface.  

For determination of the active chemical species 
of barrier discharge the plasma spectrum of air was  
 

measured in the range from 200 nm to 1200 nm 
under an applied dc voltage of 15 kV and 
atmospheric pressure. The results showed the 
presence of nitrogen and oxygen lines. The main 
active components of the plasma are N2 and N2 + and 
atomic oxygen. Also, there is a compounds of NO 
and OH. These spices are basis for treatment of 
living tissues, cells, and they have the disinfection 
effects. Figure 4 shows the plasma spectrum 
obtained at the “plane-to-plane" electrode geometry.  
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Figure 4 – The plasma spectrum of air at an applied 

voltage of 15 kVat “plane-to-plane” electrodes. 
 
 

4 Conclusion 
 
The dynamic current-voltage characteristics of 

dielectric barrier discharge and the plasma spectrum 
of at “plane to plane” and “pin to plane” electrode 
configurations were obtained. It is shown that the 
applied pin electrode reduces the number of 
streamer channels and the flow of the main current 
is only in the negative half-cycle of the voltage. The 
results of optical emission spectroscopy showed a 
decrease of the plasma intensity at the “pin-to-
plane” electrodes. The experimental results can be 
useful in the study of the physical processes in 
varying combination with DBD electrode geometry. 
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Currently production of large-sized graphene samples is of great importance due to the broad potential 
applications of this material with high physical performance. In this paper we consider one of the widely used 
methods of graphene production - chemical vapor deposition (CVD), which was worked out by our team. We 
used as a catalyst of Ni foil and carbon source were benzene vapor. Also, we show results of computer 
simulation by DFT methods that demonstrate possibility and effectiveness of graphene production by CVD 
method. The characteristics of graphene have been studied by optical microscopy and Raman spectroscopy. 
The results show high quality and homogeneity of the obtained graphene. 

 
Key words: graphene, CVD, optical microscopy, Raman spectroscopy. 
PACS numbers: 68.65.Pq 

 
 

1 Introduction 
 
Graphene is a crystal system consisting of a 

single layer of graphite, which elementary structural 
unit is a hexagonal cell, with its geometry 
resembling a honeycomb. Graphene causes a great 
interest because of its unique electronic, optical 
properties as well as chemical, thermal and 
mechanical characteristics [1]. The maximum 
electron mobility in graphene, as compared with all 
other known materials, making it promising for use 
in various applications, such as a future basis for 
nanoelectronics and possible replacement of silicon 
integrated circuits. The electronic properties of 
graphene depend to a large extent on the number of 
layers of graphene.  

The famous “Scotch tape method” is a pioneer 
laboratory graphene production technique for basic 
research. But recently there was developed a variety 
of methods of controllable large-sized-graphene 
production. The two of these methods are the 
method of chemical vapor deposition (CVD) [2] and 
diffusion-based method. These techniques allow to 
control the number of graphene layers precisely.  

Typical CVD graphene growth uses gaseous 
hydrocarbons at elevated temperatures as the carbon 
source, such as methane, ethylene, and acetylene 
[3,4]. While carbon nanotube growth has been 
demonstrated using liquid precursors, there have 
been only a few, recent attempts at graphene growth 
with liquid precursors. Single-layer graphene were 
synthesized from ethanol on Ni foils in an Ar 

atmosphere under atmospheric pressure by flash 
cooling after chemical vapor deposition, but a wide 
variation in graphene layer number was observed 
over the metal surface [5-7].  

In this study single and few-layer graphene were 
successfully grown on nickel substrate using 
benzene as a precursor.     

 
2 CVD graphene 

 
2.1 Mechanism of graphene growth from 

benzene molecules on Ni 
To produce graphene samples by CVD method we 

use benzene as precursor due to the similarity of 
benzene molecule with elementary hexagonal cell of 
graphene. The idea is not to decompose the whole 
molecule of precursor, as it commonly occurs in CVD 
processes, but just to dehydrogenate the benzene 
molecule, as it require less energy. Thereforecomputer 
simulation of graphene fragment formation from 
benzene molecules was performed using DFT method.  

Figure 1a demonstrates the model of benzene 
molecule on nickel surface optimized by energy. 
Due to the probability of catalytic dehydrogenation 
on Ni substrate hydrogen atoms can be torn off the 
benzene molecule and adsorbed on the nickel 
surface (Fig.1 b). Fig.1c demonstrates two of the 
benzene molecules after the separation and 
adsorption of hydrogen atoms on nickel in the 
starting position at the distance between the nearest 
atoms of the carbon is 1.9 Å after energy 
optimization.
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a b c 
 

a – benzene molecule after optimization by energy on Ni surface; 
 b – benzene molecule after the separation and adsorption of H atom on Ni;  

c – two partly dehydrogenated benzene molecules 
 

Figure 1–Modeling of graphene formation from benzene molecules. 
 
 
For more detailed study of this process computer 

simulation was conducted to predict possible stable 
states of benzene molecules (relative to each other) 
using optimization by energy. Figure 2a shows the two 
initial molecules of benzene, and then one molecule of 
benzene was once dehydrogenated. Figure2c shows 

both ionized (partial dehydrogenated) molecules of 
benzene, calculated distance between the nearest carbon 
atoms (1 and 2) is 1.43 Å, which is close to the bond 
length in graphene. Figure 2d demonstrates possible 
fragment of graphene formed due to the 
dehydrogenation of benzene molecules. 

 

  

a) b) 

 
  

c) d) 

 
a – initial benzene molecules (equilibrium distance 1-2 is 2.91 Å);  

b – one of benzene molecules is once dehydrogenated;  
c –  two partly dehydrogenated benzene molecules (equilibrium distance 1-2 is 1.43 Å);  

d – fragment of graphene formed out of 3 partly dehydrogenated benzene molecules 
 

Figure 2– Possible stable states of partly dehydrogenated benzene molecules. 
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2.2 Experimental setup 
 

 
 

Figure 3–Scheme of experimental setup of CVD system 
 
 

Source of benzene vapor - vessel 1, valve 2 
separated from the reaction chamber 3. First of all 
argon from the vessel 5 is used for disposing the 
reaction chamber of an air, and then nickel substrate 
4 is heated by resistive method. After that argon 
through the valve 6 is pulled into chamber 1 in order 
to press out of benzene vapor into reaction chamber. 
During this process nickel substrate is being covered 
by products of benzene dehydrogenation which 
results in graphene layers. All this process is 
accompanied by ultraviolet (λ≈ 365 nm) activation 8 
of reactive medium. 

Figure 4 demonstrates developed experimental 
setup of CVD system. It is built of the quartz tube 
(indicated by arrow 1), which is also mentioned as 
reaction chamber on the schematics; ultraviolet 
lamps (2); clamp terminals (3) and substrate holder 
situated within the tube. 

 

 
 

1 – Quartz tube (reaction chamber); 2 – source of 
ultraviolet irradiation; 3 – clamp terminals, 4– sample 

(substrate holder) 
 

Figure 4–Experimental setup of CVD system 
 

 
3 Results and discussion 

 
Series of experiments were conducted varying 

such parameters as intensity of benzene inlet into 
reaction chamber and the temperature of the heated 
substrate.  

Figure 5a is an optical image of single and few-
layer graphene samples, obtained at t = 810oC, 
during the inflow of benzene for 40 seconds. It was 
observed rather wide variation in graphene layer 
number on the Ni surface. In Fig. 5b it is shown the 
Raman spectrum of graphene, detected on the 
several areas of Ni substrate. The largest graphene 
sample is 8x6 μm2. 

 

 
  

a) b) 
 

Figure 5 – Optical image (a) and Raman spectrum of graphene (b),  
formed during the benzene inflow for 40 seconds 
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Further experiments were directed towards the 
varying of time of benzene inflow. Figure 6 is an 
optical image of the few-layer graphene sample, 
obtained at the same temperature - t = 810oC, but 

during the benzene inflow for 30 seconds.  Raman 
spectroscopy analysis of this sample showed that the 
variation in graphene layer number is still rather 
wide. The largest graphene sample is 5x5 μm2. 

 
 

 
 

Figure 6 – Optical microphoto of single and few-layer graphene structure  
obtained during the benzene inflow for 30 seconds 

 
 

After different variations of temperature and 
time of benzene inflow it were found out the 
optimal parameters of the process for production of 
homogeneous (by the number of layers) few-layer 
graphene samples on Ni substrate.  

The Fig.7a is a typical microphotograph of few-
layer graphene sample, obtained at t = 710oC and 

during the lapping of benzene for 40 seconds. The 
Fig. 7b gives the Raman spectrum that corresponds 
to the most part of sample’s surface. Intensity ratio 
of 2D and G peaks allows to attribute this sample to 
four-layer graphene. The largest grain of FLG is 
50x65 μm2. 

 
 

 
a) 

 
b) 

  
Figure 7 – Optical microphoto (a) and Raman spectrum (b)  

of FLG structure obtained during the benzene inflow for 40 seconds 
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4 Conclusion 
 

In the paper, relatively new developed method of 
high quality graphene mass production is presented. 
Possibility and effectiveness of graphene production by 
CVD method based on benzene was considered 
theoretically (computer simulation) and proved 

experimentally. Samples were investigated by optical 
microscopy and Raman spectroscopy. Performed 
analysis revealed a high quality of obtained FLG 
structures. Thus, we can say that presented in this study 
method of graphene production are notable for 
possibility of controllable production of rather large 
single and few-layer graphene samples of high quality. 
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Thin films of aluminum-doped zinc oxide (AZO) were prepared using magnetron sputtering and atomic layer 
deposition (ALD) techniques. Atomic force microscopy (AFM) studies of AZO films surface morphology 
show that the surface of produced by ALDfilms is a smoother in comparison with films formed by magnetron 
sputtering.According to comparative analysis of optical transmittance spectra in the visible range of 300 - 800 
nm, films formed by ALD technique demonstrates 10% higher transparency than those that obtained by 
magnetron sputtering. Investigation of samples electrical properties show that the conductivity of AZO films 
obtained by ALD technique actually two orders of magnitude higher than analogues obtained by magnetron 
sputtering. 
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1 Introduction 
 
Al-doped Zinc oxide thin films have gained 

much attention due to their high light transmission 
and potential applications in the field of sensors 
[1], photovoltaics [2], electronics [3], biomedicine 
[4], as alternative for indium-tin oxide (ITO)[5]. 
There are several basic physical [6-8] and chemical 
[9, 10] methods of obtaining AZO, each of which 
has its advantages and disadvantages. One of the 
most novel and effective methods thin 
semiconductor films formation is an atomic layer 
deposition [11]. Another, widespread and well-
known technique for producing semiconductor thin 
films with different elemental composition is a 
magnetron sputtering method [12, 13]. The main 
objectives of this work were a comparison of the 
AZO growth techniques such as atomic layer 
deposition and magnetron sputtering, study optical 
and electrical properties of obtained films and 
compare results.   

 
2 Experimental details 

 
The first group of test AZO samples prepared by 

atomic layer deposition, based on the sequential use 
of cyclic gas - solid-state transition reactions. ALD 
is a modified type of chemical vapor deposition 

(CVD) which enables very homogeneous film 
thicknesses on complex 3D geometries. The process 
of film growth in an ALD reactor is self-limited and 
based on surface reactions, which makes it possible 
to control the deposition at the atomic level. 
Keeping precursors separate from each other 
throughout the deposition process allows controlling 
the growth of atomic thickness of the film and 
obtaining the most accurate result for the atomic / 
molecular monolayer. 

In all our experiments we used as a substrates 
laboratory borosilicate glass and p-type (100) 
monocrystalline silicon wafers with a specific 
resistivity of 10 Ω*cm. The native silicon oxide 
removal carried out by a 1 min dip in 2% 
HF.Deposition of films was performed by thermal 
ALD with a deposited doping of 1:10, 1:20, 1:30 
and none doping in a commercial ALD reactor 
(OpAl, Oxford Instruments). Range of deposition 
temperature was 150°C to 300°C. Trim 
ethylaluminum (TMA), diethyl zinc (DEZ) and 
deionized water (H2O) used as precursors of 
reactions. In the Fig.1,one can see a cycle 
repetition scheme of ALD- reactor according to the 
selected mode: complete film deposition cycle 
consists of alternating cycles of deposition of 
oxides of zinc and aluminum. The layers alternated 
in following mode: 20 cycles of ZnO and 1 cycle 
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of Al2O3 deposition. Total cycle consisted of 21 
monolayer deposition cycle and repeated 120 
times, resulting in an AZO layer consisted of 2520 
ALD deposition cycles. The scheme also shows the  
 

data for the duration of each constituent processes. 
The average thickness of resulting AZO films was 
400 ± 20 nm. The deposition was conducted at 2 m 
Torr pressure in the reactor chamber. 

 
 
 

20 ms DEZ reaction 
4 s DEZ purge 

20 ms H2O reaction 
7 s H2O purge 

10 ms TMA reaction 
4 s TMA purge 

30 ms H2O reaction 
5 s H2O purge 

 
 

 
Figure 1 –Schematic representation of AZO thin film deposition  

experimental mode in the ALD reactor 
 

 
The second group of experimental samples of 

AZO films obtained by the method of magnetron 
sputtering (VUP 5 deposition setup). In this 
deposition setup, the principle of targets cathode 
sputtering in magnetron discharge plasma is used. 
In our experiments as targets, we used Zn and Al 
mixed targets with different variations of the Al 
atoms concentration.AZO thin films deposited also 
on the surface of laboratory glass and p-type 
monocrystalline silicon wafers (100) with a 
specific resistivity of 10 Ω*cm at a temperature of 
230°C and pressure of 5mTorr. The surface density 
of the discharge power ranged between 0.07 - 0 21 
W/cm2. The process conducted in Ar2:O2 mixture 
medium and the ratio of gases were 1:1.The 
average thickness of  obtained AZO films was  
400 ± 20 nm . 

 
3 Results and discussion 

 
The surface morphology of the AZO films was 

investigated by atomic force microscopy (AFM). In 
AFM images of AZO, obtained by atomic layer 
deposition, it is clearly seen that the surface is 
sufficiently smooth but contains irregularities in the 
form of needles of about 15-20 nm as shows in Fig. 
2. The surface of AZO films with the presence of 

spherical features obtained by magnetron sputtering, 
is also quite homogeneous, but is looser than the 
surface of the films prepared by ALD technique as 
presented in Fig. 3. The averages size of the 
roughness in magnetron sputtered films was 35-40 
nm. Data analysis of the surface morphology of the 
films obtained by two methods indicates that the use 
of ALD technology allow to obtain layers with more 
uniform and smooth surface. 

One of the important characteristics for different 
optoelectronic application of investigated 
semiconductor material is an optical transparency. 
Optical parameters of samples were studied by 
means of spectrophotometry through measuring and 
analysis of transmission spectra in the optical range 
between 300 nm and 800 nm (Lambda 35, Perkin 
Elmer). In the Fig. 4the transmission spectra of the 
AZO films, obtained by ALD and magnetron 
sputtering are presented. There are shown 
transmission spectra of the AZO films deposited by 
both methods at the following aluminum and zinc 
ratios: 1:10, 1:20 and 1:30. Also, for the comparison 
of our experimental results, we added the spectrum 
of undoped ZnO film. The absorption edge of the 
undoped zinc oxide film is marked by dotted lines at 
the wavelength of 375 nm with a maximum of 
transmittance above 600 nm. 

