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We prove a criterion for the existence of a minimal numbering, which is reducible to a
given numbering of an arbitrary set. The criterion is used to show that, for any infinite
A-computable family F of total functions, where ∅

′ ≤T A, the Rogers semilattice RA(F )
of A-computable numberings for F contains an ideal without minimal elements.

In this paper, we study generalized computable families of total functions and their generalized
computable numberings. Also attempts are made to find elementary properties of corresponding
Rogers semilattices, which differ from properties of classical Rogers semilattices for families of
computable functions. Families of total A-computable functions, where ∅

′ ≤T A, will be considered.
A surjective mapping of the set ω of all natural numbers onto the class of constructive objects

under investigation is called a numbering of this class. (By constructive objects are meant those
admitting a formal description in some language endowed with a given Gödel numbering of formulas
[1].) Let S be a family of computably enumerable (c.e.) sets; then a numbering α : ω → S is said
to be computable if Gα � {(x,m) | x ∈ α(m)} is a c.e. set. Identifying functions with their graphs,
we may assert that for a family F of partial computable functions, a numbering α : ω → F is
computable if the binary function gα � λxλy[α(x)](y) is partial computable. Let α : ω → S and
β : ω → S be two numberings of a same set S. We say that the numbering α is reducible to the
numbering β if there is a computable function f such that α = βf , and we write α ≤ β. If α ≤ β

and β ≤ α, then the numberings α and β are said to be equivalent, written α ≡ β. Denote by
deg(α) the degree of α, i.e., the set {β | β ≡ α} of numberings. The reducibility of numberings
is a preorder relation on the set of all computable numberings of a family S, which we denote by
Com(S). The relation induces a partial order relation on a set of degrees of the numberings in
Com(S), which we also denote by ≤. The partially ordered set R(S) = 〈{deg(α) | α ∈ Com(S)},≤〉
is an upper semilattice, which we call the Rogers semilattice of the family S.
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A numbering α of a set S is minimal if, for any numbering β of S, β ≤ α implies that α ≤ β. A
computable one-to-one numbering is called a Friedberg numbering. The numerical equivalence θα

of a numbering α is defined as follows: θα � {(x, y) | α(x) = α(y)}. An equivalence relation ε is
said to be positive if ε is c.e.. By [W ]ε we denote the set of all numbers which are ε-equivalent to
some element of W .

For the notation and notions undefined in the paper, we refer the reader to [1, 2].
Let F be a family of total functions which are computable by an oracle A. A numbering

α : ω → F is said to be A-computable if the binary function α(n)(x) is A-computable [3]. A family
F is A-computable if it has an A-computable numbering. If A is a recursive set, then we deal with
a family of computable functions and its classical computable numberings. A partially ordered set
RA(F ) = 〈{deg(α) | α ∈ CA(F )},≤〉, where CA(F ) is the set of all A-computable numberings of a
family F , is called the Rogers semilattice of the family F [3, 4].

It is known that in the classical case, the Rogers semilattice of a computable family F either
consists of one element or is infinite [5]. In the nontrivial case, the Rogers semilattice of F is not
a lattice; moreover, it has no greatest element and contains either one or infinitely many minimal
elements [6].

For A-computable numberings of families of total functions, where ∅
′ ≤T A, we have the

following results.

THEOREM 1. Let F be an infinite A-computable family of total functions. Then F has
infinitely many pairwise nonequivalent A-computable Friedberg numberings.

THEOREM 2. There are an A-computable family F and an A-computable numbering α of
the family F such that there is no A-computable Friedberg numbering of F which is reducible to α.

THEOREM 3. If an A-computable family F contains at least two functions, then F has no
A-computable principal numbering.

