МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН
АЛМАТИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

СПРАВКА

Дана Тюсюповой Б.Б. в том, что статья «ФУНГИЦИДТІ ПОЛИКОМПЛЕКСТИН ДӘНДЕ ДАҚЫЛДАРДЫҢ ОСУІНЕ ЖӘНЕ КУЙЗЕЛІС ТУРАКТЫЛЫҒЫНА ОСЕРІ», написанная в соавторстве с Есимовой О.А., Исеновой Г.Д., Керимкуловой М.Ж., Мусабековым К.Б. принята к публикации и после положительного заключения редколлегии будет опубликована в журнале «Вестник Алматинского технологического университета» № 2, 2016 года.

Начальник ООНР
С.М. Рахимова

27.04.2016 г.
Функцийді поликомплексти дәнді дақылдардың осуіне және қуізеліс тұрақтылығына есері
О.А. Есимова¹, Г.Д. Исенова², М.Ж. Керимкулова¹,
Б.Б. Тююпова¹, К.Б. Мусабеков¹
¹ ал-Фараби атындағы Қазақ ұлттық университеті, Қазақстан, Алматы қ.
² КР БФМ Өсімдік көрғау институты, Қазақстан, Алматы қ.
E-mail: esimova_61@mail.ru

Аннотация. Жана бактерицидті касиеттери бар БА3-полимер коспасы ауыл шаруашылық дақылдардың өнімділігі мен қуінарлығын арттыруда практикалық маңызы дәрежеден алынады. Осыған байланысты жұмысты бәлігі бактериалдық поліеякторылік –полигексаметиленгуанидин гидрохлорид (ПГМГ); полиэтиленгликоль (ПЭГ) (молекулярлық массасы-6000), пен анионды додецилсульфат натрий (ДДСNa) беттік активті заттардан және олардың композицияларының бидай дақылдарының қуізеліс тұрақтылығына, өнімділігіне, заладануына есері қарастырылды. Зерттеу нәтижесі бойынша қуізеліс тұрақтылығына есерін ПГМГ-ПЭГ 0,01% концентрациялы ерітіндісімен өңделген нұска жоғары көрсеткіш көрсетті, яғни полигексаметиленгуанидин гидрохлориді,, полиэтиленгликоль және олардың комплекстері қаттысында бидай дәндери коршаган ортаның есеріне бейім болып есептеледі.

Кілттік сөздер: анионды ДДСNa, ионды емес поліеякторылік полиэтиленгликоль, полигексаметиленгуанидин гидрохлорид (ПГМГ) ауыл шаруашылықы, композициялар, бидай дақылдарының өнімділігі, заладану, беттік керілік, жұғу.

ВЛИЯНИЕ ФУНКЦИИДНЫХ ПОЛИКОМПЛЕКСОВ НА РОСТ И НА СТРЕССОУСТОЙЧИВОСТЬ ЗЕРНОВЫХ КУЛЬТУР
О.А. Есимова¹, Г.Д. Исенова², М.Ж. Керимкулова¹,
Б.Б. Тююпова¹, К.Б. Мусабеков¹
¹ Казахский Национальный Университет им. ал-Фараби,
Казахстан, г. Алматы
² Институт защиты растений, Казахстан, г. Алматы
E-mail: esimova_61@mail.ru

Аннотация. Исследована влияние отдельных компонентов ПАВ неионогенного полиэлектролита - полигексаметиленгликоль (молекулярная масса – 6000), известных бактерицидных полимера – полигексаметиленгуанидин гидрохлорида (метацид); и ассоциатов метацид-ПАВ на всхожесть и стимуляции роста и на стрессоустойчивость заражение зерновых культур. Показано, что все растворы обладают хорошей стимулятором роста зерновых
культур. В связи с этим в этой работе были рассмотрены поверхностные натяжения и смачивающие свойства композиций.

Показано, что все растворы обладают поверхностной активностью и понижают поверхностное натяжение воды на границе раздела вода-воздух.