 

1 cycle 
(1 layerof ZnO) 

1 cycle 
(1 layer of Al2O3) 

Repeat 20 times 

Repeat120times 
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Figure 2 – AFM images of AZO film growth by atomic layer deposition method 
 
 

 
Figure 3 – AFM images of AZO film growth by magnetron sputtering deposition method 

 
 
According to analysis of the spectra shown in 

the Fig. 4a, it follows that in the visible range of 400 
nm - 800 nm transmittance of all samples, obtained 
by ALD, exceeds 90%. By all ALD AZO layers the 
transmittance is 10-20% higher in the 400-600 nm 
range. The maximum value of the transmittance 
reaches 99.4% for the sample obtained at the Al/Zn 
ratio of 1:10. The transmission spectra maxima 
occurs in the interval of 500 -550 nm. As  
 

concentration of dopant (Aluminum) increase 
transmission maxima shifted to shorter wavelengths 
area. The transmittance reduced to 70% in the area 
of the material’s absorption edge, for which a blue 
shift is also observed. This result is very good 
indeed, because a high transparency rate of these 
films could become one of the key parameters for 
their application in photovoltaics and electronics 
related areas.  
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Figure 4 – The transmission spectra of AZO films growth 
by: (a) atomic layer deposition and (b) magnetron 

sputtering deposition method 
 
 

The transmission spectra of AZO samples, 
produced by magnetron sputtering deposition are 
presented in the Fig. 4b. The spectra show that such 
AZO films also have a quite high transmittance in 
full visible range of 400-800 nm. The spectra of all 
examined samples there is a maximum transmission 
in the wavelength region of 500-550 nm. However, 
the maximum transmission does not exceed 90%. 
The similar transmittance to undoped ZnO layer was 
obtained for magnetron sputtered layer in the range 
between 400 up to 520 nm. The lower transmittance 
(10-15%) in comparison to undoped ZnO layer was 
obtained in the range between 520 up to 800 nm. 
Our results suggest that transparency of AZO films, 
produced by magnetron sputtering deposition is 
about 10-15% lowerin comparison of analogous 
layers produced by ALD method. Similar to AZO 
films, obtained by ALD, blue shifts of the 
transmission maximum and the absorption edge of 
the layer with increasing of dopant concentration 
obtained in transmission spectra of thin layers 
produced by magnetron sputtering deposition. 

Another important criterion in the selection of 
materials for different technical applications is its 
electrical conductivity. Therefore, we measured the 
specific electrical resistivity of AZO layers, 
obtained at different concentrations of aluminum 
atoms and deposition temperatures. Resistivity of all 
AZO films was measured by four point 
method.Figure 5 represents a dependence of the r 
specific electrical esistivity average value on 
deposition temperature for ALD AZO films with 
different doping levels. The analysis of this study 
results that the minimum value of AZO films 
resistivity was obtained at the deposition 
temperature of 250°C for doped and undoped 
samples of zinc oxide layers. For all doped and 
undoped layers, there is observed almost the same 
behavior, thus with increasing deposition 
temperature resistivity of the material sharply 
decreases at first, then gradually. The lowest 
resistivity is 1.2 * 10-3 Ω*cm and respects to the 
sample obtained at 1:20 Al/Zn ratio.  

For undoped zinc oxide layer the specific 
electrical resistivity minimum is almost observed 
at the deposition temperature of 2500C and equal 
to 5.9*10-3 Ω*cm, hence, AZO films with doping 
ratio of 1:20 improves its conductivity almost for 
5 times. As it shown in the Fig. 5 in the 
deposition temperature range of 250-3000C 
resistivity of all samples increases. This 
phenomenon is presumably because of at high 
temperatures atomic layer deposition process 
does not occur uniformly and too high kinetic 
energy of aluminum atoms results to their 
irregular deposition on the zinc oxide surface, 
thus conductivity of the output material suffers. 

In order to compare the ALD AZO electrical 
characteristics with magnetron sputtered AZO 
layers the specific electrical resistivity was also 
measured for magnetron sputtered AZO films. 
Unfortunately, the electrical parameters of these 
films were very weak. The minimum value of the 
resistivity was 0.22 Ω*cm for sample obtained 
from the dopant concentration ratio Al/Zn of 
1:20. Thus, the comparative analysis of the 
samples resistivity indicates that the conductivity 
of AZO films obtained by atomic layer 
deposition actually two orders of magnitude 
higher in comparison to the thin films obtained 
by magnetron sputtering. 
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Figure 5 –Specific electrical resistivity of aluminum doped ZnO  
depending on deposition temperature and deposited doping ratio 

 
 

4 Conclusions 
 
We have performed experiments on formation of 

AZO films by atomic layer deposition and magnetron 
sputtering techniques. It is experimentally shown that 
the surface of produced by ALD AZO films is more 
smoother in comparison with those obtained by 
magnetron sputtering. According to comparative 
analysis of optical transmittance spectra in the visible 
range of 300 - 800 nm, layers formed by ALD 
technique demonstrates 10-15% higher transparency 
than those that obtained by magnetron sputtering or 
undoped ZnO layer. Investigation of samples 
electrical properties show that the specific electrical 
resistivity of AZO films obtained by ALD technique 
actually two orders of magnitude lower than 
analogues obtained by magnetron sputtering. 

Following the findings based on presented 
experimental results, we concluded that the most 
optimal characteristics have AZO films produced by 
ALD. Besides, ALD allows to obtain a high quality 
AZO layers with optimal optoelectronic properties at 
comparatively low deposition temperatures that 
opens a new technological opportunities for using 
temperature sensitive surfaces, such as flexible 
polymers, as a substrate.  
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The atomic and local structure, as well as the electrical, optical, photoelectrical properties and drift mobility of 
charge carriers in amorphous As40Se30S30 films, prepared by the method of RF ion-plasma sputtering (RF-
films), were studied in comparison with those of the films, prepared by the method of thermal vacuum 
evaporation (TE-films). These two methods differ significantly in the conditions of substance vaporization and 
condensation of atoms on a substrate.  
It was found that the films fabricated by the different methods have differences in structure and electronic 
parameters. The essential differences in photoconductivity and transport phenomena are observed, too.  
It was concluded that RF As40Se30S30 films have a modified structure. This leads to changes in the spectrum of 
extended and localized electronic states in these films, which, in its turn, causes differences in their electronic 
properties. 
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1 Introduction 
 
It was shown earlier that electronic properties 

of amorphous As2Se3 and As2S3 films, arsenic 
containing chalcogenide glassy semiconductors 
(ChGS) of binary composition, are strongly 
influenced by structure modification as a result of 
their preparation by ion-plasma sputtering method 
[1, 2]. Redistribution in electron energy spectrum in 
these modified films be assumed in the first place is 
due to As atoms presence in composition of the 
films. As a consequence it is of interest to study the 
films preparation  technique influence on electronic 
properties of amorphous As40Se30S30 films, arsenic 
containing ChGS of triple composition. 

In this work the results of complex 
investigation of atomic and local structure, 
electrical, optical and photoelectrical properties as 
well as carrier drift mobility in As40Se30S30 
amorphous films, prepared by the methods of RF 
sputtering (RF films) in comparison to the results of 
the films prepared by thermal vacuum evaporation 
(TE films) are described.  

 
 

2 Experimental  
 
For the films fabricated by sputtering of a bulk 

ChGS target of the initial composition, the process 
was carried out in argon atmosphere at a frequency 
of 13.56 MHz and a pressure ~ 1 Pa. Fabrication of 
the films by evaporation was carried out in a 
vacuum of ~ 4·10-3 Pa on substrates kept at a room 
temperature. In the both methods The preparation 
parameters were selected so as to produce 
amorphous films with composition corresponding 
to that of the starting ChGS and having the 
maximum possible carrier drift mobility. The latter 
parameter is known to be one of the most structure-
sensitive for semiconductor materials [3, 4].The 
thickness of the obtained films was varied from 0.5 
to 5 µm. 

To stabilize the structure and properties as-
prepared films were annealed at temperature close 
to glass transition temperature of As40Se30S30 440 K 
for 30 min. The composition, morphology and 
amorphicity of the prepared films were determined 
by scanning electron microscope Quanta 3D 200i  
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using energy-dispersive analysis and x-ray 
diffraction analyses, respectively. 

The atomic structure of the amorphous films 
(the short- and medium range order in the atomic 
arrangement) was studied by x-ray diffraction 
analysis using CuKα radiation (=1.5418Å). The x-
ray grazing angle was constant and equal to 4.52º. 
The intensity of reflected x-rays was recorded in 
the range of diffraction angles 2θ from 5º to 140º. 
The results were reproducible within 2%. 

The local structure of the films was analyzed 
by means of Raman spectroscopy. The Raman 
spectra were recorded at room temperature on 
T64000 (Horiba Jobin Yvon) spectrometer using 
light of DPY Nd:YAG laser (532 nm). Vertically 
polarized light of lasers were used in the 
backscattering (at an angle of 180o) mode. The 
number of accumulations was the same at all 
measurements and equal to 25. The measurement 
error was ± 1 cm-1.  

The temperature dependence of the films 
conductivity was measured in the range from 300 to 
430 K. The planar structure samples were used. The 
optical gap Eg of the films was found from spectral 
characteristics of absorption according to Tauc 
relation (αhν)1/2 ~ (hν – Eg) (where hν is the photon 
energy), at absorption coefficient α corresponding 
to the fundamental absorption edge. 

Charge carrier transport was studied at a room 
temperature using time-of-flight technique [3-5], 
with carriers injected into a sample by a 10 ns pulse 
of strongly absorbed light (0.337 μm). Films 
photoconductivity was studied using standard 
technique. 

  
3 Results and discussion 

 
Figures 1 and 2 show the chemical composition 

and morphology of amorphous RF and TE 
As40Se30S30 films. 

 
 

 

 

a b 
 

Figure 1 – Energy-dispersive spectrum (а) and morphology (b) of  RF a-As40Se30S30 film 
 

 

 

a b 
 

Figure 2 – Energy-dispersive spectrum (а) and morphology (b) of TE a-As40Se30S30 film 
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The results show that the a-As40Se30S30 films 
prepared by both methods are continuous, and there 
are no unintentional impurities and the submicron 
sized defects in these films.  

The composition of the films differed from that 

of initial material by less than 3% regardless of the 
preparing method. 

Figure 3 (a, b) shows angular dependences of 
the x-ray diffraction intensity I(2θ) for RF and TE 
а-As40S30Se30 films. 

 
 

 
 

a b 
 

Figure 3 – X-ray diffraction patterns for RF (a) and TE (b) а-As40S30Se30 films 
 
 

It can be seen, that there are three distinct peaks 
on I(2θ) curves for films prepared by both methods. 
However, the diffraction peak amplitudes and peak 
half-widths differ for RF and TE films. These 
distinctions are particularly well seen for the first 
sharp diffraction peak (FSDP) in the curves. The 
FSDP curves made it possible to determine the 
wave factor S, at which the FSDP maximum is 
observed (S = 4π·sin(θmax1)/λ, were θmax1 is the 
angle of the FSDP maximum; λ is the x-ray 
wavelength). FSDP on I(2θ) curves for RF and TE 
films are situated at 2θ = 16.5о, and S=1.17 Å-1. 
Linear dimensions of the local structural order 
regions (medium-range order), characterized by the 
parameter L = 0.9·λ/[B(2θ)cos(θmax1)], where B(2θ) 
is the FSDP half-widths in radians, were estimated 
using the Scherrer's formula [6]. Medium range 
order parameter has been estimated to be 15 Å and 
24 Å for RF and TE films, respectively. The ‘quasi-
period’ d of the structure, whose existence within a 
certain correlation region gives rise to FSDP, was 
estimated using an approximate expression d ≈ 
2π/SFSDP. For RF and TE films studied, d is 5.2 and 
5.5 Å, respectively. 

It should be noted that the difference in the 
short-range order structural parameters of RF and 
TE films is far from being as significant as the 
difference in the medium range order parameter L. 

The shorter dimension of the medium-range order 
region for RF films indicates that the structure of 
these films is more disordered. Besides, the 
photostructural changes in RF films are less 
obvious.  It follows that the structure of these films 
is more rigid than that of the TE films. 

Figure 4 shows the Raman spectra of RF and 
TE films. It can be seen that the spectrum of RF 
films as well as that of TE films have two general 
broad bands corresponding to vibrations of 
pyramidal structure units AsSe3/2 (in the range from 
200 to 300 cm-1) and AsS3/2 (in the range from 300 
to 400 cm-1). It follows that these pyramidal 
structure units are general units in the network of 
studied films. The peaks that modulate the contour 
of the bands and the frequencies of the peaks point 
on the presence of a great number of homopolar 
bonds such as As-As, Se-S, Se-Se and S-S in the 
network of the RF and TE films [7-9]. However the 
spectra of both RF and TE films have significant 
differences in the shape and intensity above 
mentioned general bands. In the spectra of RF films 
one can see a great number of clear recorded 
additional peaks that modulate the contour of the 
bands. Thus in RF films one can see the peaks with 
low intensity at frequencies 114, 167, 183, 202, 
211, 218  cm-1 on the slope of the band (from 200 
to 300 cm-1) at low frequency region. These peaks 
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correspond to different types of As-As and As-Se 
bond vibrations in structural molecular units such 
as AsSe4/2, As4Se4 and As4Se3. These structural 
units can be present in the network of triple 
composition As-Se-S films because of their 

presence in the structure of the binary 
stoichiometric composition As2Se3 and As2S3 films 
[8-9]. The revealed differences in Raman spectra 
show significant differences in local structure of RF 
and TE films. 

 

 
a b 

 
Figure 4 – Raman spectra of a-As40S30Se30 films: (a) RF film and (b) TE film 

 
 

The results we obtained in studying the 
electrical and optical properties of amorphous 
RF and TE films were used to determine the 
following parameters of the films: conductivity 
σ at T= 300 K; activation energy of conductivity 
Еσ and optical band gap Еg as well as ΔEF (shift 

of Fermi level with respect to the midgap) 
(Table). The error in these parameters, resulting 
from data scatter from sample to sample, are 
about half an order of magnitude for σ, ΔEσ = 
±0.02 eV and ΔEg = ±0.01 eV for the activation 
energy and optical gap. 

 
 

Table – Electronic parameters of amorphous RF and TE As40S30Se30 films 
 

Films σ(T=300 K), 
Ohm-1сm-1 

Еσ, 
eV 

С, 
Ohm-1сm-1 

Еg, 
eV 

ΔEF = Еg/2-Еσ/2, 
eV 

RF 610-16 1.02 3103 1,89 - 0.08 

ТE 110-15 0.96 4103 2,08 0.08 

 
 
One can see from the Table that the parameters 

of the RF and TE films are different. The RF films 
are characterized by lower conductivity, higher 
activation energy of conductivity and narrower 
optical gap. The contradiction between lower 
conductivity at narrow band gap can be accounted 
for by invoking concepts of the physic of 
amorphous semiconductors, concerning the 
antiparallel energy fluctuations of the band gap [3].  

