15th International Conference on the Physics of Non-Ideal Plasmas Almaty, August 30- September 4, 2015

Book of Abstracts

15th International Conference on the Physics of Non-Ideal Plasmas Almaty, August 30 - September 4, 2015

National Laboratory of Nanotechnology

Laboratory of **Engineering Profile**

Institute of Experimental

Al-Farabi Kazakh National University

Insitute of Applied Sciences and Information Technologies

15th International Conference on the Physics of Non-Ideal Plasmas 31 August – 4 September 2015 Almaty, Kazakhstan

Abstracts of posters: Session I Tuesday 01.09.2015, 17:10 – 19:10

- statistical physics and ab-initio simulations
- equilibrium properties, equations of state and phase transitions – Part 1
- dense astrophysical and ICF plasmas
- dusty plasmas Part 1

Almaty, August 30 - September 4, 2015

Nr.	Name	Surname	Title of Contribution
			First-principles calculations of the high-pressure melting line of SiO2 and strenght
P1.1	Sebastien	Hamel	of H2O: planetary science implications
P1.2	Ayatola	Gabdulin	MD Simulation of 2D System of Polarized Dust Particles
P1.3	Anatoly	Kupchishin	Cascade-Probability Method and Relationship with Markov Chains
P1.4	Alexandr	Larkin	Numerical Calculation of Thermodynamical Calculation of Thermodynamical
			Properties of Relativistic Particle in Potential Field
P1.5	Yaroslav	Lavrinenko	Boundary condition problem for atomistic simulations of classical and quantum
			strongly coupled systems of charged particles
P1.6	Péter	Magyar	Quadratic static response of the classical One-Component Plasma
P1.7	Alexey	Andreyev	Foundation of thermodynamics within the laws of the classical mechanics
P1.8	Yuriy	Arkhipov	Effective potentials in semiclassical two-component plasmas
P1.9	Asel	Ashikbayeva	Dynamic properties of Dirac plasmas in the random-phase approximation
P1.10	Alexander	Chigvintsev	Anomalous Phase Diagram in Simplest Plasma Model
P1.11	Yultuz	Omarbakiyeva	Cluster virial expansion of the equation of state for hydrogen plasma with $e - H_2$ contributions
P1.12	Jean-Christophe	Pain	Multi-configuration modeling of ionization potential depression in dense plasmas
P1.13	Aleksey	Shumikhin	The distinguishing features of the vapor-liquid (dielectric-metal) phase transition in metal vapors, semiconductors and rare gases
P1.14	Moldir	Issanova	Transport properties of inertial confinement fusion dense plasmas
P1.15	Nadine	Nettelmann	Warm Dense Hydrogen and Helium in Jupiter and Saturn: exploration of He sedimentation
P1.16	Nuriya	Bastykova	Controlled levitation of dust particles in rf+dc gas discharges
D4 47	,		Extraction of nano- and small dispersed microparticles in the plasma of radio-
P1.17	Didar	Batryshev	frequency discharge
P1.18	Lidia	Deputatova	Measurement of the charge of a single particle confined by the electrodynamic trap
D1 10	Marlan	Dechelovov	The influence of the ionic composition of the plasma on dust structures in the
P1.19	IVIEIIdii	Dosbolayev	combined discharge of radiofrequency and electrostatic fields
D1 20	Voung Doo	lung	Nonthermal and geometric effects on the dual-mode surface waves in a Lorentzian
P1.20	Toung-Dae	Julig	dusty plasma slab
D1 21	Irina	Filatova	Plasma-assisted Functionalization of ZnO Nanoparticles and Production of
P1.21	ппа г	FliatOva	Nanocrystalline ZnO Structures
P1.22	Alexey	Khrapak	Complex plasma research under microgravity conditions: PK-3 Plus laboratory on the International Space Station
P1.23	Ranna	Masheyeva	Effect of buffer gas induced friction on the cage correlation function of dust particles
P1.24	Vladimir	Messerle	Plasma for Fuel Processing
P1.25	Mukhit	Muratov	Influence of dipole interaction on the thermodynamic properties of dusty plasma

P1.25

Influence of dipole interaction on the thermodynamic properties of dusty plasma

<u>M. M. Muratov</u>, T.S. Ramazanov, K.N. Dzhumagulova IETP, al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan mukhit.muratov@gmail.com

Jh.A. Goree

The University of Iowa, Iowa city, Iowa 52242, USA

This work is devoted to a theoretical consideration of the influence of dipole interaction between dust grains on the thermodynamic properties of plasma-dust systems. Equation of state (pressure) was derived in the framework of the investigation of the thermodynamics of dusty plasma. Pair correlation functions of dusty plasma's particles are calculated for system of particles interacting through the effective potential [1]. Effective interaction potential is for particles with dipole moment and takes into account screening effects at large distance. On the basis of the mentioned calucations investigation of the influence of dipole interaction on the thermodynamic properties is presented. Also, the comparisions of obtained results with data based on the experimental pair correlation functions, and also with previous theoretical and calculated results are presented [2-4].

References

[1] T.S. Ramazanov, Zh.A. Moldabekov, K.N. Dzhumagulova and M.M. Muratov, *Phys. Plasmas*, **18** (2011), P.103705.

[2] T.S. Ramazanov, K.N. Dzhumagulova et al., Contrib. Plasma Phys. **49**, No.1-2, pp. 15-20 (2009).

[3] P.Hartman, G.J. Kalman, Z. Donko, K. Kutasi, Phys. Rev. E., 72 (2005), P. 026409.

[4] H.Totsuji, M.Liman, C.Totsuji and K.Tsuruta, Phys. Rev. E., 70 (2004), P. 016405.