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1 Introduction 14

Many mathematical physics problems are described by variational inequalities (see, 15

for example, [1–5]). The mathematical theory of these problems is well known (see 16

[2–6]). So optimization control problems for these systems are interesting enough. A 17

lot of results for optimization control problems of systems described by variational 18

inequalities are known (see, for example, [7–15] for elliptic case, [7, 9, 16–18] for 19

parabolic case, and [9] for hyperbolic case). The control systems for variational 20

inequalities with state constraints are analyzed in [8, 10, 11, 15]. 21

We consider the control system with state constraint in the form of the general 22

inclusion. The analysis is based on the Warga’s concept of the search of minimizing 23

sequences, but not optimal controls [19] (see also [20, 21]). Besides we will use a 24

double regularization of the optimization control problem. At first the variational 25

inequality, which defines the state of the system, is approximated by a nonlinear 26

S. Serovajsky (�)
71 al Farabi avenue, 050078 Almaty, Kazakhstan
e-mail: serovajskys@mail.ru

© Springer International Publishing Switzerland 2016
M. Ruzhansky, S. Tikhonov (eds.), Methods of Fourier Analysis and Approximation
Theory, Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-27466-9_14

mailto:serovajskys@mail.ru


UNCORRECTED
PROOF

S. Serovajsky

equation with using the penalty method. The analogical technique was used for the 27

classical theory of variational inequalities (see [6]) and optimization control theory 28

(see [7, 9, 11]). Hence we obtain the optimization control problem for a nonlinear 29

elliptic equation with state constraint. It is approximated by the minimization 30

problem for a penalty functional on the set of admissible pairs “state-control”. This 31

method was used in [22] for the analysis of the distributed singular systems without 32

state constraints. However our system is regular and we have state constraints. 33

Besides the penalty method was used in [22] for obtaining necessary conditions of 34

optimality for the initial optimization problem (see also [7, 9, 11]). We apply it for 35

finding minimizing sequences with using the idea of Warga [19] (see also [20, 21]). 36

But this means was used for the extension of optimization controls problems in the 37

case of its insolvability there. However we prove the solvability of our problem, and 38

this method is applied for finding an optimal control. 39

Thus an approximate solution of the initial optimization control problem is 40

chosen as the optimal control for approximate problem for large enough step of the 41

algorithm. The necessary conditions of optimality for the approximate optimization 42

control problem are obtained in the standard form. 43

2 Problem Statement 44

Let � be an open bounded n-dimensional set, where n � 3. Define the space H1
0.�/ 45

and its subset Z that consists all functions with non-negative values. We consider 46

the control system described by the variational inequality 47

Z

�

.�y C v/.z � y/dx � 0 8z 2 Z; (1)

where v is the control, and y is the state function. 48

For any control v from the space L2.�/ the problem (1) is solvable on the set Z 49

(see [6], Sect. 3, Example 5.1). The inequality (1) was approximated in [6] by the 50

homogeneous Dirichlet problem for the nonlinear elliptic equation 51

� �y C 1

"k
a. y/ D v; (2)

where "k > 0 and "k ! 0 as k ! 1, a. y/ D 0 for y � 0 and a. y/ D y3 if y < 0. 52

By monotony method (see [6], Sect. 2, Theorem 2.1) for any v 2 L2.�/ the Eq. (2) 53

has a unique solution y D ykŒv� from the space H1
0.�/ \ H2.�/, and the mapping 54

ykŒ� � W L2.�/ ! H1
0.�/ 55
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is weakly continuous. Besides ykŒv� ! y weakly in H1
0.�/ after extracting a 56

subsequence by Theorem 5.2 (see [6], Chap. 3), where y is a solution of the 57

variational inequality (1) for this control. Note that the norm of the solution of 58

Eq. (2) is estimated by the norm of the absolute term by this theorem. Then the 59

mentioned convergence is uniform with respect to v from any bounded subset of 60

L2.�/. 61

Consider convex closed bounded subsets V of L2.�/ and Y of H1
0.�/. The pair 62

.v; y/ from the set V � Y is called admissible if it satisfies the inequality (1) (see 63