Proofs of the above results are obtained by obvious generalizations of the proofs for
corresponding results in [7, 8], which were originally announced in [9] where Theorems 1-3 are
proved for specific oracles A = ∅

n+1, n ∈ ω.
There are well-known examples of infinite families of c.e. sets whose Rogers semilattices contain

ideals without minimal elements, for instance, the family of all c.e. sets [10]. Moreover, there is a
computable family of c.e. sets whose Rogers semilattice lacks minimal elements altogether [11, 12].

In contrast to the case of families of c.e. sets, for each computable numbering α of an infinite
family F of computable functions, there exists a Friedberg numbering of the family F which is
reducible to α [5]. This means that the Rogers semilattice of any computable family of total
functions does not contain ideals without minimal elements.

Below we show that this result defies generalization if we consider A-computable families and
numberings for ∅

′ ≤T A in place of computable families and numberings. In fact, for any A-
computable family F , there is an A-computable numbering of F with no minimal numbering
below it. In order to state this, we first extend Badaev’s criterion for minimality of a numbering
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to a criterion for a numbering not bounding any minimal numbering. Note that these criteria hold
for numberings of any sets, not only for numberings of families of functions.

THEOREM 4 [12]. Let α : ω → S be a numbering of an arbitrary set S. Then the following
statements are equivalent:

(a) α is a minimal numbering;
(b) for any c.e. set R ⊆ ω such that [R]θα = ω, there exists a computable function G(x) such

that (x,G(x)) ∈ θα and G(x) ∈ R for any x ∈ ω;
(c) for any c.e. set R ⊆ ω such that [R]θα = ω, there exists a positive equivalence relation

ε ⊆ θα such that [R]ε = ω.

THEOREM 5. Let α be a numbering of an arbitrary set S. Then S has a minimal numbering
which is reducible to α if and only if there exists a c.e. set W for which the following conditions
hold:

(a) α(W ) = S;
(b) for any c.e. set V ⊆ W , where α(V ) = S, there is a positive equivalence relation ε such

that ε � W ⊆ θα and W ⊆ [V ]ε.
Here ε � W is an equivalence relation defined by setting

(x, y) ∈ ε � W ⇔ (x /∈ W & y /∈ W & x = y) ∨ (x ∈ W & y ∈ W & (x, y) ∈ ε).

Proof. Sufficiency. Assume that W is a c.e. set for which α(W ) = S and condition (b) holds.
Let f be a computable function enumerating W , i.e., rng(f) = W . It suffices to show that β = αf

is a numbering of S and that it is minimal. The former claim follows immediately from

β(ω) = αf(ω) = α(W ) = S.

To prove the latter, we fix a numbering γ of S such that γ ≤ β. Let γ = βg for some computable
function g. It suffices to point out a computable function h such that β ≤ γ via h.

Let V = rng(f ◦ g). Then V is c.e. and V ⊆ rng(f) = W . Since γ is a numbering of S and
γ = βg = αfg, we have

S = γ(ω) = β(rng(g)) = α(rng(f ◦ g)) = α(V ).

By condition (b), therefore, there is a c.e. equivalence relation ε such that ε � W ⊆ θα and
W ⊆ [V ]ε. This, combined with W = rng(f) and V = rng(f ◦ g), implies that for any number x

there is a number y such that (f(x), f(g(y)) ∈ ε. Since ε is c.e., while f and g are computable, there
is a computable function h for which (f(x), f(g(h(x)))) ∈ ε. We have ε � rng(f) = ε � W ⊆ θα;
therefore, α(f(x)) = α(f(g(h(x)))). Now β = αf and γ = αfg imply that β(x) = γ(h(x)) for all
x. Hence β ≤ γ via h.

Necessity. Suppose that β is a minimal numbering of the set S that is reducible to the given
numbering α. Fix a computable function f such that β = αf . Let W be the range of f . Then W
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has the required properties. Indeed, W is c.e. Since β is a numbering of S, we have

S = β(ω) = αf(ω) = α(W ).