Ключевые слова: анионный ДДСNa, неионогенный полизэлектролит - полиэтиленгликоль, катионный полимер-полигексаметилентриаминогидрохлорид (метацид), сельское хозяйство, композиции, продуктивность, заражение зерновых культур, поверхностное натяжение, прилипание

FUNGICIDAL EFFECT OF THE STABILITY AND GROWTH OF CROPS POLYCOMPLEXES STRESS

O.A. Yessimova¹, G.D. Isenova², M.SH. Kerimkylova¹,
B.B. Tyussyupova¹, K.B. Musabekov¹

¹Al-Farabi Kazakh National University, Almaty
²MES Institute of Plant Protection, Kazakhstan, Almaty
e-mail: esimova_61@mail

In this research work, we have studied the effect of same components of non-ionic SAS (polyelectrolyte – polyethylene glycol), popular bacterial polymers (polyhexa methylens guanidine hydrochloride) and associates of methacyde SAS on the germination, grower stimulation and stress stability of grains.

It was observed that all solutions has good ability for growth of grains. According this data, in this work we have considered surface tensions and wetting properties of compositions. Also we have observed that solutions has surface activity and decrease the surface tension of water in the interface water-air.

Key-words: Anionic, non-ionic polyelectrolyte – polyethylene glycol, cationic polymer- polyhexa methylene guanidine hydro chloride, compositions of grains, productivity, infection of grains, surface tension, adhesion.

Кипине

Қазіргі танда ауыл шаруашылық өнімдерін тұрақты камтамасыз ету, сонымен қатар мол өнім алуын қалыптастыру үшін факторлар — даярлы үшін ылғал қерек құнының ең колайлы жағдайын қамтамасыз ету, өнім аса багылы суықтықтың өсіріп шығару болып есептеледі. Қазақстанның негізі әзір- тұлға мәдениеттің негізі қыздық ақылы болып табылады. Астық даярлы буқіл алемде 148 әдеби негізі азық-туылға және қол көптеген елдердің экономикасында ерекше өрні алып жатыр. Бұл дәнден даярлар өнімнің 60% өңеуі бай тілдік группында алынады. Осімдіктердің ауруларына кәрсі эртурлі әуежистер болады. Еліміздегі тағыны экологиялық жағдайларды ескеру қолданысы, бақтериалдің, әуежистердің қасиеттері бар жаңа беттік-активті заттарды ауыл шаруашылығында колдану өте маңызды
болып табылады. Себеби олар ауыл шаруашылыгынын барлык саласында кен колданыска не болып жүр [1].

Өнімділігін анықтая дәндердің егу касиеттерін бағалаудың ерекше бір түрі, себеби нашар өнімділік жағдайды ауыл шаруашылығынын мадениетінің ерісін көлемі азайып кетеді. Дәлділдің өнімділігі шамамен 100%-ға жетуі керек. Сондықтан ауыл шаруашылық дәқылдарының коры мен сапасын артыру мақсатында дәқылдарды екпес бұрын онған өнімділігі мен заалдану касиеттеріне есері бар заттармен тәжірибе жүзінде зерттеу ұрықты маңзызды болып табылады.

БАЗ-дың полимермен және полизелектролиттермен тузген ассоциаттары аса тиімді беттік-активті заттардың жаңа тобын құрайтыны белгілі. Осындай кезде тұзғалған полиоксигеналсіз және компоненттерге карағанды ерекше касиеттер көрсетіп, оларды жаңа жоғарғы молекулалық БАЗ ретінде қарастьруға болады. Сондықтан, жаңа бактерицидтік касиеттер бар БАЗ-тармен ауыл шаруашылық дәқылдарының өнімділігі мен құнарлығының артырудың практикалық маңызы зор болып келеді [2].

Зерттеу нысандары мен адістері

Зерттеу нысандары: функгіцидтік, бактерицидтік компонент ретінде көшQUE полимер полигіксаметиленгуанідин бірі. (ПГМГ) [-(CH₂)₆-NH-C(NH₂Cl)-NH⁻]ₙ, молекулалық массасы 1,7·10³, біопарараптарды косынша тазалайттың Покров заводында шыққан, иоңсыз полизелектролит полизетилентрилік – этиленгликольдің полимері (етилексінділік); химиялық формуласы C₂₅H₄₉O₇O₂₇Ο₇, (молекулалық массасы-6000), түзілдің 1,1 – 1,2 г/см³; балқу температурасы молекулалық массасына байланысты, және анионды беттік активті зат- натрий додецилсульфатты (ДДСНв), химиялық формуласы C₁₂H₂₅OSO₃Na. Полимер ретінде иоңсыз полизетилентрилікдің алыну себебі бейінден БАЗ-дар мен полимерлер уліч емес, біоциддары, яғни адағы ағақты мән коршаган ортаға зааласы. Сондықтан да олар тамақ, фармацевтикалар, ауылшаруашылық, тұрмыстық химия тауарларының өндірісінде кен колданысық не. Судағы ерітінілдер 10⁻⁵-10⁻¹⁰ аралығында дайындалды.