[22]). By U denote the set of all admissible pairs. Suppose this set is non-empty for 64

nontriviality of the problem. Consider the functional 65

I.v; y/ D 1

2

Z

�

�
. y � y@/

2 C �v2
�
dx; 66

where y@ is a given function from H1
0.�/, � > 0. We have the following optimization 67

control problem. 68

Problem P1 Minimize the functional I on the set U. 69

Prove the weak continuity of the solution of the variational inequality (1) with 70

respect to the control. By yŒv� denote its solution for the control v. 71

Lemma 2.1 If fvsg � V and vs ! v weakly in L2.�/, then yŒvs� ! yŒv� weakly in 72

H1
0.�/ after extracting a subsequence. 73

Proof We have 74

yŒvs� � yŒv� D �
yŒvs� � ykŒvs�

� C �
ykŒvs� � ykŒv�

� C �
ykŒv� � yŒv�

�
: 75

Then ykŒw� ! yŒw� weakly in H1
0.�/ uniformly with respect to w 2 V after

extracting a subsequence as k ! 1. So ykŒv� ! yŒv� and . yŒvs� � ykŒvs�
�! 0

weakly in H1
0.�/. Besides ykŒvs� ! ykŒv� weakly in H1

0.�/ for all k as s ! 1.
Hence the assertions of the lemma follow from the last equality. ut
Theorem 2.2 Problem P1 is solvable. 76

Proof Let the sequence of pairs
˚
.vs; ys/

�
be minimizing. So we have the inclusions 77

vs 2 V , ys 2 Y, the variational inequality 78

Z

�

.�ys C vs/.z � ys/dx � 0 8z 2 Z; 79

and the convergence I.vs/ ! inf I.U/. The sequence fvsg is bounded in L2.�/ 80

by the boundedness of V . Then vs ! v weakly in L2.�/ after extracting a 81

subsequence. Using Lemma 2.1, we get ys ! yŒv� weakly in H1
0.�/ after extracting 82

a subsequence. So we obtain the inclusions v 2 V and yŒv� 2 Y by the convexity
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and the closeness of the sets V and Y. Then 83

�
v; yŒv�

�2 U: 84

Using the lower semicontinuity of the square of the norm for Hilbert space, we have 85

I
�
v; yŒv�

�� lim
s!1

I.vs; ys/: 86

Thus 87

I
�
v; yŒv�

�� I.U/: 88

Therefore the pair
�
v; yŒv�

�
is a solution of our problem. This completes the proof

of the Theorem 2.2. ut
Hence the Problem P1 has a solution. Our aim is the development and the 89

substantiation of the method of its resolution. 90

3 Approximation of the Optimization Control Problem 91

The optimization control problems for systems described by equations are easier 92

than for systems described by variational inequalities. So we will use the known 93

approximation of the system (1) by the nonlinear elliptic equation (2) for the 94

analysis of Problem P1. Consider the set 95

Vk D ˚
v 2 Vj ykŒv� 2 Y

�
96

and the functional 97

Ik.v/ D 1

2

Z

�

h
. ykŒv� � y@/

2 C �v2
i
dx; 98

Problem P2 Minimize the functional Ik on the set Vk. 99

Prove the non-triviality of the set Vk at first. We supposed that the set U is non- 100

empty. Use now the more strong assumption. Suppose the existence of a point v 2 V 101

such that the state yŒv� belongs to the interior of the set Y with respect to the weak 102

topology of H1
0.�/. 103

Lemma 3.1 Under this supposition the set Vk is non-empty for large enough 104

value k. 105

Proof By our assumption the state yŒv� belongs to the interior of the set Y for some
control v 2 V . Then there exists a neighborhood O of yŒv� such that it is the subset



UNCORRECTED
PROOF

Optimization Control Problems for Systems Described by Elliptic Variational. . .

of this set. By convergence ykŒv� ! yŒv� weakly in H1
0.�/ the point ykŒv� belongs

to O for a large enough k. Then ykŒv� 2 Y. So the set Vk is non-empty. ut
Using the weakly continuity of the map 106

ykŒ� � W L2.�/ ! H1
0.�/; 107

we obtain the following result. 108

Lemma 3.2 Problem P2 is solvable. 109

By vk denote a solution of Problem P2. Prove the convergence of the approxima- 110

tion method. 111

Theorem 3.3 We have the convergence I
�
vk; yŒvk�

�! inf I.U/ as k ! 1 and 112

vk ! v� in L2.�/ after extracting a subsequence, where v� is a solution of 113

Problem P1. 114

Proof We have 115

Ik.vk/ D min Ik.Vk/ � Ik.v�/: 116

Using the definition of the approximate functional, we get 117

Ik.v�/ D 1

2

Z

�

n
. ykŒv�� � y@/

2 C �v2
o
dx 118

119

D I.v�/ C 1

2

Z

�

n�
. ykŒv�� � y@/�

2 � Œ. yŒv�� � y@/�
2
o
dx: 120

Then 121

Ik.vk/ � inf I.U/ C 1

2

���ykŒv�� C yŒv�� � 2y@

���
2

���ykŒv�� � yŒv��
���

2
; 122

where k� kp is the norm of the space Lp.�/. The sequence fykŒv��g is bounded in the 123

space H1
0.�/. Besides ykŒv�� ! yŒv�� weakly in H1

0.�/ and strongly in L2.�/ by 124

Rellich–Kondrashov Theorem. Then we obtain 125

lim
k!1 Ik.vk/ � inf I.U/: (3)