The spectral dependence of photoconductivity 
of the amorphous RF and TE films was measured in 

longitudinal regime at electric field strength 
ranging from 102 to 104 V/сm [10]. The “sandwich” 
structure samples were studied. It was found that 
the dependences for the RF and TE films have 
significant difference in short wavelength region 
(Figure 5). It is seen from Figure 5, that in TE films 
the photorectification takes place. On the contrary, 
the spectral characteristics of RF films don’t 
depend on the voltage polarity on illuminated 
electrode that is the evidence in favor of bipolar 
photoconductivity in these films. 
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а b 

 
Figure 5 – Spectral dependence of longitudinal photocurrent in RF (а) and  
TE (b) а-As40S30Se30 films: 1 – positive and 2 – negative voltage polarity  

on illuminated electrode 
 
 
Significant differences can be seen in charge 

carrier drift mobility µ studying for TE and RF 
films (E=105 V/cm, T=300 K) (Figure 6). The 
mobile charge carrier in TE films are the holes only 
(µp≈10-6 cm2/(V·s)), but in RF films both electrons 
and holes are mobile (µp≈ µp≈ 10-6 cm2/(V·s)), that 
is the bipolar charge carrier transport occur.  

 
 

 
Figure 6 – Transient hole (1, 2) and electron (3) 

photocurrents  
in а-As40S30Se30 TE (1) and RF(2, 3) films 

 
 

The results of our photoconductivity and charge 
carrier drift mobility study are indicative of 
considerable redistribution in localized electron 
states controlling electron transport in RF films. 

It should be noted that observed features in the 
differences of structure and electronic properties of 
RF and TE a-As40S30Se30 films are similar to those 
for RF and TE As2Se3 and As2S3 films [1, 2, 11], 
that is the evidence in favor of important role of 
arsenic atoms in structure modification of RF films 
of arsenic containing lower coordinated ChGS. 

 
4 Conclusion 

 
Thus, the use of RF ion-plasma sputtering 

method for preparation of amorphous As40Se30S30 
films makes it possible to modify electronic 
properties of the films by changing their structure 
and opens new opportunities for controlling the 
electronic properties of amorphous films of arsenic 
containing chalcogenide glassy semiconductors. 
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One of the main factors impeding further progress in the field of application of met materials is significant 
energy losses due to the physical nature of exploited plasmon resonance, and their compensation is the most 
urgent problem to be addressed by the modern science of met materials. That is why this paper studies the 
parametric interaction of electromagnetic waves and, in particular, the process of generation and amplification 
of the second harmonic generation in met materials with the negative refractive index. It is found that the 
fundamental waves in the process of the second harmonic generation cannot exchange energy through the 
second harmonic wave at the non-collinear phase matching, and, thus, further consideration is required of 
optical rectification of the field in the nonlinear met materials. 
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1 Introduction  
 
Recent advances in the technology of structured 

materials made it possible to create new materials 
with unusual physical properties, which are not 
encountered in nature. The best known example of 
such materials is the so-called met materials that are 
nanocomposites with the negative refractive index 
[1,2].Such unique physical characteristics can be 
obtained by using structured materials, which 
include those based on metal-insulator [3,4], metal-
organic [5,6] biological [7], and other media. 

On the one hand the linear optical properties of 
met materials are well studied at the moment. On the 
other hand the invention of powerful sources of 
coherent radiation, associated with the creation of 
lasers, led to a new field of optics, nonlinear optics, 
which gave a direct impetus to the development of 
optoelectronic devices and information technologies. 
At present the formation of nonlinear optics of met 
materials is under way, which, along with effects 
similar to those of the classical nonlinear optics, 
discloses a number of phenomena that are unique for 
met materials. It should be noted that interest in the 
theory of nonlinear optical phenomena in met 
materials is heated by the problems of both 
fundamental science and potential applications in 
technology. Possible applications of met materials are 
still hampered by essential energy losses due to the 
plasmon resonance. Compensation of those losses is 

the most urgent problem to be addressed by the 
modern science of met materials. In this regard, this 
paper studies the parametric interaction of 
electromagnetic waves and, in particular, the process 
of generation and amplification of the second 
harmonic wave in met materials with the negative 
refractive index, with further focus on the 
effectiveness of frequency conversion and 
compensation of energy losses in met materials. 

Second harmonic generation is a nonlinear 
optical process, in which electromagnetic waves 
with the same frequency interact with a nonlinear 
material to effectively generate electromagnetic 
wave with the doubled frequency. In the classical 
case, the second harmonic generation occurs in 
strongly nonlinear crystals with quadratic 
nonlinearity χ2 [8,9]. It is well known that for an 
effective second-harmonic generation in ordinary 
matter the perfect phase matching Δk = 2k1 – k2 = 0 
must be satisfied. In case of its violation a periodic 
exchange of energy between the fundamental wave 
and the second harmonic wave is observed. 

 
2 Non-collinear second harmonic generation in 
met materials 

 
Consider the process of the second harmonic 

generation in a met material with a negative 
refractive index. The phase matching is achieved by 
the interaction of two collinear waves of the 
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fundamental frequency and the second harmonic 
wave, so that 0  + -

1 1 2k k k , where ±
1k , 2k

denote the wave vectors corresponding to the pump 
waves and the second harmonic, see Fig.1. This 
situation is a generalization of the case of collinear 
second harmonic generation studied in [10]. 

In case of the non-collinear second-harmonic 
generation in a met material the pump wave and the 
second harmonic wave can be represented as 
follows: 
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Figure 1 – Non-collinear SHG process. Two pump waves 

are incident at a certain angle to the normal of the met 
material surface. The directions of the respective energy 
fluxes are characterized by Poynting vectors 1

S . and 2S , 
which is oppositely directed to the normal 

 
 
It is assumed that at the fundamental frequency

  the refractive index of the metamaterial is 
negative, and it is positive at the second harmonic 
frequency 2 . The second harmonic wave 
propagates oppositely to the normal of the 
metamaterial surface. The direction of the Poynting 
vector 2S of the second harmonic is opposite to the 

sum of the Poynting vector ±
1S of the pump waves, 

which is directed along the normal (see Fig. 1). That 
is, the second harmonic wave vector 3k is directed 
along the axis Z and the wave vectors 1k  and 2k of the 
incident waves lie in the XZ plane, so that 
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where sinx  , cosz  ,  refer to the angle 

between vectors 1k and 3k . 
The set of equations describing the non-collinear 

synchronization at the second harmonic generation 
is written as follows: 
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(3) 

 
Here ( )

1E 

 and 2E designate the complex 
envelopes of the electric fields of the pump and 
second harmonic waves with the corresponding 
group velocities 1,2 , 1,2  stand for the coefficients 
of the nonlinear interaction. 

The mismatch in the vector synchronism Δk is 
then obtained in the form: 

 
(2 ) 2 ( )z zk k k    .  (4) 

 
If ( )

1E   and 2E  change slowly, they can be 
expressed as 
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and wave equations (3) can be rewritten as follows:
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The last equation can be transformed to 
 

  ( ) ( )
2 2 1 1

( ) ( )
2 1 1 2

(1/ ) ( , ) ( ) ( ) ,
( , ) ( , ) ( )

z t
i kz

A z t x x
i A z t A z t e x




 

   

    



 (7) 

 
in which the right side of equation (7) depends  
on z , whereas the left function singly depends  
on x . This means that the left hand side of (7) is 
constant, that is: 

 

 
( ) ( )
1 1

2

( ) ( ) .
( )

x x const
x

  



 (8) 

 
The equations for the incident waves can be 

rewritten as follows: 
 

( ) ( )
1 1

1

( )
( )1
1

( ) ( )
1 1 2 2 1

1( ) ( , )

( , )

( ) ( ) ( , ) ( , ) .

z

x

i kz

x A z t
z t

A z t
x

i x x A z t A z t e








 




   

  
      


 


   

   (9) 

 
Dividing this expression by ( )

1
  gives rise to 

 
( ) 2( )2 1

1( )
1

( ) ( ) ( ) .
( )

x x m x
x

  
 





      

(10) 

 

Assume that
2( )

1 ( ) 1x  . Then, the equation 

for the incident wave is written as 
 

 

( )
1

1

( )
( )1
1( )

1
( )

1 2 1

1 ( , )

1 ( , )

( , ) ( , ) .

z

x

i kz

A z t
z t

A z t
x

i mA z t A z t e















  

  
     


 

 

 

 (11) 

 
Separating the variables yields 
 

( )
( )1

( )
1

1 ,const
x









             
(12) 

 

which allows one to conclude that
( )( ) ( )

1
const xC e

    . 

Taking into account that
2( )

1 ( ) 1x  ,one finds 

that 1( )
1

il xe  , where 1l  are arbitrary constant. 
Finally, taking into account all the substitutions, 

equation (11) can be rewritten as: 
 

 

( )
1

1

( )
1 1

( )
1 2 1

1 ( , )

( , )

( , ) ( , ) .

z

x
i kz

A z t
z t

il A z t
i mA z t A z t e












  

  
     

 

 

       (13) 

 
Using the phase shift in the substitution

( ) ( )
1 1 1exp( / )x zA A il   the left hand side of 

equation (13) can be eliminated. Thus, the set of 
equations describing the interaction of three non-
collinear waves in the nanocomposite medium, i.e. a 
metamaterial with the negative refractive index, is 
found as: 

 
( ) ( )
1 1 2 1

1

( ) ( )
1 1 2 1

1

( ) ( )
2 2 1 1

2

1 ( , ) ( , ) ( , ) ,

1 ( , ) ( , ) ( , ) ,

1 ( , ) ( , ) ( , ) .

i kz
z

i kz
z

i kz

A z t i A z t A z t e
z t

A z t i A z t A z t e
z t

A z t i A z t A z t e
z t

 


 





    

    

   

  
     
  
     
  

    
   (14) 

 
Consider the stationary case in which the set of 

equations (14) can be rewritten as follows: 
 

( ) ( )
1 1 2 1

( ) ( )
1 1 2 1

( ) ( )
2 2 2 1 1

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ) ( ).

z

z

A z i a z A z
z

A z i a z A z
z

a z i ka z i A z A z
z

 

 



  

  

 


 




 



  



  (15) 

 
On substituting 2 2( ) exp( )A z a i kz   ,

0/z z x , k   , z   gives rise to the 
following set of equations in dimensionless form: 
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( ) ( )
1 2 1

( ) ( )
1 2 1

( ) ( )
2 2 1 1

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ) ( ).

e x ie x e x
x

e x ie x e x
x

e x i e x ie x e x
x



  

  

 


 



 



 


 (16) 

 
The normalization of the amplitude of the 

interacting waves are defined herein as
( ) ( )
1 0 1 2 1(1/ ) /A z e    , 2 1 0 2( / )a z e   and

0z   .If the length of the sample is denoted as l , 
the boundary conditions in this case can be written 
as: 

 
( ) ( )
1 10 10 2(0) exp( ), ( ) 0.e e i e l    (17) 

 
Thus, the set of differential equations (16), 

describing non-collinear wave interaction at the 
SHG, should be solved together with boundary 
conditions (17), set at the opposite ends of the 
sample. 

The set of equations (16) can be rewritten in 
terms of amplitudes and phases, by setting 

( ) ( ) ( )
1 1 2 2exp( ), exp( )e u i e i       and 

subsequent separation of the imaginary and real 
parts yields: 

 

 
0

sin ,

sin ,

sin ,

cos ,

(0) ,   v( )=0,  ( )=- 2,

z

z

z

z

u vu
u vu
v u u

vu u vu u u u v

u u l l







  

 

 

 

 

     

 

 

 

 

    



 (18) 

 
where 2 1 1       , 1



 and 2  denote the 
phases of the pump and second harmonic waves, 
respectively. 

The presence of a common factor sin in the 
equations above means that the exchange of energy 
between the harmonics takes place in such a way 
that the fundamental waves both lose or gain some 
energy at the same time, that is the energy exchange 
between the fundamental waves uand u through 
the second harmonic is impossible. 

The set of equations (18) has three first 
integrals, among which are the Manley-Rowe 
relations: 

 
 
   

2 2 2
1

2 2 2
2

2 2 2 2
1 2

,

,

,

u v m

u v m

u u m m





 

 

 

  
         

(19) 

 
where 1,2 1 ( )m u l .  

The last equation in (18) can be easily integrated 
to give: 

 
2

3cos / 2 ,u u v v m      (20) 
 

where 3m is a constant .  

It follows from the last expression that 3 0m  ,
2 2 2 2

1 2cos 2 ( )( ) .F v v m v m      
  The 

maximum value of this function is achieved at the 
point 0 1 2v m m . Taking into account the 

inequality, cos 1  allows one to conclude that, 
like in the collinear case, there are two regimes of 
the second harmonic generation. In case of 

1 22( )cr m m    , v can take any value, 
increasing indefinitely along the axis z . This in turn 
means that for the entire range energy 0 z L   the 
energy is transferred from the fundamental wave to 
the second harmonic. In case of cr  the domain 

of allowed values of v  lies in the interval 00 v v  , 
where 

2 2 2
0 1 264 2 2 ,v K K m m  

2 2 2
1 24( ).K m m   Thus, the exchange of 

energy between the fundamental wave and the 
second harmonic takes place along the sample, 
leading to spatial oscillations of the amplitudes of 
the interacting waves. In Figure 2, the curves of the 
function cosF  are plotted for different values 
of the amplitude of the second harmonic which 
corresponds to the solid line with 1 22( )m m   . 

For the lower curve 1 22( )m m    and in this 
case the amplitude of the second harmonic wave can 
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take arbitrary values. If 1 22( )m m   ,there are 
forbidden bands for the values of the amplitudes of 
the second harmonic corresponding to the upper 
curves. This is the so-called supercritical regime of 
the second harmonic generation. 

 
 

 
Figure 2 – The dependence of the function F = cosθ  

on the amplitude of the second harmonic at  
m1 – 0.8, m2  0.7 

 
 
Using the conservation laws (19) together with 

(18) the following equation for the intensity of the 
second harmonic is derived for 3 0m  : 

 
2

2 2 2 2 2 2 2
1 22 ( )( ) ( ) .

2
d vv v m v m v
dz

   
    

(21) 

 
Let the intensity of the second harmonic be such 

that 2v P   and, then, the last equation is rewritten 
in the form 

 
3 2 2 2 2 2 2

1 2 1 24 (4( ) ) 4 ,P P m m P m m P
z


     


(22) 

 
and its solution is found as: 

 

3 2 2 2 2 2 2
1 2 1 2

.
4 (4( ) ) 4

dP dz
P m m P m m P

 
   

   (23) 

 
The integral on the left side is elliptical, and the 

solution of (23) can be expressed by using the 
Weierstrass function. Thus, the solution of (21) can 
be written as: 

3
2 3

.
4

dsz l
s g s g

  
 


              

(24) 

 
Here 0 0 06 ( ) / (24 ( ))P P f P s f P    , where

0P  is one of the roots of the polynomial
3 2 2 2

1 2( ) 4 ( ) 4f P P K P m m P    , 
2 2 2

1 24( )K m m   . 
The polynomial under the square root of 

equation (24) has the following roots: 
 

 2 2 2
, 1 2

0,
1 ( ( 64 ).
8

a

b c

P

P K K m m



 
  (25) 

The invariants of the Weierstrass function 2g
and 3g are, thus, equal to: 

 

 

2 2 2
2 1 2

2 2 3
3 1 2

1 ( ) 4 ,
12
1 1( ) ( ) .
3 216

g K m m

g m m K K

  

   
    (26) 

 
A special feature of this case is that at perfect 

phase matching of 0  , the solution is expressed 
in terms of Jacobi elliptic functions : 

 
2

2 2 2 1
1 2 2

2

[ ( ), ].mP v m sn im z l
m

      (27) 

 
Solutions for the intensities of the remaining two 

pump waves are easily found using expression 
(19).It should be noted that in the collinear 
interaction of waves solutions are expressed in 
terms of hyperbolic functions at 0  .In the case 
of |δ| > δcr = 2(m1 + m2) the second harmonic wave 
vstarts to exchange energy with the pumping waves
u   and u . Figure 3 shows the intensity of the 
second harmonic wave from as a function of the 
coordinate z . The solid curve corresponds to the 
perfect phase matching at which the energy is 
permanently transferred to the second harmonic 
along the entire sample. The dashed curve 
corresponds to the critical value of the phase 
mismatch when cr   and the energy exchange 
between the pump waves and second harmonic 
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takes place along the sample, i.e. the amplitude of 
the second harmonic turns a periodic function of the 
coordinate. Thus, in contrast to the classical case, 
the effective frequency conversion in metamaterials 
is possible for the whole range of the phase 
mismatches both in collinear or non-collinear 
matching which is quite an attractive feature in 
sense of possible applications.  