Hence condition (a) holds. To verify (b), we fix an arbitrary c.e. set V such that V ⊆ W and
α(V ) = S. It suffices to define a c.e. equivalence relation ε for which ε � W ⊆ θα and W ⊆ [V ]ε.

Let h be a computable function enumerating V and γ a numbering which is reducible to α

via h. Since α(V ) = S, it follows that γ(ω) = αh(ω) = α(V ) = S. Hence γ is a numbering of S.
Moreover, V ⊆ W , while h and f are computable functions. Consequently, the function g defined as
g(x) = μy (h(x) = f(y)) is total and computable. We have γ(x) = α(h(x)) = α(f(g(x))) = β(g(x)),
and so γ ≤ β via g. Since β is minimal among the numberings of S, we may assert that β ≤ γ.
Hence β = γĝ for some computable function ĝ. Then

α(f(z)) = β(z) = γ(ĝ(z)) = α(h(ĝ(z)) (1)

for all z.
Now let ε be the reflexive transitive closure of a relation ε̂ defined by setting

x ε̂ y ⇔ ∃ z ([x = f(z)& y = h(ĝ(z))] ∨ [x = h(ĝ(z))& y = f(z)])

(i.e., x ε y if x = y or there are numbers n ≥ 1 and x0, . . . , xn such that x = x0, xiε̂xi+1 for i < n

and xn = y).
Obviously, ε̂ is c.e. and symmetric. These properties are preserved under the reflexive transitive

closure; therefore, ε is a positive equivalence relation. Moreover, since θα is an equivalence relation,
we have ε � W ⊆ θα in view of (1) and ε̂ � W ⊆ θα. In order to verify that W ⊆ [V ]ε, we fix an
arbitrary x ∈ W . For a unique z such that f(z) = x, we then have xε̂y with y = h(ĝ(z)) ∈ V . �

THEOREM 6. Let F be an infinite A-computable family of total functions, where ∅
′ ≤T A.

Then the Rogers semilattice RA(F ) contains an ideal without minimal elements.
Proof. By Theorem 5, it is sufficient to build an A-computable numbering α of the family F

which satisfies the following condition:

∀ i (α(Wi) = α(ω) → ∃Vi ⊆ Wi(α(Vi) = α(ω)& ∀εj(εj � Wi � θα ∨ Wi � [Vi]εj ))), (2)

where W0,W1,W2, . . . and ε0, ε1, ε2, . . . are the standard numberings of the families of all c.e. sets
and all positive equivalence relations, respectively, and V0, V1, V2, . . . is some sequence of c.e. sets,
which will be constructed so that Vi ⊆ Wi for all i ∈ ω.

First we construct a numbering α̂ of a family F̂ of constant functions satisfying condition (2).
For brevity, we denote by ai,j and bi,j the values 2〈i, j〉 and 2〈i, j〉+1, respectively, where 〈i, j〉

is the Cantor number of a pair (i, j). For i fixed and j = 0, 1, 2, . . . arbitrary, we will consistently
ask the oracle ∅

′ about whether numbers ai,j and bi,j belong to the set Wi.
(a) If ai,j /∈ Wi and bi,j /∈ Wi for some j, then we construct

α̂(ai,j)(x) = 3i, α̂(bi,j)(x) = 3i, x = 0, 1, 2, . . . .
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(b) If ai,j ∈ Wi and bi,j /∈ Wi for some j, then we construct

α̂(ai,j)(x) = 3i + 1, α̂(bi,j)(x) = 3i, x = 0, 1, 2, . . . .

(c) If ai,j /∈ Wi and bi,j ∈ Wi for some j, then we construct

α̂(ai,j)(x) = 3i, α̂(bi,j)(x) = 3i + 1, x = 0, 1, 2, . . . .