The sequences fvkg and fykg, where yk D ykŒvk�, are bounded in the spaces L2.�/ 126

and H1
0.�/ because of the boundedness of the set V and Y. Then we get vk ! v 127

weakly in L2.�/ and yk ! y weakly in H1
0.�/ after extracting subsequences. Using 128

convexity and closeness of the set V and Y, we get v 2 V and y 2 Y. We have the
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equality 129

� �yk C 1

"k
a. yk/ D vk: (4)

Then 130

a. yk/ D "k.vk C �yk/: 131

By boundedness of the sequence fykg in H1
0.�/ the sequence f�ykg is bounded in 132

H�1.�/. Using the convergence yk ! y weakly in H1
0.�/, we have �yk ! �y 133

weakly in H�1.�/. After passing to the limit in the last equality, we get a. yk/ ! 0 134

weakly in H�1.�/. 135

By Sobolev Theorem we have the continuous embedding H1
0.�/ � L4.�/ and 136

L4=3.�/ � H�1.�/. Then the sequence fykg is bounded in the space L4.�/. Using 137

the definition of the function , we obtain 138

��a. yk/
��4=3

4=3
D

Z

�

ˇ̌
a. yk/

ˇ̌4=3
dx D

Z

�k

ˇ̌
yk

ˇ̌4
dx � ��yk

��4

4
; 139

where 140

�k D ˚
x 2 �j yk.x/ � 0

�
: 141

Then the sequence fa. yk/g is bounded in the space L4=3.�/. By Rellich– 142

Kondrashov Theorem we have the convergence yk ! y strongly in L2.�/ and 143

a.e. in � after extracting a subsequence. So a. yk/ ! a. y/ a.e. in � . Using 144

Lemma 1.3 [6, Chap. 1], we have a. yk/ ! a. y/ weakly in L4=3.�/ and in H�1.�/ 145

too. Then a. y/ D 0, so y � 0 on �. Hence the inclusion y 2 Z is true. 146

Using the equality (1), we have 147

Z

�

�
�yk Cvk

�
.z�yk/dx D 1

"k

Z

�

a. yk/.z�yk/dx D � 1

"k

Z

�

�
a.z/�a. yk/

�
.z�yk/dx 148

149

D � 1

"k

Z

�k

�
z3 � . yk/

3
�
.z � yk/dx 8z 2 Z: (5)
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Besides we get 150

Z

�

�yk. yk�y/dx D �
Z

�

vk. yk�y/dx C 1

"k

Z

�

a. yk/. yk�y/dx D �
Z

�

a. yk/. yk�y/dx 151

152

D �
Z

�

vk. yk � y/dx C 1

"k

Z

�

�
a. yk/ � a. y/

�
. yk � y/dx � �

Z

�

vk. yk � y/dx: 153

Then 154

lim
k!1

Z

�

�yk. yk � y/dx � � lim
k!1

Z

�

vk. yk � y/dx D 0: (6)