Беттік керіл кетілдірілген Вильгельмі тәсілімен өлшенді. Бұләдіс тік табакша суықка тартылу күшін елшевыхіне нәрізделген. Беттік керілді олшeu күралының нәрізге болше платина табакшасы. Ол торжон тараңыңың орнына жоіішке қызығы таяқша арқылы ілінеді. Олшев табакшасы ретінде микроскопиялық зерттеулерге арналған қалыңдығы 0,06мм платина фольгасына жасалған табакша колданылады. Беттік керілді олшев көрінісінің нәрізге дұрыс шығу үшін табакшаның бетін қырнал тектістейді. Температурасы бір калыпты тұратын қызығы үшін аралығы 0,08мм платина фольгасына жасалған табакша колданылады. Беттік керілді олшев нәрізге қызығы таяқша күйіп, тік кремальвера тұраласқан жылжымалы ұстелшеге қояды. Температураны бірінші Шаміяда U-2 термостат қемеғімен ұстайды. Ұстелше тұралық болуды керек ері женіл жылжыу қажет [3].
1 – сурет. Вильгельми тәсілі бойынша беттік керілуді өлшеше к ыралы: 1-платина(шыны) табакпайсы; 2-торзион таразысы; 3-жінішке трубка; 4-шыны

Жүгү бұрышы жатушы тамшының өлдісі аркылы Гониометр ЛК-1 аппараттары қолданылады.

Өсімдіктердің есу және оны зандылықтары стандартты өлдіс бойынша 30 күн арқылы зерттелді. Эксперимент басталған қүннен бастап өсімдіктерін сабақты, жапырақтың ұзындығы және олардың сұрқы өзгеріс сипаттатамасын қарастырылады. Сабақтың қалынығы штантгенциркуль шіШЦ 1-125мм (2к), 125мм, өлшем бөлігі 0,1 мм, класс 2.

Спектрофотометр СФ-101 приборында хлорофилл құрамы анықталды. Биохимиялық өлдіс аркылы өсімдіктер физиологиясында диапазон өлшеші – 1ден 100 % Т, шектеуі ± 0,5 % [6].

Нәтижелер және оларды талқылайу

Қазірғі таңда елімізді ауыл шаруашылық шикізаттары және астық өнімдерімен тұрақты қамтамасыз еті негізі басыттардың бірі. Ауыл шаруашылығында астық даярдың өнімділігі шамамен 100%-ға жетуі керек. Сондықтан ауыл шаруашылық даярдарының қоры мен сапасын арттыру мәкасында даярлықты екпес бұрын өңір өнімділігі мен заттардың касиеттеріне әсері бар заттармен тәжірибе жүзінде зерттеу жүрғізу мәнінде болып табылады.

Қазірғі ұақытта түзделік кен етек сағынақ қаңдырып көпетеген бидайырдың түзделі қўйделисе тексереді. Бул зерттеу бидайдыға түзделі қўйделис эффективтілігін байқауға негізделген [4]. Жана бактерициддік касиеттері бар БА3-полимер коспасы ауыл шаруашылық даярдары өнімділігі мен құнарлығын арттыруы қызметін төмөнке активдік мәнін зор болып келеді. Бізге қойылған мақсатты жүзеге асyrу ушін іоногенсіз полизелектролит, беттік активді зат және олардың полигексаметилгүандинди гидрохлоридімен ассоціаттарының қўйделис тұрақтылық, өнімділік пен заттардың касиеттеріне әсері зерттеледі. Зерттеу құмырсы КР БФМ өсімдіктерді қорғау ығылы зерттеу институтында, пестицидтер токсикологиясы зертханасында зертханалық жағдайлда жүргізілді.
Қоршаган ортаның колайсыз факторлары, яғни түздалуы, жогары және темен температура, ылғал мен оттекітін жетіспеушілігі, топырақтың жогары сілтілік немесе қышқылдық қасиеті осы айтылып кеткен факторлар есімдікінің дамуы мен осынің кері есерін тигізеді. Ауыл шаруашылығындағы есімдіктердің осынің токтататын факторлар әрі - топырақтың түздалуы. Тұздың артық концентрациясы осмотикалық құйырлеске ұшырадады. Яғни, есімдік құйырлеске факторлары ғендердің эксперсиясы, метаболизм интенсивтілігі, жасушадағы іондардың балансын өзгертеді [4]. Ал фотосинтез әрекетінде негізгі рөлді жасыл пигмент хлорофилл аткарады.