 

10 1u  , 10 0.9u  , l = 1 
Solid line – δ < δcr, dashed line – δ < δcr,  

dotted line – δ < δcr 
Figure 3 – Spatial profiles of the second harmonic wave 

along the sample at different values of δ 
 
 
In the ideal phase matching solution (18) for the 

wave intensity is written as follows: 
 

    

2
2 2 2 1

1 2 2
2

2 22 2
1

2 2
2

( ) sn ( ), ,

( ) ( ) , ( )

( ) .

mv z m im z l
m

u z v z m u z

v z m

 

 
   

 

  

      

(28) 

 
Note that expressions (28) are implicit solutions 

of (18), since they contain undefined parameters 
such as 1m  and 2m , which are corresponding values 
of the amplitudes of the pump waves at the right end 
of the sample u+(l), u–(l). To determine the 
dependence of 1,2m on the amplitude of the input 

value of (0)u
 the following transcendental 

equations must be solved:  
 

 2 2 2
1,2(0) (0) .u v m     (29) 

 

The results of the numerical solution of 
transcendental equations (29) are shown in Figures 
4-5. Figure 4 corresponds to the case of ideal phase 
matching, in which the curve of the amplitude of the 
incident pump wave at the right end of the sample as 
a function of its value at the left end has several 
branches. The physical meaning can only be 
prescribed to the lower branch, whereas for the 
parameters of the upper branches the fields within 
the sample can take infinite values. It follows from 
the analysis of the behavior of the lower branch that 
the second harmonic reaches saturation, which 
corresponds to the total transformation of the energy 
of the fundamental waves into the energy of the 
second harmonic. 

 

 
Figure 4 – The dependence of the amplitude of the pump 

wave u+(l) = m1 on u+(0)  
 

 
Red curve: |δ| ~ δcr = (m1 + m2),  
black curve: |δ| ~ 2.2(m1 + m2),  
dashed curve: |δ| ~ 20(m1 + m2)  

Figure 5– The dependence of the amplitude of the pump 
wave u+(l) = m1 on u+(0)  
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3 Conclusions  
 
The curves in Figure 5 show the intensity of the 

fundamental wave at the left end of the sample u+(0) as 
a function of its value u+(l) at the right end in the 
supercritical regime of SHG. The red curve corresponds 
to the case of  |δ| ~ δcr = 2(m1 + m2),  the black curve is 
drawn for |δ| ~ 2.2(m1 + m2), and for the dashed curve  
|δ| ~ 20(m1 + m2). For quite large values of the phase 
mismatch the dependence is almost linear, which 
actually prevents the SHG since the energy transfer 
from the fundamental wave to the second harmonic 
does not take place, and the intensity of the incident 
fundamental waves remains unchanged while passing 
along the sample. For values of the phase mismatch not 
higher than the critical one, rapid oscillations occur due 
to the periodic exchange of energy between the 
fundamental wave and the second harmonic. 

 

In a case of non-collinear phase matching it is 
found for the second-harmonic generation in a 
metamaterial with the negative refractive index that 
the fundamental waves simultaneously either lose or 
gain energy, i.e. the energy exchange between them 
through the second harmonic turns impossible. 
Nevertheless, the exchange of energy between the 
pump waves is possible the constant field appearing 
due to the optical rectification, which is always 
present in the process of the second harmonic 
generation. 
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We suggest a new theory for the description of electrical conductivity of semiconductor quantum nanowires. 
We take into account that oscillations of quantum nanowires lead to their self-similar deformation, and because 
of interaction between nanowires they form fractal clusters. Electrical potential of these structures is described 
via nonlinear fractal measures. We conclude that current-voltage characteristics of quantum nanowires contain 
hysteresis loops with oscillations. This fact corresponds to existence of negative differential resistance due to 
multi barrier tunneling effect in the described fractal structures.Our theoretical results have been confirmed by 
results of corresponding specific experimental study of nanoscale wire-like structures in silicon. 
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1 Introduction  
 
Silicon quantum nanowires (SiNWs) have been 

attracting considerable attention due to various 
application of nanowires in nanoelectronics, 
optoelectronics, sensor devices [1-6]. Micropho-
tographs of SiNWs show sets of separated groups of 
nanowires. Each group contains several interacting 
nanowires. It can be explained by overlapping of 
wave functions of the nanowires. So, we can 
consider such structures as quantum nanowires. 

At the present time singularities of electrical 
conductivity of quantum nanowires considered in 
theoretical and experimental studies on the base 
of Landauer’s theory [7, 8]. In a one-dimensional 
regular quantum wire density of states is 
inversely proportional to speed of electrons. In 
case of a single electron, electrical conductivity 
is a constant value expressed via the Planck 
constant and electron charge. This result follows 
from the Heisenberg's uncertainty principle also. 
Structure of quantum wires can be irregular,so, 
in this case we must take into account not only 
external potential between electrodes 
(“reservoirs”) but value of potential caused by 
internal heterogeneous distribution of electrons. 
According to [7] this potential is called the 
“scattering potential”, but its physical nature 
hasn’t been described. In order to define values 
of current we must integrate relations including 
probability density function of these potentials,  
 

and use different approximations of these 
relations: uneven (for example, via the Heaviside 
step function) and wave-like (classical). But 
irregular alternation of probability density 
function of distribution of electrons on energies 
is possible only near absolute zero. quasi-
classical description can be used in case of 
motion of quantum particles with relatively big 
impulses in a potential field with small gradients. 
In our case these conditions are improbable. 
Effective mass and impulse of an electron in a 
semiconductor are substantially less than 
effective mass and impulse of a quasi-free 
electron in a metal. Nano-sized semiconductors 
have fractal structure with sharp variations of 
potential barriers. Semiconductor nanofilms can 
be characterized by existence of hierarchy of 
similar structures with fractal dimensions in 
range of spatial scales from 10 to 103 nanometers 
[9]. Results of recent studies show that electrical 
conductivity of semiconductor nanostructures is 
a non-monotone function, andcurrent-voltage 
characteristics of such structures contain areas 
with negative differential resistance and 
hysteresis cycle. So, the aim of our work is to 
construct a simple nonlinear theory for the 
description of electrical conductivity of 
semiconductor quantum nanowires accounting 
values of potential of internal fractal structures, 
and to compare the theoretical results with our 
experimental study of SiNWs.    
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2 Model of clustering of quantum nanowires and 
theory of electrical conductivity  

 
Let us consider an ensemble of semiconductor 

nanowires. Diameter L of a nanowire is about sum 
of size of several atomic layers and the de Broglie 
wavelength   of an electron. As usual, L is about 
50 nanometers [1-6]. Nanowires can be considered 
as nonlinear objects because their properties depend 
on processes in the nanowires. Thermal fluctuations 
and non-uniform electric potential of boundary 
aggregation of molecules (ions) disturb shape of 
nanowires. The simplest and universal algorithm of 
nonlinear evolution of initially harmonic 
perturbations (leading to dynamical chaos) is 
doubling of period. Amplitude of perturbations 
decreases during a spatial period. The next period 
characterized by increasing of the amplitude. As a 
result, wave functions of two nanowires overlap 
each other (Figure 1). Next stages of evolution of 
the perturbations can lead to chaotic distribution of 
electrons in a space with cellular fractal structure. 
So, a fractal harness consisting of two wires can be 
formed in a direction perpendicular to the wire. A 
similar harness formed in three-dimensional space 
consists of three wires (πd/d = π ≈ 3). Correlations of 
third and higher order are possible also, but 
probability of this case is low. 

 

 
 

       a                          b                        c                        d 
 

а) single wire, b) harmonic perturbations of wires, 
c) doubling of perturbation period of the single wire, 

d) forming of a harness with cellular structure consisting 
of two wires in the first cycle of doubling of perturbation 

period with phase shift. 
 

Figure 1 – Model of clustering of quantum nanowires 
 
 

So, we can take into account a possibility for 
realization of more complex cycles of overlapping 
of wave functions and existence of impurity atoms. 
This approach let to obtain an image of harness of 
nanowires with fractal structure similar to 
experimental data.  Below we shall describe more 
complex evolution of perturbations than doubling of 
period. 

 
3 Quantum electrical conductivity of a fractal 
nanowire 

 
Let us consider a quantum wire with ideal 

contacts without scattering. Voltage between the 
contacts is U An electron moves inside of fractal 
cluster formed of quantum wires under the influence 
of potential V(U). We shall describe the potential 
below. Current corresponding to a single electron is 
equal to product of density of states g(E) in the 
energy range eV on speed of electrons v(E) and 
value of elementary charge e : 

 
   I g E E e  .                   (1) 

 
Let us define density of states for unit of length 

equal to distance between contacts via differential of 
impulse dP and the Planck constant h [7] as 

 

   
 

 
 

2 22 2dP E eV UdE dEg E dEh h E h Eh dP 
   


.   (2) 

 
Coefficient “2” in the Eq. 2 is necessary for 

taking into account the possibility of motion of 
electrons in two (opposite) directions. From Eqs. (1) 
and (2) we have 

 

 
2

0 0 0
0

2 1, , 12906eI G V U G R
h G

    Ω,   (3) 

 
where G0 is fundamental conductivity. Value G0/2 is 
called the quantum unit of conductivity, and 2R0 is 
quantum resistance. If conducting channel passes N 
electrons and M modes (one standing half-wave), 
the result follows from the Landauer’s theory can be 
written as [7] 

 

  0 , ,
,

M

n m n m
n m

G G T N E  ,                (4) 
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where Tn,m is probability of transmissions from m – 
th mode of one contact to n – th mode of another 
contact, Nn,m(E) is number of electrons on the level 
corresponding to full energy E of the m – th and n – 
th modes. For quantum nanowires M = 1 and by use 
of delta-symbol we have 
 

      , , , ,
,

.
M

n m n m n m n m
n m

T N E N E N E 
     

(5) 

 
Let us designate relative values of potential 

V(U) between clusters with numbers i and j as 
Vij(U), and probability of this relation as  Pij. Fractal 
clusters are located chaotically, so, value of total 
potential difference can be defined as potential 
difference between ends of a circuit consisting of K 
elements.  

By analogy with Eq. (5) at k = 1 we have 
  

      
,

.
K

i j i j i j i j
i j

P V U V U V U           (6) 

 
Function V = V(U) called the “scattering 

potential” (according to [7]) in our case can be 
considered as a nonlinear fractal measure 
characterizing metastable states. We consider 
measure as a measurable additive value. As usual, 
fractal measure can be defined by scale of 
measurement  depending on structure of an object. 
Structure of nanowires changes according to applied 
voltage U. Therefore, we must choose scales of 
measurement corresponding to variations of the 
measure as 

  

  
 

1 , 1 .U V

V U U
U V U

    
 
  (7) 

 
Indexes at δ describe the determining variables. 

Values δU and δV can be used for the description of 
metastable threshold phenomena at .U V  We can 
describe the scattering potential via Eq. (7) and 
definition of nonlinear fractal measure leading to the 
Hausdorff’s formula for fractal dimension by the 
following way: 

 

 

   

   

0

0

, 1 ,

, 1 ,

,

U

V

V U
V U V

U

UV U V
V U

D d















 
   

 

 
  
 
 

 
 

             (8) 

 
where D is fractal dimension of the set of values 
V(U), d is its topological dimension. Eqs. (8) 
contain only difference between D and d. Therefore, 
these relations can be used for the description as 
geometrical as physical spaces. At  = 0 we have 
V(U) = V0 which is a non-fractal (for regular 
structures) value of V(U). 

We can use V0 = Eg as a rank value, where Eg  is 
band-gap energy of silicon measured in electron-
volts. Choice of V0 = Eg  as a rank value can be 
explained by the fact that this value characterizes 
interruption of energy on boundaries of structures 
(Brillouin zones). 

Equation (3) defines value of current in a regular 
(non-fractal) nanowire. Fractality is an integral 
characteristic. Electrical conductivity is a 
differential, local characteristic. Therefore, we use 
an expression for fractal measure for resistance R(U) 
instead of R0. In this case from Eqs. (3)-(8) we have 
the following system of equations for the 
description of current in a nanowire: 

  

    
 

,
V U

I U
R U

                           (9) 

    
0 1 ,

V U
V U V

U


 

   
 

       (10) 

       0

1 .UR U R
I U R U V






 
  
       

(11) 

 
Values of current influence on properties of 

nanowires, so, we can use difference between 
current and V0/R(U) as a determining variable in Eq. 
(11). Resistance R depends on length of a fractal 
nanowire considered as fractal measure, and can be 
expressed via relative scale of length /L as 
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 

0 ,
D d

R R
L
  

   
 

  (12) 

 
where   is the de Broglie wavelength, L is size of 
an area including nanowires, 2R0 is quantum 
resistance. D is fractal dimension of an area (D > 3) 
including considered fractal wires (d = 1), therefore, 
2 < (D – d) < 3. 

Fine structure of quantum nanowires can be 
described via relation for second generation of 
hierarchical structure of cluster potential as 

   
 

0

0

1 .

1

V U
V U V

V U
V

U







 



          (13) 

4 Results of numerical analyses and experiment 
 
All parameters of our theory have a certain 

physical meaning. So, we can choose values of these 
parameters according to a considered problem. 

At first, let us define V(U, δU) according to Eq. 
(8). In order to choose value of the parameter 

D d    we take into account that generally d 
isn’t equal to the greatest integer part of D. For a 
one-dimensional curve V(U) d – 1,1 < D < 2 
therefore, 0 1.  0 1.12gV E   eV for silicon. 
Curve V(U, δU) is non-monotone, there are several 
peaks at 0U V . Amplitude of the peaks growths 
with increasing of  (Figure 2). 

 
 

(a) 

 

 

(b) 

 

 
 

Figure 2 – Curves  , UV U   and  , VV U   for different   according to Eqs. (8) at 0 1.12V  V. 
 
 

V0 = Eg is maximal value of negative potential 
of an electron localizing in a cluster. So, values of 
modulus V(U, δU) should be considered as values of 
potential effecting on electron. Sign of the potential 
equals to sign of U (determining variable for relative 
scale of measurement). For correct choosing of 
determining variable of the required potential V(U, 
δU) at U = 0 we must take into account value of 
eigen potential barrier of the cluster 
  00,V U U V  . 

 
 
 

Dependence I = I(U) described by Eqs. (9)-(11) 
has sharp oscillations at U ≈ V0 and saturates at  
U > V0 (Figure 3). Curves I(U) are intersects each 
other at different 1 and 2. In the cross points one 
metastable state with parameter of fractal dimension 
1 transfers to another metastable state characterized 
by 2. Hysteresis curves (universal physical 
phenomena in mediums with metastable states) are 
located between the cross points of curves I(U).  
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Figure 7 – Scheme of electrical contacts of the sensor  

with vertical SiNWs (vertical contact). 
 