(d) Finally, if ai,j ∈ Wi and bi,j ∈ Wi for some j, then we construct α̂(ai,j) and α̂(bi,j) as
follows:

We ask the oracle ∅
′ questions as to whether or not the pair (ai,j , bi,j) belongs to εj : if

(ai,j, bi,j) ∈ εj , then we put

α̂(ai,j)(x) = 3i + 1, α̂(bi,j)(x) = 3i + 2, x = 0, 1, 2, . . . ;

if (ai,j, bi,j) /∈ εj , then we put

α̂(ai,j)(x) = 3i + 1, α̂(bi,j)(x) = 3i + 1, x = 0, 1, 2, . . . .

Now let Vi = (Wi\Ui)∪{bi,j | (ai,j , bi,j) ∈ εj}, where Ui = {x | x = ai,j, j ≥ 1 ∨ x = bi,j, j ≥ 0}
is a computable set.

We verify condition (2) for the numbering α̂.
For fixed i in (2), there are two cases to consider:
Case 1. Assume that for some j, one of the numbers ai,j or bi,j does not belong to Wi; i.e.,

α̂(ai,j) = 3i or α̂(bi,j) = 3i. By the construction of α̂, only numbers which do not belong to Wi

produce a constant function 3i; therefore, α̂(Wi) �= α̂(ω). Consequently, we do not need to check
condition (2) for such i (or formally assume that condition (2) holds for i).

Case 2. Suppose that the hypothesis of Case 1 is false for all j (i.e., for all j, ai,j and bi,j belong
to Wi). For every such j in (2), we have two options:

Case 2.1. Let (ai,j, bi,j) ∈ εj . Then α̂(ai,j) = 3i + 1 �= 3i + 2 = α̂(bi,j) by construction, and
hence (ai,j, bi,j) /∈ θα̂. Therefore, εj � Wi � θα̂.

Case 2.2. Let (ai,j , bi,j) /∈ εj . Then α̂(ai,j) = 3i + 1 = α̂(bi,j) by construction. The set Vi

contains a unique α̂-number ai,0 of a constant function 3i+1; i.e., α̂(z) �= 3i+1 for all z ∈ Vi\ai,0.
Since εj is an equivalence relation and (ai,j, bi,j) /∈ εj , it follows that ai,j /∈ [ai,0]εj or bi,j /∈ [ai,0]εj .
If ai,j ∈ [Vi\ai,0]εj or bi,j ∈ [Vi\ai,0]εj , then εj � Wi � θα̂. If ai,j /∈ [Vi\ai,0]εj and bi,j /∈ [Vi\ai,0]εj ,
then ai,j in Wi or bi,j in Wi does not belong to [Vi]εj , which means that Wi � [Vi]εj .

Hence condition (2) holds in any case, and it is easy to see that α̂ is A-computable by
construction, if ∅

′ ≤T A.
Now we replace constant functions in F̂ by functions in F and construct a numbering α of F

satisfying the following condition:

α(x) = α(y) ⇔ α̂(x) = α̂(y) (3)
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for all x, y ∈ ω.
By Theorem 1, an infinite A-computable family F of total functions has an A-computable

Friedberg numbering, which we denote by β.
We describe a construction for α.
Step 0. Let α(0) = β(0).
Step s+1. If α̂(s+1) = α̂(t) for some t ≤ s, then α(s+1) = α(t) for the least such t. Otherwise,

α(s + 1) = β(k) for the least k for which α(t) �= β(k) with all t ≤ s.
An equality of A-computable constant functions is an A-computable relation. Therefore, the

numbering α is A-computable. It is not hard to see that α satisfies condition (3), which guarantees
that α, as well as α̂, will satisfy condition (2). �

In [13], we announced the following: If A is an arbitrary set and F is an infinite A-computable
family of total functions, which has (up to equivalence) two A-computable Friedberg numberings,
then F has infinitely many such Friedberg numberings. Also if ∅ <T A <T ∅

′ and an A-computable
family F of total functions contains at least two functions, then F has no A-computable principal
numbering. For the case where A is Turing incomparable with ∅

′, the question about the existence
of a principal numbering is still open.
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