Сондықтан біз хлорофилл молшерін анықтау арқылы құйырлеске тұрақтылығын зерттеді. Қазіргі кезде 10 түрлі хлорофиллдер бөлілі. Олар бір-бірінен химиялық құрылысы, түсі, тірі организмдер ортасында таралуына байланысты ажыратылады. Хлорофиллдер сұда мүлдем ерімейді, бірақ органикалық еритіншілерге еріді. а және b хлорофиллдері түстерімен ажыратылады, а хлорофиллі қоқ-жасыл, б хлорофиллі – сары-жасыл түс береді. Жапырақ құрамындағы а хлорофилл молшері b хлорофиллінің қаражанды 3 есе артық болады. [5,6]

ПГМГ, ПЭГ, DDCNA және олардың ассоциаттары ерітінділерімен әндделген әндай жапырағының хлорофилл молшері зерттелді. Хлорофилл молшерін анықтаудың негізгі мәкісі бірдай дәндерінің қоршаган ортага есеріне құйырлес тұрақтылығын анықтау. Бірдай дәндерінің жапырағындағы хлорофиллді зерттеу нәтижесі 1-кестеде бірілген нәтижеден қөретініміз ПГМГ+ПЭГ 0,01% концентрациялы ерітіндісімен әндделген нуқсқа жогары қорсеткіш қорсетті. Яғни ПГМГ+ ПЭГ комплекстері қатысында бірдай дәндері қоршаган ортаның есеріне бейім болып есептеледі.

1-Кесте. ПГМГ, ПЭГ және олардың БАЗ ассоциаттарының әндделген бірдай жапырағындағы хлорофилл молшері

<table>
<thead>
<tr>
<th></th>
<th>Нуска, концентрациясы</th>
<th>Жапырақтағы хлорофилл молшері, мг/г</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Бакылау</td>
<td>0,4129</td>
</tr>
<tr>
<td>2</td>
<td>ПГМГ, 0,01%</td>
<td>0,8258</td>
</tr>
<tr>
<td>3</td>
<td>DDCNa, 0,01%</td>
<td>0,6738</td>
</tr>
<tr>
<td>4</td>
<td>ПЭГ, 0,01%</td>
<td>0,6501</td>
</tr>
<tr>
<td>5</td>
<td>ПГМГ+ПЭГ, 0,01%</td>
<td>1,0166</td>
</tr>
<tr>
<td>6</td>
<td>МЦ+DDCNa, 0,01%</td>
<td>0,8264</td>
</tr>
</tbody>
</table>

Дәндерді еу қасиеттерінің бағалаудың ерекше бір түрі - әнімділікти анықтау, себебі нашар әнімділік жағдайда ауыл шаруашылық мәдениетінің еріс көр келемі азамып кетеді. Оны біз әндделген бірдай сабақтарының ұзындығы мен қалындығы бойынша көрсеткіштер арқылы коә жеткізідік [5,6].

ПГГ және олардың БАЗ комплексімен әндделген бірдай сабақтарының ұзындығы мен қалындығы бойынша көрсеткіштер көрсетілген. Осы алындып
отырған нәтижелер бойынша тиімді қорсеткіш көрсеткен 0,01% ПЭГ және 0,01% ПГМГ– ПЭГ комплексі. 2 кесте мен 2,3 суреттерде келтірілген. Зерттеу нәтижесі ПГМГ- полизетиленгликоль композициялық ассоциаты бидай қәндертінің өңімділігін жаксартатынын қорсетті.