By inequalities (5) and (1) we have 155

Z

�

.�y C v/.z � y/dx D lim
k!1

Z

�

h
�yk.z � y/ C vk.z � y/

i
dx 156

157

D lim
k!1

Z

�

�
�yk.z � yk/ C vk.z � yk/ C �yk. yk � y/

�
dx 158

159

� lim
k!1

Z

�

.�yk C vk/.z � yk/dx C lim
k!1

Z

�

�yk. yk � y/dx � 0 8z 2 Z: 160

So y D yŒv�, then .v; y/ 2 U. 161

Using the convergence vk ! v weakly in L2.�/ and yk ! y weakly in H1
0.�/, 162

we get 163

kvk2 � inf lim
k!1 kvkk2; ky � y@k2 � inf lim

k!1 kyk � y@k2: 164

Then Ik.vk/ ! inf I.U/. 165

We have the inequality 166

ˇ̌
ˇIk.vk/ � I.vk; yk/

ˇ̌
ˇ � 1

2

Z

�

ˇ̌
ˇ� ykŒvk� � y@

�2��
yŒvk� � y@

�2
ˇ̌
ˇdx 167

168

� 1

2

��ykŒvk� � yŒvk�
��

2

��ykŒvk� C yŒvk� � 2y@

��
2

169

170

� 1

2

n��yk� � y
��

2
C ��yŒvk� � yŒv�

��
2

o��ykŒvk� C yŒvk� � 2y@

��
2
: 171
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By the convergence vk ! v weakly in L2.�/ we get yŒvk� ! yŒv� weakly in H1
0.�/. 172

Using the convergence yk ! y weakly in H1
0.�/, we obtain yŒvk� ! yŒv� and yk ! y 173

strongly in L2.�/. Using the last inequality, we have 174

lim
k!1

ˇ̌
Ik.vk/ � I.vk/

ˇ̌! 0; 175

so I.vk; yk/ ! inf I.U/. 176

We proved that a subsequence of solutions of Problem P2 is minimizing for 177

the Problem P1. Suppose the existence of a subsequence of fI.vk; yk/g such that 178

it does not have inf I.U/ as a limit point. Using considered technique, extract 179

its subsequence that convergences to inf I.U/. So the whole sequence fI.vk; yk/g 180

converges to inf I.U/. 181

By the convergence vk ! v weakly in L2.�/ and yk ! y strongly in L2.�/ we 182

have 183

kvk2 � lim
k!1

kvkk2; kyŒv� � y@k2 D lim
k!1 kykŒv� � y@k2: 184

Then 185

I.v; y/ � lim
k!1

I.vk; yk/ D inf I.U/: 186

Using the inclusion .v; y/ 2 U, we prove that v is a solution of Problem P1. 187

By fvkg denote the subsequence, which correspond the lower limit of last 188

inequalities. Suppose the strong inequality 189

kvk2 < inf lim
k!1 kvkk2: 190

Then we obtain the strong inequality 191

I.v; y/ < inf I.U/: 192

This contradiction prove the convergence kvkk2 ! kvk2. Using the convergence
vk ! v weakly in L2.�/, we prove that vk ! v strongly in L2.�/. This completes
the proof of Theorem 3.3. ut
Remark 3.4 Problem P1 can have many solutions. In this case different subse- 193

quences of fvkg can converge to different solutions of this problem. However our 194

conclusions are true for all its convergent subsequence. Therefore the set of limit 195

points of fvkg consists of solutions of Problem P1. However it is possible that some 196

solution does not belong to this set. 197

The known results the optimization control problems for systems described by 198

variational inequalities include as a rule the justification of the necessary conditions 199

of optimality (see, for example, [7–14]). However we solve optimization control 200
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problems only approximately. The known necessary conditions of optimality are 201

difficult enough. So it is more naturally to find the approximate solution of the 202

problem, rather than necessary conditions of optimality. This idea was used in [19– 203

21] in the case of insolvability of extremum problems. By Theorem 2 we can choose 204

the optimal control for Problem P2 for large enough value of k as an approximate 205

solution of Problem P1. So we will solve the solution of Problem P2. It is easier 206

than Problem P1 because the system is described by equation, rather than variational 207

inequality. 208

4 Second Approximation of the Problem 209

The general difficulty of Problem P2 is the state constraint. We cannot to use the 210

standard variational method for this case because we do not know how we can 211

change the control for saving the state constraint. We could apply results of the 212

general extremum theory (Lagrange principle and some other methods, see, for 213

example, [23–25]). But it uses very difficult properties of the linearized operator 214

and the state constraint. However some results for optimization control problems 215

for nonlinear elliptic equations with state constraints are known (see, for example, 216

[26–32]). Our aim is the search of minimizing sequences in contrast to these results. 217