 

 
 

Figure 8  – Experimental current-voltage  
characteristics of SiNWs 

 
 

A similar dependence I(U) follows from Eqs. 
(9)-(13) (Figure 9). According to Eq. (10) at the 
absence of external field value of potential of cluster 
affecting on electrons V(U) – 0, therefore,  I|U=0 – 0. 
Growth of U leads to increasing of V(U), resistance 
of quantum nanowire decreases (according to Eq. 
(11)), and I(U) increases sharply. At further growth 
of U value of V(U) tends to V0, and current 
saturation is observed. But at U  – V0 function V(U) 
became a nonlinear fractal measure, and I(U) pulses. 
It indicates to existence of multi-barrier tunneling 
effect leading to negative differential resistance at 
V(U) – V0. 

In non-fractal crystal ( 0  ) 
0

0 RV V  at  

0 < U < V0, and inclination of I(U) doesn’t change. 
It’s equivalent to using of V(U, δV) in Eq. (8), i.e. we 
use V(U) – V0. as a main variable (instead of U). 
Therefore, we have I = V(U) – V0/R0 at U = 0. For 
more precision description of the dependence I(U) 
we can take into account second generation of 
fractal hierarchy of potential according to Eq. (13). 
In this case we can notice an insignificant growth of 
inclination of the curve I(U) relative to abscissa axis 
in comparison with this dependence shown in 
Figure 3 at the same . 

 
 

Figure 9  – Theoretical  current-voltage characteristics of 
SiNWs with taking into account their fractal hierarchy 

according to Eqs. (9)-(13) for different  at 28R  MΩ, 

0 1.12V  eV, :  – 0.095,  – 0.128. 
 
 
Hysteresis in current-voltage characteristics have 

been observed in different experiments. For example, 
electrical conductivity of Au/pentacene/Si-nanowire 
arrays has been studied in [4]. Existence of negative 
differential resistance has been registered in recent 
works, for example, in current-voltage characteristics of 
nanowires and nanobelts ZnO [13, 14]. But quantitative 
descriptions of singularities of these effects haven’t 
been suggested in the works.We suppose that taking 
into account the fractal structure of nonlinear quantum 
nanowires let us to obtain the new results.  

Thus, our theoretical results obtained via Eqs. 
(9)-(13) and experimental data adequately describe 
main physical singularities of electrical conductivity 
of semiconductor quantum nanowires. 

 
5 Conclusions 

 
Electrical conductivity of nanoscale wire-like 

structures depends on value of internal potential of 
fractal clusters. Scattering potential of the clusters 
can be considered as a nonlinear measure defining 
by value of external voltage.  

Fractality of geometry of wire-like formations leads 
to appearance of multi-barrier effects in nanoscale wires 
grown on surfaces of homogeneous films (silicon). 
Because of this fact the current-voltage characteristic of 
SiNWs has areas with negative differential resistance 
and hysteresis loops. Previously such effects have been 
observed in silicon compounds and heterostructures, but 
in the present work we describe this phenomena in pure 
silicon. Results of the present work can be used for 
perfection of electronic memory schemes, devices of 
nanoelectronics and optoelectronics. 
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This work is a first step to solve the problem on creation of the theory of evolution of non-equilibrium open 
systems. The mean factors forming atmospheric structures are radiation fluxes. So in order to understand 
atmospheric evolutional processes it is a necessary to consider atmospheric gas in continuity with radiation. 
This problem couldn’t be solved in the frames of traditional gas dynamics equations because of dissipative 
structures in any systems including atmosphere and radiation causes by entropy production and interchange and 
this don’t describing in the frames of traditional gas dynamics. But for this aim we could use more complex 
non-equilibrium thermodynamics equations which taking into account exchange processes in such systems. 
The behavior of wave disturbances in non-equilibrium medium: atmospheric gas – solar radiation taking into 
account atmospheric structures and radiation flux interrelations was investigated in this work. The dispersion 
relation of acoustic-gravity waves was found from reductive atmospheric gas – solar radiation system dynamic 
equations set in the frames of non-equilibrium thermodynamics. Calculations show that the taking into account 
of solar radiation leads to slowly decreasing of pressure with height than without taking it into account. The 
maximum deviation of pressure comes to heights of 10-15 km and amounts about 3 percents. The dependence 
of AGW spectra deviation in non-equilibrium atmosphere from the spectra in equilibrium atmosphere from the 
height was estimated. It was found that in the frames of non-equilibrium spectra shifts into high-frequency 
region. Numerical calculations also shows that in the heights of ionosphere these effects shown up sharply at 
transitionally times at abrupt change of solar energy influx into atmosphere. Analysis of pressure variations 
shows the experimental prove of existing of obvious trend of spectra shift into high-frequency region of 
daytime spectra relatively to nighttime spectra and the difference made 10 percents and proves the correctness 
of theoretical calculations.  

Key words: Climate changing, non-equilibrium atmosphere, gas – solar radiation, radiation flux interrelation. 
PACS numbers: 92.70.Cp, 92.60.Vb 

 
 

1 Introduction 
 
There is a destruction of climatic machine on the 

Earth. Thawed the Arctic and Antarctic ice, Tien 
Shan, Alps, Greenland glaciers melt away and the 
mean temperature of Earth grows [1,2]. Moreover the 
quantity of weather anomalies sharply increased. The 
rate of climate change on Earth is higher than thought 
scientists. In thear prognosis on Arctic ice thawing 
researches mistakes approximately for 30 years. 
Today the danger of disappearance concerns not only 
living creatures of earth but even continents [3-5].  

In accordance with known laws of non-
equilibrium dynamics all these signs significant for 
bifurcation change. After crossing of bifurcation 
point climate wouldn’t be restored. It would have 
rather different characteristics than now. It creates 
serious danger for humankind. That why the mean 
problem of mankind is to understand the causes and 
mechanism of climate changing in order to take the 
necessary steps on prevention or even decreasing of 
catastrophic aftermath.  

For nowadays we for certain know that there are 
two causes of these phenomena. First bind with 
natural circle climate changes. The second depend 
on anthropogenic activity. And it is not ruled out 
that these causes overlay. But we couldn’t say that 
kind of scenario would realize actually. 

There is a reason to say that the climate 
changing course of anthropogenic activity. Really 
the fact of atmosphere existing related with 
existence of live on the Earth [6]. The modern 
atmosphere composition made by living organism. 
They change original Earth climate. On the first 
level of development atmosphere of Earth haven’t 
free oxygen, it was composition of carbon dioxide. 
It hence on chemical composition of iron compound 
of these periods. Approximately 1.8 billion years 
ago (the Earth age is about 40 billion years) in the 
result of microorganisms activity the oxygen exists 
in atmosphere. It’s lead to existing of ozone layer at 
the heights of 20—50 km. As a result the living 
organisms which could live out of solar radiation 
have a possibility to spread over all the Earth and 
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having an advantages to survive change the 
atmosphere composition some more. 

For the advantage of anthropogenic mechanism 
of climate changing testify the striking coincidence of 
annual planetary temperature changing rate with 
carbon dioxide consantration change rate. [7,8] The 
serious reason for assumption on curtail human role 
in climate changing is the increasing of observing 
weather fluctuations in different Earth regions. It’s 
very difficult to explain the rate of this change by 
natural circles. That’s why most of scientists thought 
that the climate changing caused by human activity. 

World public already now tries to make some 
efforts against climate changing. But it’s very 
difficult to wait efficiency of any efforts when we 
don’t know the causes of running processes. Today 
science limited by observation of existing processes 
and by mapping empiric prognosis which only could 
gave epignosis. The existing mathematical 
atmospheric models adopted for numerical weather 
calculation. They made weather prognosis but 
couldn’t answer the question on climate changing. It 
is a due to rough atmosphere parameters used in 
numerical calculations. That’s why it’s important to 
reveal the mechanisms of weather and climate 
formation. Without knowing it we couldn’t answer 
the question on prevention measures. 

Any atmospheric changes somehow depend on 
external parameters variations: solar activity 
variation, magnetic storms, anthropogenic carbon 
dioxide fluxes and so on. In order to understand 
their influence to atmosphere we should to take into 
account the openness of atmosphere that’s mean its 
non-equilibrium. We should to know how external 
parameters variations changes influence on 
atmospheric processes. But today we practically 

don’t understand mechanisms that define the 
dependence character of non-equilibrium systems 
dynamics at external conditions and system 
parameters changes. There aren’t necessary 
fundamental theories which could help to create 
evolutional mathematical atmosphere models. These 
set a problem for science to create the theory of 
evolution of non-equilibrium open systems. [9-11]. 

 
2 Main body 

 
The mean factors forming atmospheric 

structures are radiation fluxes. They cause such 
dissipative strictures as ionosphere, ozone layer, 
temperature and other atmospheric inhomogeneities. 
These structures are non-equilibrium since their 
existence due to constant interchange of energy 
between atmosphere and cosmic space. So in order 
to understand atmospheric evolutional processes it 
is a necessary to consider atmospheric gas in 
continuity with radiation. This problem couldn’t be 
solved in the frames of traditional gas dynamics 
equations because of dissipative structures in any 
systems including atmosphere and radiation causes 
by entropy production and interchange and this 
don’t describing in the frames of traditional gas 
dynamics. But for this aim we could use more 
complex non-equilibrium (non-equilibrium) 
thermodynamics equations which taking into 
account exchange processes in such systems. Of 
course this essentially complicated the problem but 
we couldn’t find simpler path for understanding of 
evolutional processes.  

The systems of atmosphere dynamic equations 
in the frames of non-equilibrium (non-equilibrium) 
thermodynamics are written as: 

 

v
t

 

 ,                                                               (1) 

gPvvv
t

  

 )( ,                                                    (2) 

0)()(){(1
  eap

V divJdIL
Tdt

dc
dt
dP

P
c


 ,                            (3) 

0 J
dz
dJ  .                                                                   (4) 

 
where: t – time; ρ – atmospheric gas density; Т – 
temperature; v – gas transference velocity; P – 
pressure;  g – acceleration of gravity; cv, cp – heat 

capacities at constant volume and pressure 
correspondingly;  Iv– photon beam with frequency v; 
χ`a(v) – specific radiation absorption coefficient; L -
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thermal flux and TL   ;  – thermal 
conductivity coefficient; Je – atmospheric gas 
thermal emission;  – average coefficient of solar 
radiation absorption. The flow of solar radiation J is 
directed downward.  

Calculations showed that the consideration of 
atmosphere as non-equilibrium system: non-
equilibrium atmosphere considering as interacting 
medium – atmospheric gas and incoming and 
outgoing radiation flow leads to instability of 
atmospheric parameters for the radiation parameters 
changes (Fig.1). Calculations showed that the taking  
into account of solar radiation leads to slowly 
decreasing of pressure with height in comparison 
with the case without taking into account of solar  
 

radiation. The maximum deviation of pressure takes 
place at heights of 10-15 km with amounts about 3 
percents (Fig. 2). The atmospheric parameters 
defined on the basis of existing models of 
atmosphere. 

Calculations were done for different means of 
albedo and radiation absorption coefficients. It was 
found that in the frames of parameters allowed 
values obtained temperature and density profiles 
essentially depend on surface temperature, 
absorption coefficient and albedo. So non-
equilibrium atmospheric background model 
calculations shows that atmosphere is extremely 
unstable for radiation parameters changing  
(Fig. 3). 

             
 

Figure 1 – Pressure and temperature profile 
 
 

 
 

Figure 2 – Deviation from barometric formula at radiation consideration 
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Figure 3 – Dependence of temperature profile on on surface temperature,  
absorption coefficient and albedo changes 

 
 
The non-equilibrium spectrum of atmospheric 

oscillations was calculated based on the set of 
equations of non-equilibrium thermodynamics (1)-
(4) written taking into account the interaction 
between the atmospheric gas and radiation. The set 
includes equations of continuity, energy, and 
momentum. The energy equation includes the terms 
related to the interaction of the atmospheric gas with 
solar radiation and thermal conductivity and 
radiation of the atmosphere. The set of gas dynamic 

equations is supplemented with the simplied 
equation for solar radiation ux absorbed by the 
atmospheric gas. Solar radiation ux absorbed by 
the atmosphere and atmospheric density are 
interrelated quantities. Therefore, all four equations 
are self-consistent. 

The dispersion equation corresponding to the 
linearized equations of the set (1)–(4) for the non-
equilibrium spectrum of atmospheric gas natural 
oscillations has the form 
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Here i  – imaginary unit; w  – harmonic 

frequency, zx kk , - are the corresponding 
wavevector harmonics along the zx,  axes, and 

222
zx kkk  ; 

V

p

c
c

 ; )/(2 gcH   – is the 

so-called height of the homogeneous atmosphere. 
If we omit the fourth equation in the set (1)–(4) 

and neglect three last terms in the energy equation, 
then the dispersion equation for AGWs in the 
equilibrium atmosphere [Gershman, 1974] will 
correspond to the obtained set of equations. The 

same dispersion equation can be obtained 
immediately from (5) by rejecting all even terms 
related to energy exchange between gas and 
radiation. 

The dependence of difference between AGW 
spectra for non-equilibrium and equilibrium 
atmosphere on height was estimated. It is found that 
for non-equilibrium atmosphere AGW spectra is 
shifted into high-frequency region (fig. 4). Also 
numerical calculations show that at the heights of 
ionosphere these effects become brighter at 
transition times, when the solar energy input 
changes abruptly (fig 5).  
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Figure 4 – Variations in the oscillation frequency ω vs. λz 
in the nonequilibrium (non-equilibrium) daytime (circles, 
line 3) and nighttime (asterisks, line 2) atmosphere and in 

the equilibrium case (line 1) calculated using the 
background values of the 

parameters at an altitude of h = 50 km. 
 

 
 

Figure 5 – Ratio of non-equilibrium and equilibrium 
spectrum for heights 0-250 km. 

 
 

To calculate the equilibrium spectrum of 
oscillations, we used the traditional equation of the 
AGW spectrum [12]. As was noted above, this 
equation can be obtained immediately from (5) by 
eliminating the terms related to energy exchange  

between radiation and the atmospheric gas. The 
dispersion relation was numerically analyzed for 
different conditions: in the presence of solar 
radiation in the atmosphere and without this 
radiation, as well as for the equilibrium case at 
different atmospheric altitudes. The temperature 
values were taken from the existing 
atmosphere/ionosphere models up to 250 km. The 
average temperature difference in daytime and 
nighttime hours is approximately 20 K in the 
selected altitude interval. According to these results, 
in both cases the oscillation spectrum shifts into the 
HF spectral region with increasing temperature. 

 
3 Conclusions 

 
Thus, according to the numerical estimates, the 

presence of non-equilibrium in the atmospheric gas 
should lead to a shift of the atmospheric natural 
oscillation spectrum. The difference of the 
atmospheric temperature in daytime and nighttime 
hours for the equilibrium model of the atmospheric 
gas cannot result in such a spectrum shift. 
Therefore, an experimental detection of the shift of 
the atmospheric natural oscillation spectrum will be 
a necessary argument for the substantial role of non-
equilibrium in the dynamics of the atmosphere. 