2-Кесте. Бидай дәқылының осінді дамуына ПГМГ, ПЭГ және олардың БАЗ ассоциаттарының әсері

<table>
<thead>
<tr>
<th>№</th>
<th>Тәжірибе нұсқалары</th>
<th>Егілген кейін 6 күнделігі арқа сабағының ұзындығы, см</th>
<th>Егілген кейін 10 күнделігі Бидай сабағының ұзындығы, см</th>
<th>Егілген кейін 10 күнделігі Бидай сабағының қалындығы, см</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>Бакылау</td>
<td>5,835</td>
<td>13,77</td>
<td>0,155</td>
</tr>
<tr>
<td>2</td>
<td>ПГМГ, 0,01%</td>
<td>8,14</td>
<td>15,50</td>
<td>0,1698</td>
</tr>
<tr>
<td>3</td>
<td>ДДСNa, 0,01%</td>
<td>6,28</td>
<td>14,15</td>
<td>0,1511</td>
</tr>
<tr>
<td>4</td>
<td>ПЭГ, 0,01%</td>
<td>8,82</td>
<td>17,45</td>
<td>0,182</td>
</tr>
<tr>
<td>5</td>
<td>ПГМГ–ДДСNa, 0,01%</td>
<td>7,81</td>
<td>14,80</td>
<td>0,1786</td>
</tr>
<tr>
<td>6</td>
<td>ПГМГ–ПЭГ, 0,01%</td>
<td>7,14</td>
<td>18,60</td>
<td>0,2110</td>
</tr>
</tbody>
</table>

Сурет 2. Бакылау (1), ПГМГ (2), ДДСNa, 0,01% (3), ПЭГ, 0,01% (4), ПГМГ–ДДСNa, 0,01% (5), ПГМГ–ПЭГ, 0,01% (6) ерітінділерімен өнделген топыраққа егілген бидай дәқылының сабағының ұзындығы
Сурет 3. Бакылау (1), метацид (2), ДДСNa, 0,01% (3), ПЭГ, 0,01% (4), ПГМГ– ДДСNa, 0,01% (5), ПГМГ– ПЭГ, 0,01% (6) ерітінділерімен өндірлген топыраққа егілген бидай дакылының сабағының қалыңдығы

Функцийдіті композициялардың қасиеттерінің қондыры татпен закымданған бидайда зерттеу нәтижесі арқылы каратырылды. Зерттеу нәтижесі бойынша қондыры татпен закымданған бидай ПГМГ–ПЭГ композициясымен өндірлген кезде, оның заладануы бірінші күні – 4, бесінші күні – 8, оның үшінү күні – 16, жырмасының қызмет күні – 23 саға кісілді. Сондықтан көп ПЭГ және БАЗ – дың басқа концентрацияларында қондыры татпен заладануың азайдындың қордік.(4,5-суреттерде көрінілген) Көрінілділай келсе, ПЭГ-тің полигексамиэтиленгуанидин гидрохлоридімен және ДДСNa-мен ассоциаттары қандай қатынаста болмасын жоғары биологиялық ефективтілік көрсетті.

Сурет 4 – бидайдың қондыры татпен орташа заладанғаны, заладанған кездең үлгілері (1), бірінші (2), бесінші (3), оның үшінү (4) және жырмасының (5) күндері заладанғанын кейінгі
Сурет 5 – закымдаған бидайлық ПГМГ –ПЭГ ерітіндісімен ендєлген (1) бірінші (2), бесінші (3), оньыншы (4) және жиірмасыншы (5) кундері

Қорытпынды
1. ПГМГ, ПЭГ, ДДСНа және олардың комплексстерінің фазааралық шектәрдәгі негізгі коллоидты - химиялық заңдылықтары анықталды. Зерттелген коспада ионды БАЗ-дың артық мөлшері кезінде синергетикалық ефект байкалалық керсетіледі.
2. Полигексаметилэнгуанидин негізінде комплексстердің сулы ерітінділерінің қуізеліс тұрақтылығына асері зерттелді. ПГМГ,ПЭГ және комплексін колдану аясына коршаган ортаның асеріне тұрақты екені зерттелді.
3. ПГМГ- БАЗ компоненттері топырақтың күнарлығын артырып, бидай дәкілінің өмір сүру уақытын ұлғайтты. ПГМГ – ПЭГ 0,01 % комплексі бидай дәкілі сабақтың ұзындығы мен қалықтыңына жақсы асер көрсетті.
4. Полигексаметилэнгуанидин гидрохлорид- полиэтиленгликоль ассоциациялық жағдайлары жақсы функціонал тік касиет көрсетті.

Өдебиет тізімдері
2. Т.В. Харитонова, Н.И.Н.И. Иванова, Б.Д. Сумм. Межмолекулярные взаимодействия в бинарных смесях катионного и неионогенного ПАВ. Коллоидный журнал №5. – 2002. С. 685-696.
4. Соболева Г.В. Влияние осмотического стресса на процессы роста и морфогенеза в длительно пассиваемых каллусных культурах гороха. //