Then we transform our problem to an easier one. Using the penalty method [22], 218

we change our optimization problem by the minimization problem for the penalty 219

functional on the set of admissible “control-state” pairs. Note that this technique 220

was used in [22] for the case of the absence of the state constraint. The unique 221

solvability of the state equation was not guarantee there. However our boundary 222

problem is well-posed, but we have the state constraint. 223

Define the functional 224

Im
k .v; y/ D 1

2

Z

�

n
. y � y@/

2 C �v2 C 1

ım

�
�y C "�1

k a. y/ C v
�2

o
dx; 225

where ım > 0 and ım ! 0 as m ! 1. Define the space 226

W D L2.�/ � H1
0.�/ 227

and the set U@ D V � Y. We have the following problem. 228

Problem P3 Minimize the functional Im
k on the set U@. 229

Lemma 4.1 Problem P3 is solvable. 230

Proof Let fusg D ˚
vs; ys

�
be a minimizing sequence for the Problem P3, so us 2 U@ 231

and Im
k ! inf Im

k .U@/ as s ! 1. Using the boundedness of the set U@, we prove 232

that the sequence fusg is bounded in the space W. By definition of the functional we
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have the equality 233

��ys D "�1
k a. ys/ C vs C fs; 234

where the sequence ffsg is bounded in the space L2.�/. Using the boundedness 235

of the sequence fysg in H1
0.�/ and in L6.�/ too because of Sobolev Embedding 236

Theorem, we prove the boundedness of the sequence fa. ys/g in the space L2.�/. 237

Then the term in the right side of the last equality is bounded in the space L2.�/. 238

So f�ysg is bounded in L2.�/. Hence we get vs ! v weakly in L2.�/, ys ! y 239

weakly in H1
0.�/, a. ys/ ! ' weakly in L2.�/, �ys ! �y weakly in L2.�/ after 240

extracting subsequences. Using the convexity and the closeness of the sets V and 241

Y, we have the inclusions v 2 V and y 2 Y, then u 2 U@, where u D .v; y/. 242

By Rellich–Kondrashov Theorem we get ys ! y strongly in L2.�/ and a.e. on 243

�, then a. ys/ ! a. y/ a.e. on �. Using Lemma 1.3 (see [6], Chap. 1), we obtain 244

a. ys/ ! a. y/ weakly in L2.�/, so ' D a. y/. By the weak lower semicontinuous 245

of the norm in Hilbert spaces we get 246

Im
k .u/ � inf Im

k .U@/; 247

so u is a solution of Problem P3. This completes the proof of Lemma 4.1. ut
Let um

k D �
vm

k ; ym
k

�
be a solution of Problem P3. 248

Theorem 4.2 For any k Ik.v
m
k / ! inf Ik.Vk/ as m ! 1, besides vm

k ! vk in L2.�/ 249

after extracting a subsequence. 250

Proof We have the inequality 251

Im
k .um

k / D min Im
k .U@/ � Im

k

�
vk; ykŒvk�

�D Ik.vk/: (7)

By boundedness of the set U@ the sequence fum
k g is bounded in the space W. Using 252

the inequality (7) and the definition of the functional Im
k , we get 253

� �ym
k D "�1

k a. ym
k / C vm

k C
p

ımf m
k ; (8)

where the sequence ff m
k g is bounded in L2.�/. Then (see the proof of Lemma 4.1), 254

the sequence f�ym
k g is bounded in L2.�/. Then vm

k ! v�
k weakly in L2.�/ , ym

k ! 255

y�
k weakly in H1

0.�/, f m
k ! fk weakly in L2.�/, and �ym

k ! �y�
k weakly in L2.�/ 256

as m ! 1 after extracting subsequences. Using the technique from the proof of 257

Lemma 4.1, we obtain v�
k 2 V , y�

k 2 Y, and a. ym
k / ! a. y�

k / weakly in L2.�/. After 258

passing to the limit in the equality (8) we get y�
k D ykŒv

�
k �. 259

By definition of the functional Im
k we have 260

Im
k .um

k / � 1

2

Z

�

h�
ym

k � y@

�2C�
�
vm

k

�2
i
dx: 261
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Hence 262

min Ik.Vk/ D Ik.vk/ � Ik.v
�
k / D 1

2

Z

�

n�
ykŒv

�
k � � y@

�2C�
�
v�

k

�2
o
dx 263

264

� 1

2
lim

m!1

Z

�

h�
ym

k � y@

�2C�
�
vm

k

�2
i
dx � lim

m!1
Im
k .um

k /: 265

Using (7), we obtain Im
k .um

k / ! min Ik.Vk/. By inequalities 266

Ik.vk/ � Ik.v
m
k / � Im

k .um
k / 267

we have Ik.v
m
k / ! inf Ik.Vk/. The proof is ended with using the technique from

Theorem 4.2 . ut
Remark 4.3 All assertions of Remark 3.4 are true in this case. 268