To confirm the theoretically founded spectra 
shifts into high-frequency region, the analysis of 
pressure variations for August, September and 
December of 2002 measured on high-mountain 
station of cosmic rays of Ionosphere Institute, 
Almaty, Kazakhstan and Ukraine station ”Academic 
Vernadskii”, Antarctica was made [13]. The 
analysis proved the existing of obvious trend of 
daytime spectra shift into high-frequency region 
relatively to nighttime spectra at about of 10 
percents. The analysis of ionospheric data for Mach, 
June, September and December of 2005 on Ukraine 
station ”Academic Vernadskii”, Antarctica also 
proved obtained theoretical results for the 
ionosphere heights (Fig. 6). 

As further investigations on this field it should 
be studied the interrelation of cosmic factors 
variations with dynamical processes on Earth 
atmosphere on the basis of open non-equilibrium 
systems theory and experimenta data of radiation 
fluxes in atmosphere 
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Figure 6 – Spectrogram of ionosphere data 
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The dynamic characteristics of non-ideal Coulomb one-component plasmas are studied within the moment 
approach. In the work five odd moments were considered, whereas even moments are equal to zero, since the 
distribution functions is symmetrical in relation to the frequency. An empirical expression for the collective 
mode dispersion is proposed in terms of the characteristic frequencies. These characteristic frequencies are also 
used to obtain a Nevanlinna parameter-function. Our results on the dynamic structure factor satisfy the sum 
rules and other exact relations automatically. A quantitative agreement is obtained with numerous simulation 
data on the plasma dynamic properties, including those on the dispersion of collective modes. 

 
Key words: dynamic structure factor, method of moments, peak position intervals. 
PACS numbers: 52.27.Gr, 05.20.Jj. 

 
 

1 Introduction 
 
The one-component plasma is a simplified 

version of real physical systems ranging from 
electrolytes and charged stabilized colloids [1], 
laser-cooled ions in cryogenic traps [2] to dense 
astrophysical matter in white dwarfs and neutron 
stars [3]. 

The aim of this paper is the investigation of 
electrodynamic properties of Coulomb one-
component plasmas (OCPs). It is a classical system 
of a single species of N point particles of charge Ze 
and mass m that interact via a pair potential with a 
uniform background of neutralizing charge.  

Hence, the interaction potential in a OCP is the 
Coulomb potential: 

 
 �(�) = (��)�

� .                           (1) 
 
In an equilibrium state at a temperature T, the 

OCP is fully characterized by only one 
dimensionless coupling parameter Γ, which is 
approximately the ratio of the potential energy 
between two ions to the average thermal (kinetic) 
energy of an ion: 

 Γ = (��)�

���� ,                           (2) 

 
where � = (�����)��� is the average inter-particle 
distance called the Wigner-Seitz radius [4]. 

In this paper, the OCP dynamic properties are 
studied within the moment approach based on sum 
rules and other exact relations, see [5,6] and 
references therein, and comparison is successfully 
carried out with the simulation data. 

 
2 Method of moments: mathematical background 

 
Consider five convergent sum rules which are 

frequency power moments of the system dynamic 
structure factor (DSF): 

 
 ��(�) = �

� � ���(�, �)��,∞
�∞  � = �,�,�,�,�.   (3) 

 
All odd-order moments vanish since, in a 

classical system, the DSF is an even function of 
frequency. The method of moments is, generally 
speaking, capable of handling any number of 
convergent sum rules. In two-component plasmas, 
though, all higher-order frequency moments diverge 
which can be attributed to and understood [7] on the 
basis of the exact asymptotic form of the imaginary 
part of the dielectric function [8]. There is no such 
clear theoretical result for the model system to be 



52

Dynamic structure factor of non-ideal one-component plasmas                Phys. Sci. Technol., Vol. 2 (No. 1), 2015: 51-54

  
 

dealt with here and, thus, it is simply impossible to 
presume that the three first even order moments are 
the only convergent even order frequency sum rules. 
However, the ambiguity of higher-order frequency 
moments, related to our scarce knowledge of the 
triple and, presumably, higher-order correlation 
functions, remains insuperable nowadays and can 
only impede our understanding of the physical 
processes to be described below. 

The zero-order moment is the static structure 
factor (SSF): 

 ��(�) = �(�).                        (4) 
 
The second moment is the f-sum rules: 
 

 ��(�) = ���(�) = ��� ��
�

���
� = ��� ��

�

�Γ�.       (5) 

The fourth moment is equal to: 
 

��(�) = ������(�) �1 �
3��
���

� �(�)� = ������(�) �1 �
��
Γ
� �(�)�. (6)

Here � = ��, ��� = �������� refers to the 
plasma frequency, and �� = ��������� is the  
Debye wavelength, m being the ion mass. The last 
contribution to the fourth moment is due to the ion-
ion interactions in the OCP, while the second term 
represents the Vlasov correction to the ideal-gas 
dispersion relation of the plasmon mode.  

The Nevanlinna formula of the classical theory 
of moments [9,10] expresses the response function 

 
 �(�, �) = − �

�
��(�,�)��(�,�)��(�,�)
��(�,�)��(�,�)��(�,�)

               (7) 
 

in terms of a Nevanlinna class function � =
�(�, �), analytic in the upper half-plane �m�� > 0 
with a positive imaginary part: �m��(�, � � ��) >

0, � > 0. The function �(�, �) should additionally 
satisfy the limiting condition: 

 
 lim��∞

�(�,�)
� � 0, �m�� > 0               (8) 

 
Furthermore, the polynomials ��(�, �), � =

0,1,2,3, orthogonal with respect to the distribution 
density �(�, �) together with their conjugate 
counterparts ��(�, �), � = 0,1,2,3, determined as 

 
 ��(�, �) = � ��(�,�)���(�,�)

���
∞
�∞ �(�, �)���,    (9) 

 
have real coefficients and their simple real zeros 
alternate. A rather routine renormalization casts 
these polynomials as: 

 
�� = 1, �� = �, �� = �� − ���(�), �� = �� − ����(�), 

�� = 0, �� = ��(�), �� = ���(�), �� = ��(�) ��� � ���(�) − ���(�)�. 
(10) 

 
The frequencies ���(�) and ���(�) are defined 

by the respective ratios of the moments ��(�) [6] 
and are determined by the system static 
characteristics: 

 

 ��� = ���(�) = ��(�)
��(�)

, ��� = ���(�) = ��(�)
��(�)

.    (11) 
 
Therefore, the DSF can be rewritten as: 
 

�(�, �) = �
�

�����(��� − ���)�m�(�, �)
��(�� − ���) � ���(�, �)(�� − ���)�

� � ��m�(�, �)(�� − ���)�
� 

 
(12)

3 Method of moments: new developments 
 
a) Peak position intervals 
In the present work we approximate the 

Nevanlinna interpolation function Q(q, z) by its 
static value: 

 �(�, 0) = �ℎ(�), ℎ(�) > 0.            (13) 
 
In this case, the DSF expression (12) simplifies: 
 
 S(k,ω) = �

π
��ω���ω���ω����(�)

�ω�ω��ω����
����(�)�ω��ω����

�.        (14) 
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The peak of the DSF corresponds to a 
propagating plasmon mode in the system. 
Mathematically, the presence of a peak implies that 
the expression (14) has a maximum value. After 
some analysis of the extrema of (14), we obtained 
an expression for h(k): 

 

 h(k) = �ω����ω��Ω���Ω�

��ω���Ω�� ,                   (15) 

 
where Ω is the DSF peak frequency, i.e. the 
collective mode dispersion. 

In according to the determination of h(k), 
namely, as a positive wavenumber function, we can 
analyze the domain of validity of (15), and get the 
intervals for the Ω values: 

 
 Ω ∈ �0, ω�

√�� � �ω�,ω��.                     (16) 
 
It means that within our model we can expect to 

observe the DSF peak only in these frequency 
intervals. Therefore, the physical meaning of the 
characteristic frequencies ω�, ω� is that they are the 
bounds for the DSF dispersion value. 

 

b) Phenomenological expression for the 
collective mode dispersion 

In order to satisfy to the above condition, we 
propose the expression for the collective mode 
dispersion as a weighted expression of the 
characteristic frequencies: 

 
 Ω = A���ω� + �1 � A����ω�,            (17) 

 
where A is a weight (0<A<1). We propose an 
empirical expression for it: 

 A��� = 0.008Γ
�
� + 0.417.             (18) 

 
The expression (18) has several conditions of 

applicability: 
 
1) q < 2 (long-wavelength approximation); 
2)Γ < 17  (for the OCP case). 
 
c) Results 
The obtained expression for the DSF (14) with 

Nevanlinna parameter-function (15) was compared 
with simulation data for Г = 1,4,5,8,10 and different 
values of dimensionless wave number (see Fig. 1)

  

   

   
Figure 1 – Comparison between DSF MD data and expression (14)  

with (15) and (17) for given values of Г and q 



54

Dynamic structure factor of non-ideal one-component plasmas                Phys. Sci. Technol., Vol. 2 (No. 1), 2015: 51-54

4 Conclusions 
 
The classical method of moments is applied to 

the investigation of dynamic properties of dense 
one-component plasmas. A novel approach is 
suggested to determine the Nevanlinna parameter 
function. An empirical expression for the collective 
mode dispersion is found in terms of the 
characteristics frequencies. The results are in good 
agreement with the simulation data obtained using 
the method of molecular dynamics. More 

information about the method of moments and its 
application in the plasma physics can be found in 
[11]. 
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In this work the dielectric function of the dense semiclassical collisionless plasmas was investigated on the 
basis of the interaction potential which takes into account the effects of diffraction in a wide range of 
temperatures and densities. The dielectric function was analytically and numerically investigated in 
approximation of high frequencies. We obtained the expression for the real part of the dielectric function for 
collisionless plasma in high – frequency limit within asymptotic approximation. All obtained results are in a 
good agreement. Taking into account of the diffraction effect in a wide region of temperature and densities can 
lead to perceptible change in the dielectric function. 

 
Key words: dielectric function, collisionless plasma, interaction potential. 
PACS numbers: 52.25.Mq, 52.27.Gr. 
 

 
1 Introduction 

It is well known that the dielectric function 
plays a key role in description of the electro-
dynamic plasma properties. Using it one can 
describe the spectrum of the plasma waves, optical 
properties as well as many other phenomena [1-3]. 
In the dense plasmas the influence of the many-
body effects and quantum mechanical effects 
increases. In this case the dielectric function can 
significantly differ from the dielectric function of 
the rarefied plasma. To adequately determine the 
dielectric function it is necessary to know the 
interaction potential of the plasma particles. 
Development of the particle interaction models and 
study of the strongly coupled dense plasmas 
properties on their basis are of a great fundamental 
and practical interest [4-9]. To take into account 
quantum mechanical effects in the interaction 
potential the special method was developed. It 
consists of the comparison of the classical 
Boltzmann’s factor and the quantum mechanical 
Slater sum. This approach was first described in 
[10]. The Deutsch potential [8,9], which correctly 
considers the diffraction effect only at high 
temperatures, has the following form: 

2

( ) 1
rZ Z e

r e
r

 


 
   
 
 

.             (1) 

 
Here 2 Bm k T    is the de Broglie 

thermal wavelength;  /m mm m m       – is the 

reduced mass of   and   interacted particles. In 
this work the following dimensionless parameters 
were used: 2 /( )BZ Z e a k T    is the coupling 
parameter (the average distance between particles is 

 1/33/4a n ; e in n n   is the numerical 
density of the electrons and ions; T  is the plasma 
temperature; 

Bk  is the Boltzmann constant); 

Bs aar /  is the density parameter ( 22 / ema eB   is 
the Bohr radius).  

In work [11] the interaction micropotential of 
the dense semiclassical plasma was obtained on the 
basis of the method [10] with help of interpolation 
of the numerical results in a wide region of 
temperatures and densities: 
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where a  is the average distance between particles. 
This micropotential (2) takes into account the 
quantum diffraction effect in a wide region of 
temperatures and densities.  

Dielectric function ( , )k   is defined as the 
value characterizing the magnitude of charge 
screening in plasma. Dielectric function of the 
collisionless plasma in high – frequency limit can 
be presented by the following expression [1]: 

 

 
0( , ) 1 ( , ) ( ),e eek k k               (3) 

 
where ( )ee k  is the Fourier transform of the 
interaction micropotential between the electrons, 
the response function of the system of non-
interacting particles is: 
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where Tev  is the thermal velocity of the electrons, 
k  is a wave vector. 

2

2 2
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( ) 1 exp( / 2)

exp( / 2) exp( / 2).
2
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W z z z
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   (5) 

Function ( )W z  in the asymptotic expansion at 

the high-frequency approximation / 1Tekv   is  
 

2

2 4

1 3( ) exp .....
2 2

zW z iz
z z

  
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2 Tasks and results 

 
In this work the dielectric function of the dense 

semiclassical plasma was obtained on the basis of 
the potential (2). For obtaining of analytical 
expression for the dielectric function the exponents 
and tangent in the potential (2) were expanded and 
only the first term, giving the main contribution, 
was taken into account. The Fourier transform of 
such simplified form of the interaction potential (2) 
was deduced analytically and then we obtained the 
following expression for the real part of the 
dielectric function for collisionless plasma in high – 
frequency limit within asymptotic approximation  

2
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                  (7)

 

 
here dimensionless wave vector and frequency are 

* / p   , *k ka , where 24 /p e en e m   
is the electron Langmuir frequency. Real part of the 
dielectric function within the Coulomb potential in 
this approach is presented by the following 
expression: 
 

*
* 2

1Re( ( )) 1 ,
( )

 


 
                    

(8) 

 

Real parts of the dielectric functions obtained 
by formula (7) and also for the Coulomb potential 
by formula (8), and for the Deutsch potential are 
shown in Fig. 1, 2. One can see that, the real part of 
the dielectric function obtained on the basis of the 
potential (2) (expression (7)) lies above the other 
curves and tends to the data obtained on the basis of 
the Deutsch potential at decreasing of the coupling 
parameter. 
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Figure 1 – The real part of the dielectric function  
obtained on the basis of: 1 – formula (8);  
2 – the Deutsch potential; 3 – formula (7).  

Г = 0.5, ka = 0.1, rs = 5  
 
For more precise estimation of the dielectric 

function we used again the equations (3), (4) and 
(6) but instead of an analytical expression for the 
Fourier transform of the potential (2), we used 
numerical method for its calculation. As a result we 
received data, which agrees qualitatively with the 
formula (7) (Fig. 3). 
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Figure 2 – The real part of the dielectric function  

obtained on the basis of: 1 – formula (8);  
2 – the Deutsch potential; 3 – formula (7).  

Г = 1, ka = 0.1, rs = 5  
 
 
In the third approach we obtained the dielectric 

function on the basis of the numerically calculated 
( )W z (eq.(5)). Obtained results are presented on  

Fig. 4-6.  

On fig. 4 and 5 one can see that the curves 
obtained on the basis of the Deutsch potential and 
potential (2) are close to each other and differ from 
result obtained on the basis of the Coulomb 
potential at increasing of the coupling parameter. 
Wherein the result on the basis the potential (2) 
differs stronger than that on the basis of the 
Deutsch potential. On fig. 6 the dielectric functions 
obtained on the basis of the potential (2) at different 
values of the coupling parameter are shown.  