By proved theorem a sequence of solutions of Problem P1 minimizes the 269

functional Ik on the set Vk. So the value vm
k for large enough m can be chosen as 270

an approximate solution of Problem P2. Then the control vm
k for large enough value 271

m and k can be chosen as an approximate solution of Problem P1. Our next step 272

is finding of this control. We will prove that the obtained result is sufficient for the 273

analysis of the given optimization problem without any constraints. 274

5 Necessary Conditions of Optimality 275

We have the minimization problem for an integral functional on a convex set. 276

The necessary condition of the minimum at the point u of Gateaux differentiable 277

functional J on a convex set W is the variational inequality 278

hJ0.u/; w � ui � 0 8w 2 W; (9)

where h'; �i is the value of a linear continuous functional ' at a point �. We prove 279

the differentiability of the functional Im
k for using this result in our case. 280

Lemma 5.1 The functional Im
k has the partial derivatives 281

Im
kv.v; y/ D �v C pm

k .v; y/; Im
ky.v; y/ D y � y@ C �pm

k .v; y/ C "�1
k a0. y/pm

k .v; y/;

(10)

at the arbitrary point .v; y/, where 282

pm
k .v; y/ D 1

ım

�
�y C "�1

k a. y/ C v
�
: (11)
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Proof For any function h 2 L2.�/ and the value � we have the equality 283

Im
k .v C �h; y/ � Im

k .v; y/ D �

2

Z

�

h�
v C �h/2 � v2

i
dx 284

285

C 1

2ım

Z

�

n�
�y C "�1

k a. y/ C v C �h
�2 � Œ�y C "�1

k a. y/ C v
�2

o
dx 286

287

D �

Z

�

�
�v C pm

k .v; y/
�
hdx C �

2

Z

�

n
� C ım

�
pm

k .v; y/
�2

o
h2dx: 288

So the first equality (10) is true. For any function h 2 H1
0.�/ and the value � we get 289

Im
k .v; y C �h/ � Im

k .v; y/ D 1

2

Z

�

�
. y � y@ C �h/2 � . y � y@/

2
�
dx 290

291

C 1

2ım

Z

�

n�
�. y C �h/ C "�1

k a. y C �h/ C v
�2 � Œ�y C "�1

k a. y/ C v
�2

o
dx 292

293

D �

Z

�

n
. y � y@/h C pm

k .v; y/
�
�h C "�1

k a0. y/h
�o

dx C �.�/ 294

295

C �

Z

�

n
. y � y@/ C �

�pm
k .v; y/ C "�1

k a0. y/pm
k .v; y/

�o
hdx C �.�/; 296

where a0. y/ D 0 for y � 0, a0. y/ D 3y2 for y < 0 and �.�/ ! 0 as � ! 0. So the
first equality (10) is true. This completes the proof of Lemma 5.1. ut

Thus by the inequality (9) we get a necessary condition of optimality. 297

Theorem 5.2 The solution
�
vm

k ; ym
k

�
of Problem 3 satisfies the following system 298

Z

�

�
�vm

k C pm
k

��
v � vm

k

�
dx � 0 8v 2 V; (12)

299Z

�

h
ym

k � y@ C �pm
k C "�1

k a0. ym
k /pm

k

i�
y � ym

k

�
dx � 0 8y 2 Y; (13)

300

�ym
k C "�1

k a. ym
k / C vm

k D ımpm
k : (14)
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We obtain the standard necessary condition of optimality. It can be solved with 301

using an iterative method (see, for example, [33–35]). Then the control vm
k can 302

be chosen as an approximate solution of the initial optimization problem for large 303

enough values of k and m. 304

Remark 5.3 This system is simplified in the case of the absence of the state 305

constraint. The variational inequality (13) can be transformed to the standard adjoint 306

equation 307

�pm
k C "�1

k a0. ym
k /pm

k D y@ � ym
k 308

in this case. Hence necessary conditions of optimality include the state equa- 309

tion (14), this adjoint equation and classical variational inequality (12). If we do 310

not have any constraints, then we can find the control vm
k D ��pm

k from (12). Then 311

we obtain two elliptic equations 312

�pm
k C "�1

k a0. ym
k /pm

k D y@ � ym
k ; 313

314

�ym
k C "�1

k a. ym
k / C vm

k D ımpm
k : 315

After solving this system we can find vm
k by the obtained formula. 316

Analogical results could be obtained for controls systems described by parabolic 317

and hyperbolic variational inequalities. Laplace operator can be substituted by 318

general linear elliptic operators and some nonlinear elliptic operators. We could 319

consider also a general integral functional with corresponding assumptions. 320
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