Based on all the obtained results one can 
conclude that taking into account of the diffraction 
effect in a wide region of temperature and densities 
can lead to perceptible change in the dielectric 
function.  
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Figure 3 – Numerical calculation of the dielectric 
function in the asymptotic approximation obtained on 
the basis of: 1 – formula (8); 2 – the Deutsch potential;  

3 – the potential (2). Г = 0.1, ka = 0.1, rs = 5  
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Figure 4 – Dielectric function obtained without 
asymptotic expansion on the basis of: 1 – the potential 

(2); 2 – the Coulomb potential; 3 – the Deutsch potential;  
4 – formula (8). Г = 5, ka = 0.78, rs = 1  
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Figure 5 – Dielectric function obtained without 

asymptotic expansion on the basis of : 1 – the potential 
(2); 2 – the Coulomb potential; 3 – the Deutsch potential;  

4 – formula (8). Г = 0.5, ka = 0.78, rs = 1 
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Figure 6 – Dielectric function obtained without 

asymptotic expansion on the basis of the potential (2) at 
different coupling parameter,  

ka = 0.78, rs = 1, 1) Г = 0.5, 2) Г = 1, 3) Г = 3, 4) Г = 5, 
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The nonrelativistic ionization energy levels of a helium atom are calculated for S, P, and D states. The 
calculations are based on the variational method of “exponential” expansion. Variational wave functions of 
bound states were obtained by solving the Schrodinger equation for the quantum three body problem with 
Coulomb interaction using a variational approach based on exponential expansion with the parameters of 
exponents being chosen in a pseudorandom way. The convergence of the calculated energy levels is studied as 
a function of the number of basis functions (N). This allows us to claim that the obtained energy values 
(including the values for the states with a nonzero angular momentum) are accurate to 20 significant digits. 

 
Key words: variational method, expansion, variational principle, Schrӧdinger equation, inverse iteration method. 
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1 Introduction 

 
The quantum problem of three bodies with 

Coulomb interaction is one of the most notable 
nonintegrable problems in quantum mechanics. At 
the same time, extremely accurate numerical 
solutions for the problem of bound states for a 
system of three particles may be obtained with 
modern computers. For example, the nonrelativistic 
energy of the ground state of helium with a nucleus 
of an infinite mass is now known accurately to 46 
significant digits [1]. 

In the present study, a version of the variational 
method (the so-called “exponential” expansion) that 
renders it possible to numerically solve the quantum 
Coulomb three-body problem with a very high 
accuracy and is applicable to, among other things, 
states with a nonzero angular momentum is 
considered. This method is used to calculate the 
nonrelativistic ionization energies of a helium atom 
for S, P and D states. It is shown that the developed 
method is an efficient and flexible instrument for 
investigating Coulomb systems. An analysis of 
convergence proves that the method is highly 
accurate and demonstrates that nonrelativistic 
energy values accurate to 20 significant digits may 
be obtained easily. 

The development of such high-precision 
methods is also important for the reason that it may 
help solve a wide variety of physical problems that 
are of interest in practice. For example, atoms of 

antiprotonic helium pHe  are studied in physics of 
exotic atoms and molecules [2]. One of the electrons 
of helium is replaced by an antiproton in this atom. 
Under certain conditions, this antiproton forms 
metastable states with a lifetime of several 
microseconds. Not only is this a record lifetime for 
an antiparticle within a standard (real) medium, but 
also an astronomical time by the standards of atomic 
physics, where the lifetime of the 2P state of a 
hydrogen atom is only 10 ns. This allows one to use 
precision laser spectroscopy to probe the structure 
of the spectrum of an antiprotonic helium atom. 
Another very important aspect, namely, the cross 
impact of atomic and nuclear physics [3], in the 
determination of statistical parameters of nuclei 
should be noted. For example, the accuracy of the 
mean square helium charge radius that is determined 
experimentally from electron–nuclei scattering is 
about 1–3%. At the same time, the experimental 
determination of the charge radius of He4  by 
muonic atom spectroscopy allows one to reduce the 
error in the value of this parameter by more than an 
order of magnitude. 

The paper is structured as follows. The 
application of the variational method to the 
stationary Schredinger problem (specifically, the 
variational “exponential” expansion used in 
practical calculations) is discussed in detail in 
Sections 1 and 2. The inverse iteration method, 
which is considered to be one of the most efficient 
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computational approaches to a discretized problem 
with a finite basis, is reviewed in Section 3. In the 
last section, the convergence of numerical 
calculations is investigated, and the final theoretical 
results for 11 states of a helium atom are given. 

 
2 Variational method 

 
Let us first formulate the variational principle 

for bound states and describe the variational method 
that defines the form of basis functions of the 
solution expansion and the choice of variational 
parameters in the construction of wave functions. 
This method is hereinafter referred to as the 
“exponential” expansion. 

The Hylleraas–Undheim variational principle, 
which is better known in mathematics as the 
Rayleigh–Ritz variational principle, is the starting 
point in solving the stationary Schrӧdinger equation 

 
 EH                           (1) 

 
for a certain Hamiltonian using variational methods. 
This principle is considered a versatile method for 
deriving an approximate solution. The problems of 
determining the extrema or stationary values of 
functionals are the basic problems of variational 
calculation. The essence of this method consists of 
substituting the problem of finding the stationary 
values of functionals with a fundamentally less 
complex problem of finding the stationary values of 
functions of several variables [4]. 

Let there be a self-adjoint operator defined 
within the Hilbert space for which the following 
boundedness condition is satisfied: 

 
cI,H                                 (2) 

 
where c is a certain constant. Let us then define a 
functional 
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that is bounded from below by c. 

Theorem 1 [4]. Let H be a self-adjoint operator 
that satisfies condition (2). Let us define 
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
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


 HDnn H         (4) 

where   is a subspace orthogonal to  and 
)(HD  is the domain of operator H . One of the 

following assertions is then true for any fixed n: 
(i)  n eigenvalues (degenerate eigenvalues are 

counted according to their multiplicity) lying below 
the essential spectrum boundary are present and 

)(Hn  is the n-th eigenvalue (with account of 
multiplicity); 

or 
(ii) )(Hn  is the lower boundary of the 

essential spectrum. 
The determination of eigenvalues (i.e., the 

energy of bound states of the stationary Schrӧdinger 
equation) comes down to calculating the saddle 
points of functional (1.4). The assertion of the 
theorem is known as the minimax principle. 

Let us now consider a method that uses the 
Rayleigh–Ritz variational principle to solve 
practical eigenvalue problems and is called the Ritz 
process. Let k be a complete sequence of vectors in 
the Hilbert space subject to the following 
conditions: 

(i) vectors k belong to the domain of operator 
H ; 

(ii) vectors n ...,,, 21 are linearly independent 
at any n. 

Let us assume that  
 n

k kkn xu 1   where kx
are scalar coefficients. Inserting nu  (at fixed n) into 
functional )( , we obtain a function that depends 

on a finite set of parameters n
kx 1}{ :  
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The determination of minimax solutions is thus 
reduced to calculating the corresponding 
eigenvalues of the generalized eigenvalue problem: 

 
,xx BA    (5) 

 
where matrices A and B are composed of 
coefficients jia and jib , respectively. 
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Vectors k may depend on nonlinear parameters 
ω. If this is the case, problem (1.5) is solved for 
each fixed  and each eigenvalue number k , 

)(k  is chosen, and this value is then minimized 
by all values of nonlinear parameters: 

 
).(inf 

 kk   

 
One important condition is satisfied for Ritz 

estimates 
.)( kk H     (6) 

 
It follows from there that Ritz estimates are 

upper bound ones. Inequality (6) for basis functions 
dependent on nonlinear parameters follows from 

 
.)(inf)( kkk H 


   (7) 

 
A rigorous proof of the applicability of Theorem 

1 to the problems of nonrelativistic quantum 
mechanics with a Hamiltonian of the form 
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and a potential of a sufficiently general form that 
includes, among others, the Coulomb potential of 
interparticle interaction was derived by Kato [5]. 

 
3 Generalized Hylleraas expansion 

 
We use the generalized Hylleraas expansion for 

the states with arbitrary values of total orbital 
moment L of the system: 
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where LL  for the states of “normal” spatial 
parity L)1(  and 1 LL  for the states of 

“anomalous” spatial parity 1)1(  L . The 21ll
LMY  

functions are regular bipolar spherical harmonics [6] 
that depend on two angular coordinates: 
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and spatial parity operator  P acts on the 
spatial coordinates in the following way: 

),(),( 2121 rrrr P . The ease of use of the 21ll
LMY  

functions stems from the fact that they correctly 
reproduce the behavior of the wave function at 

01 r  (or 02 r ) and retain the reasonable 
requirement of boundedness of the function within 
the region of variation of variables for the 
expression within square brackets in Eq. (1.8). The 
“normal” and “anomalous” spatial parities were 
designated this way for the following reasons. It can 
be seen from expansion (1.8) that “anomalous” 
parity states may decompose into clusters with 
angular momentum of the bound pair 1l . In 
atomic physics, the ground state of a pair of 
particles has zero angular momentum, while the 
boundary of the continuous spectrum in a system of 
three particles is defined by the ground-state energy, 
the energy of the pair with the lowest energy level, 
or zero energy (if no bound pairs are present). It 
follows that bound “anomalous” parity states are 
located below the threshold of the cluster with the 
excited pair state and normally lie within the 
continuous spectrum of a three-particle system. 
Therefore, after the inclusion of any interaction 
operator that violates spatial parity into the 
Hamiltonian, these states blend into the continuous 
spectrum and form resonances. 

The calculation of matrix elements comes down 
to evaluating integrals of the following form: 

 
.),,( 12211221
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Differentiating with respect to αunder the 

integral sign, we obtain the following: 
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thus, all integrals may be evaluated from Г000 by 
simple differentiation: 
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Following [7], we then use recurrence relation 
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Applying it successively to each pair of 

variables  , and  , we arrive at the recurrence 
scheme for integral evaluation for nonnegative 
values of parameters ),,( nml : 
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(11) 

 
The fact that the lmnlmn BA ,  and lmn values in 

relations (11) are positive is an important feature of 
these relations that makes recurrence scheme (11) 
for integral evaluation resistant to the rounding 
errors in computer calculations. 

The averaging over angular variables for the 
states with a nonzero total orbital moment of the 
system was analyzed by Drake [8]. This averaging 
reduces the calculation of matrix elements to 
integrals (9). A compact and efficient recurrence 
scheme that implements this reduction was proposed 
later by Efros [9]. 

The efficiency of the above-described 
variational expansions is the highest when they are 
applied to systems composed of two electrons and a 
heavy nucleus. Let us now study this version 
(“exponential” expansion) in more detail. This 
expansion assumes the following form for S states: 
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where the parameters in the exponent are chosen in 
one way or another. In early studies [10] that used 
expansion (12), the obtained representation was 
associated with the discretization of the integral 
representation of the wave function 

 

  dfxxxx AA )();,....(),...,( 11  
 (13) 

 
that was proposed by Griffin and Wheeler [11] in 
1957.The n , n , and n parameters were chosen 
in accordance with various quadrature integration 
formulas(13). The systematic study of expansion 
(12) with parameters generated using pseudorandom 
numbers was carried out in [12]. In the proposed 
approach, nonlinear parameters from Eq. (12) are 
generated using the following simple formulas: 
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where  x is the fractional part of x and  pp ,
and p  are certain prime numbers. These simple 

generators of pseudorandom numbers have their 
advantage in there producibility of the results of 
variational calculations. The convergence rate of the 
exponential expansion with a pseudorandom 
strategy for choosing nonlinear parameters (14) is 
exceptionally high at the sets of basis functions of 
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moderate dimensionalities(up to 100–200 test 
functions). Rapid basis degeneration that results in 
the loss of computational stability in the double 
precision arithmetic by basis dimensionality N = 
200 is among the disadvantages of the method. Let 
us write out for convenience the exponential 
variational expansion in its complete form with 
account for the angular dependence of the wave 
function that describes the rotational degrees of 
freedom: 
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where LL or 1L  (depending on the spatial 
parity of the state) and the complex parameters in the 
exponent are generated in a pseudorandom way 
(14).It was already noted that the convergence rate is 
reduced when the ground state of a helium atom is 
calculated. This may be attributed to the fact that the 
wave function has a logarithmic singularity at

0, 21 rr :  ln2 , where 2
2

2
1 rr  is the 

hyper radius of two electrons [13]. In order to remedy 
the situation, one should construct a multilayer 
variational expansion composed of several 
independent sets of basis functions, the optimum 
variational nonlinear parameters for which are found 
independently. Thus, each set of basis functions 
defines the optimum approximation in a certain 
region of coordinates of the system. In the case of a 
helium atom, the regions should be enclosed within 
each other and be more and more compact interms of 
the hyper radius ( n

n a  , where 1.0a and 
,...3,2,1n ). This strategy makes the exponential 

expansion an efficient and versatile solution method 
for bound states in the quantum three-body problem 
with Coulomb interaction. The capabilities of this 
method were demonstrated in [14, 15]. 

 
4 Inverse iteration method 

 
It was shown in Section 1 that the stationary 

Schrӧdinger equation is reduced to the generalized 
symmetrical eigenvalue problem with the help of 
the Ritz procedure: 

 
,BxAx      (16) 

where A is a symmetric matrix and B is a symmetric 
positive-definite matrix. The standard 
diagonalization procedure may be used to solve Eq. 
(16). In order to do that, matrix TLLB  is 
expanded into a product of upper and lower 
triangular matrices, and the problem is reduced to 
the standard symmetrical eigen value problem: 
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and 
yLxALLyA TT   ,' 1  (18) 

 
However, this method is too laborious  

( 320~ N  multiplication operations) and is less 
resistant to calculation errors. If only a single eigen 
value (eigenvector) is needed, the solution may be 
obtained efficiently ( 6/~ 3N  multiplication 
operations) with the help of the inverse iteration 
method: 
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where scalar factor )(ns  is chosen in such a way that
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kx . If  is close to exact eigenvalue k , 

vector sequence )(n
kx  converges rapidly to exact 

eigenvector kx , and ),( )()()( n
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n
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n
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rapidly to exact value k . 
In order to illustrate this, one may assume, 

without a loss of generality, that matrix A is a 
diagonal one. The solution may then be written 
down in the explicit form: 
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It can be seen from Eqs. (20) that all 

components of vector )(n
kx  (except for ku , which 

remains equal to unity) tend to zero under the given 
normalization conditions. Practical calculations 
demonstrate that this method is also the most 
resistant to rounding errors(calculation errors). 

 
5 Results and discussion 

 
The results of numerical calculations of the 

ionization energies for S, P, and D states of a helium 
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atom are listed in Table 1. These calculations were 
carried out using the inverse iteration method. 
Variational parameters were optimized manually. It 
should be noted that the optimum variational 
parameters for different states differ from each 
other, and the calculation accuracy depends to a 
considerable extent (5–8 digits)on the choice of the 
optimum variational parameters for the given bound 
state. Bases with N = 1500, 2000,2500, and 3000 
functions were used to optimize the variational 
parameters. When the states listed in the table were 
calculated, 3–5 “layers” of basis functions were 
used. 

Program modules of quadruple and sextuple 
precision (32 and 48 decimal digits, respectively) 
that were developed by one of the authors of the 
present paper were used in order to remedy the 
problem of the numerical instability of calculations 
at large values of N. 

The convergence of the nonrelativistic energy value 
is studied in Tables 2 and 3 as a function of number N 
of basis functions. The difference between two 
neighboring values (calculated for the last digits given 
in Tables 2 and 3) is listed in the third column. It is seen 
clearly that the convergence rate is high. This allows 
one to obtain highly accurate results. 

 
 

Table 1 – Nonrelativistic energy levels of S,P and D states of helium atom. N is the number of basis functions 
 

State Basis (N) Enr

11S 2000 –2.903 724 377 034 119 598 28 
11S 3000 –2.903 724 377 034 119 598 31 
21S 2000 –2.145 974 046 054 417 415 77 
21S 3000 –2.145 974 046 054 417 415 81 
23S 1500 –2.175 229 378 236 791 305 74 
23S 2500 –2.175 229 378 236 791 305 74 
21P 3000 –2.123 843 086 498 101 359 24 
21P 4000 –2.123 843 086 498 101 359 25 
23P 3000 –2.133 164 190 779 283 205 11 
23P 4000 –2.133 164 190 779 283 205 14 
31S 2500 –2.061 271 989 740 908 650 15 
31S 300 –2.061 271 989 740 908 650 72 
33S 2500 –2.068 689 067 472 457 192 00 
33S 3000 –2.068 689 067 472 457 192 00 
31P 3000 –2.055 146 362 091 943 536 74 
31P 4000 –2.055 146 362 091 943 536 89 
33P 2500 –2.058 081 084 274 275 331 26 
33P 3500 –2.058 081 084 274 275 331 34 
31D 3000 –2.055 620 732 852 246 489 39 
31D 4000 –2.055 620 732 852 246 489 39 
33D 3000 –2.055 636 309 453 261 327 11 
33D 4000 –2.055 636 309 453 261 327 11 

 
 

Table 2 – Investigation of the convergence of the nonrelativistic energy of 11S state of helium atom 
 

Basis (N) Enr ΔEnr

1600 –2.903 724 377 034 119 597 961  
1800 –2.903 724 377 034 119 598 225 264 
2000 –2.903 724 377 034 119 598 282 57 
2400 –2.903 724 377 034 119 598 307 25 
3000 –2.903 724 377 034 119 598 311 4 
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Table 3 – Investigation of the convergence of the nonrelativistic energy of 11S state of helium atom 
 

Basis (N) Enr ΔEnr 
2000 –2.123 843 086 498 101 358 687  
2500 –2.123 843 086 498 101 359 180 493 
3000 –2.123 843 086 498 101 359 237 57 
4000 –2.123 843 086 498 101 359 246 9 

 
 

6 Conclusions 
 
Variational wave functions of bound states were 

obtained by solving the Schrodinger equation for the 
quantum three body problem with Coulomb 
interaction using a variational approach based on 
exponential expansion with the parameters of 
exponents being chosen in a pseudorandom way. 

The results of calculations of the nonrelativistic 
energy levels for a helium atom were presented. The 
numerical calculation results are listed in Table 1. 
The convergence was studied as a function of the 
number of test functions. The results of these studies 
demonstrated that the energy values were accurate 
to 19–20 significant digits. This accuracy allows one 
to obtain reliable theoretical predictions. 
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The equilibrium configurations of uniformly rotating white dwarfs are calculated in the framework of 
classical physics. The Chandrasekhar and the Salpeter equations of state are used to describe the white dwarf 
matter. The Hartle formalism is applied to the integration of the equations of hydrostatic equilibrium and field 
equations. The equations of structure have been expanded in powers of the angular velocity Ω of the white 
dwarf, and terms of higher order than Ω� have been neglected.All parameters of rotating white dwarfs such as 
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1 Introduction 
 

In order to investigate the equilibrium structure 
of non-rotating and rotating white dwarfs in the 
Newtonian physics a number of authors have 
calculated in greater detail the classical equilibrium 
configurations of cold white dwarfs [1, 2]. In the 
literature among all those approaches the Hartle 
formalism in the classical case has been neglected, 
probably due to its relativistic counterpart, which is 
widely used in the scientific community to describe 
relativistic objects such as neutron stars, quark stars, 
and other exotic objects [3-5]. 

In our recent work [6] we have revisited the 
Hartle formalism in the classical case, giving 
detailed derivations of all the physical quantities 
such as the total rotating mass, the equatorial and 
polar radii, eccentricity, moment of inertia both for 
non-rotating and rotating configurations, and 
quadrupole moment. All these parameters play a 
pivotal rolein the investigation of the stability and 
the lifespan of white dwarfs, main sequence stars 
and giant stars[7-9]. 

In this work we investigate the effects of 
angular velocity on the structure of white dwarfs. 
We examine the case of white dwarfs which rotate 
rigidly and slowly. We integrate the equations of 
structure for slowly rotating white dwarfs 

numerically for the Chandrasekhar and Salpeter 
equations of state [10, 11]. 

 
2 Equation of structure 

 
The method used to construct models for 

uniformly and slowly rotating stars is summarized 
briefly here [3, 6].  

 
Equation of state. 
As the first step in the calculation of a slowly 

rotating stellar model, one-parameter equation of 
state, � � �(�), is specified. Here � is the pressure, 
�  is the matter density. For white dwarfs this 
relation will be one of the equations of state 
summarized in [11-14]. 

 
Non rotating white dwarfs.  
For a given value of the central density, the 

non-rotating equilibrium configuration is 
determined by integrating the Newtonian equation 
of hydrostatic equilibrium for the pressure, �(�)(�), 
and the mass interior to a given radius, �(�)(�): 

 

�
��(�)(�)

�� � ��(�) ��(�)(�)
�� ,

��(�)(�)
�� � �����(�).

 (1) 
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The integration is performed outward, starting 
at the star’s center, � = 0 . At the star’s center 
�(�)(� = 0) = 0 ; �(� = 0) = ��  is the given 
central density; and �(�) is �(�)(��) as given by the 
equation of state. The radius of the spherical 
surface of the star, �, is that value of � at which 
�(�)(�) drops to zero; and the value of �(�)(�) 
there is the star’s total static mass. 

The gravitational potential of a non-rotating star 
is determined by integrating outward from the 
center the equation 

 
�Φ(�)(�)

�� = ��(�)(�)
�� = − �

�(�)
��(�)(�)

��          (2) 
 

with the boundary conditionΦ(�)(∞) = 0. 
The moment of inertia of a spherical star is 

calculated easily from the following expression: 
 

�(�)(�) = ��
� � �(�)����.�

�              (3) 
 
Values for the central density and angular 

velocity.  
Once the equation of state is specified, there is a 

unique equilibrium configuration for each choice of 
the central density and angular velocity. The small 
perturbations away from a non-rotating equilibrium 
configuration are all proportional to the angular 
velocity or to its square. Consequently, for a given 
central density, all the models of different angular 
velocities can be obtained from a single model by 
applying an appropriate scaling. In this paper the 
results are given in graphical form for the angular 
velocity Ω satisfying 

 

Ω = ������
���

,  (4) 

 
where �  is the gravitational constant, ����  is the 
total mass of the rotating configuration and�� is its 
equatorial radius. This is the critical angular 
velocity at which mass-shedding will occur, and it 
is thus a natural upper bound on those angular 
velocities for which the assumption of slow rotation 
could be valid. Knowing the values of moment of 

inertia �(�)  and the angular velocity Ω  one can 
determine the angular moment of a spherical star by 

 
� = �(�)(�)Ω.  (5) 

 
Having chosen a value of the angular velocity 

for each value of the central density, one constructs 
a sequence of equilibrium models by integrating the 
Newtonian equations of structure for a sequence of 
central densities. 

 
The spherical deformation of the star. 
The spherical part of the rotational deformation 

is calculated by integrating the� = 0equations of 
hydrostatic equilibrium for the “change in mass” 
�(�)(�)  and the “pressure perturbation function” 
��∗(�): 

 

�
���∗(�)

�� = �
�Ω

�� − ��(�)(�)
��

��(�)(�)
�� = �����(�) ��(�)

�� ��∗(�),
,      (6) 

 
These equations are integrated out from the 

origin with boundary conditions that as � → 0 
 

��∗(�) → �
�Ω

���, �(�)(�) → 0.   (7) 
 

These boundary conditions guarantee that the 
central densities of the rotating and non-rotating 
configurations are the same. Consequently, the total 
mass of the star with central density �� and angular 
velocity Ω is 

 
���� = �(�)(�) + �(�)(�),            (8) 

 
where � is the radius of the spherical configuration. 

 
The quadrupole deformation of the star.  
One calculates the quadrupole part of the 

deformations by integrating the � = � equations. 
Firstly, one needs to findparticular solution by 
integrating equations 

 

 

�
��(�)

�� = − ���(�)
�� �(�) + ��

� Ω�����(�)
��(�)

�� = ������(�)
�(�) − �

�� �(�) − ��(�)
��(�) + ��

��(�) �Ω���                                        (9) 
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outward from the center with arbitrary initial 
conditions satisfying equations 

 
�(�) � ���,      
�(�) � ���,      

� + ��
� ���� = ��

� ���Ω
�,  (10) 

 
where �  and �  are arbitrary constants. Set, for 
example, � = 1  and define �  from the above 
algebraic equation. This determines particular 
solutions ��(�) and ��(�). 

Secondly, the homogeneous solution should be 
considered by integrating the homogeneous 
equations 

 

�
���(�)

�� = − ���(�)
�� ��(�)

���(�)
�� = ������(�)

�(�) − �
�� ��(�) − ���(�)

��(�)
    (11) 

 
outward from the center with arbitrary initial 
conditions satisfying the equations  

 
��(�) � ���,     
��(�) � ���,     

 � + ��
� ���� = �          (12) 

 
Set � = 1 and � is given by the above equation. 

This determines particular solutions ��(�)  and 
��(�). Thus interior solution is determined by the 
sum of the particular and the homogeneous solution 

 
���(�) = ��(�) + ����(�),    

   ���(�) = ��(�) + ����(�).     (13) 
 
Matching with the Exterior Solutions.  
The exterior solutions are given by 
 

���(�) = ��
�� ,     ���(�) = ����(�)

��� .       (14) 
 

By matching (13) and (14) at (� = �) 
 

���(� = �) = ���(� = �),  
    ���(� = �) = ���(� = �).      (15) 

 
constants �� and �� are determined. 

 
 
 

 
The polar and equatorial radii and eccentricity. 
The surface of the rotating configuration, polar 

�� and equatorial �� radii are given by 
 

�(�,Θ) = � + ��(�) + ��(�)��(Θ),       (16) 
 

�� = �(�, �) = � + ��(�) + ��(�),          (17) 
�� = �(�, � �⁄ ) = � + ��(�) − ��(�) �⁄ ,    (18) 

 
where ��(�) and ��(�) are given by 
 

��(�) = ��

��(�)(�) ��∗(�),  (19) 
 
 

��(�) = − ��

��(�)(�) ��
�Ω

��� + ���(�)�. (20) 
 

The eccentricity is defined by 
 

eccentricity = �1 − ���
��

��
.        (21) 

 
Quadrupole moment.  
The Newtonian potential Φ(�,Θ)  outside the 

star (� � �)is given by 
 
Φ(�,Θ) = − �����

� + ��
�� ��(cosΘ),         (22) 

 
thus the constant ��  can be written as �� = �� , 
where � is the mass quadrupole moment of the star. 
According to Hartle’s definition � � � defines an 
oblate object, � � � defines a prolate object. 

 
Total moment of inertia and total angular 

momentum.  
The total moment of inertia of a rotating 

configuration is determined as the sum of the 
moment of inertia of a static star and the change in 
the moment of inertia due to rotation and 
deformation 

 
����(�) = �(�)(�) + �(�)(�),   (23) 

 
where the moment of inertia of the non-rotating star 
is determined as earlier 

 
�(�)(�) = ��

� � �(�)����,�
�                (24) 
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and its change due to rotation is given by [15]
 

 

�(�)(�) = ��
3 � �(�)�� ����(�)�� − 1

5
���(�)
�� + 4

� ���(�) −
1
5 ��(�)�� ��

�

�
 

    (25) 

= ��
3 � ��15 ��(�) − ��(�)�

��(�)
�� �����

�

�
 

 
 

From here the total angular momentum of a 
rotating configuration will be determined by 

 
���� = ����(�)Ω.   (26) 

 
Thus, we have all the necessary equation to 

investigate equilibrium configurations of classical 
white dwarfs. 

 
3 Results and discussion 

 
In equilibrium, a rotating star attains a balance 

between pressure forces, gravitational forces, and 
centrifugal forces. In classical physics the 
magnitude of the centrifugal force is determined by 
the angular velocity Ω  of the fluid relative to a 
distant observer. In the literature angular 
velocityΩgiven by (4) is usually known as mass-
shedding or Keplerian angular velocity. 

In Fig. 1 the mass of a white dwarf is shown as 
a function of the central density. The mass is given 
in the units of one solar mass and the central 
density is given in grams per centimeter cube. We 
have selected two equations of state: the 
Chandrasekhar equation of state with average 
molecular weight � = �, and the Salpeter equation 
of state for carbon and iron white dwarfs as a 
limiting case. All solid curves indicate non-rotating 
(static) white dwarfs, whereas all dashed curves 
indicate rotating white dwarfs at the mass-shedding 
rate. As it has been expected rotating white dwarfs 
have larger masses with respect to their static 
counterparts. In all our computations we restricted 
the values of the central density to the values of 
inverse beta decay density to fulfill the stability 
condition of white dwarfs [14]. In classic white 
dwarfs the maximum (threshold) value of the 
central density is considered to be the minimum 
value between the density for the onset of inverse-
beta decay process[13,16]. 

Figure 2 shows mass and equatorial radius 
relation. The equatorial radius reduces to the static 
radius in the non-rotating limit. All legends in the 
plot are the same as in Fig. 1. Depending on the 
equation of state and chemical composition, white 
dwarfs display different mass-radius relation. This 
explains the variety of observed white dwarfs. 
Nowadays, we have data for 9316 white dwarfs and 
all of them have diverse characteristics [17, 18]. 

Figure 3 illustrates normalized moment of 
inertia as a function of the central density. The 
legends are the same as in Fig.1. The lower the 
density the larger the difference in the moment of 
inertia of rotating and static white dwarfs. 

 

 
 

Figure 1 – Mass versus central density  
(see the color version on the web) 

 

 
 

Figure 2 – Mass versus equatorial radius  
(see the color version on the web) 
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Figure 3 – Moment of inertia versus  
central density 

 

 
Figure 4 – Eccentricity versus central density 

 
 
The eccentricity of rotating white dwarfs as a 

function of central density is shown in Fig. 4. For 
higher densities the eccentricity decreases and vice 
versa. Thus, white dwarfs in this case become more 
spherical as they approach their maximum mass. 

The normalized mass quadrupole moment 
versus eccentricity is represented in Fig. 5. The 
legends are the same as in Fig. 1. Here one can see 
that for larger densities the eccentricity and 
quadrupole moment are correlated. The quadrupole 
moment decreases as well with increasing density. 
The system becomes more gravitationally bound. 

 

 
 

Figure 5 – Quadrupole moment versus eccentricity 
 
 
 

4 Conclusion 
 
The equations have been numerically integrated 

in order to calculate the structure of slowly rotating 
classical white dwarfs in hydrostatic equilibrium. In 
particular, the relation between mass and central 
density, the shapes of rotating stars have been 
calculated for the Chandrasekhar and Salpeter 
equations of state. 

The equations which determine the moment of 
inertia and the quadrupole moment of the rotating 
star have also been integrated numerically. The 
product of the moment of inertia and the angular 
velocity determines the angular momentum of a star. 

All these quantities play a fundamental role in 
describing the equilibrium configurations of 
uniformly rotating main sequence stars as well as 
planets. The results obtained in the work are in 
agreement with other work in the literature related 
to the rigidly rotating white dwarfs in the 
Newtonian physics [19-20]. 
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