Application of Phytotechnologies for Cleanup of Industrial, Agricultural and Wastewater Contamination

Edited by
Peter A. Kulakow
Valentina V. Pidlisnyuk

Springer

This publication is supported by: The NATO Science for Peace and Security Programme
Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination

edited by

Peter A. Kulakow
Kansas State University
Manhattan, Kansas, U.S.A.

and

Valentina V. Pidlisnyuk
Kremenchug Technical University
Kremenchug, Ukraine

Published in cooperation with NATO Public Diplomacy Division
Proceedings of the NATO Advanced Research Workshop on
Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and
Wastewater Contamination to Enhance Environmental and Food Security
Kamenetz-Podolsky, Ukraine
4–7 June 2007

Library of Congress Control Number: 2009937942

Published by Springer,
P.O. Box 17, 2300 AA Dordrecht, The Netherlands.
www.springer.com

Printed on acid-free paper

All Rights Reserved
© Springer Science + Business Media B.V. 2010
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
CONTENTS

Preface .. v

General Factors Influencing Application of Phytotechnology Techniques 1
T. Vanek, R. Podigna, and P. Soudák
1. Introduction .. 1
2. Phytoremediation ... 2
 2.1. Phytoremediation of Metal Contaminants ... 3
 2.1.1. Phytoextraction ... 3
 2.1.2. Rhizofiltration ... 3
 2.1.3. Phytostabilization .. 4
 2.2. Phytoremediation of Organic Contaminants ... 4
 2.2.1. Phytodegradation ... 4
 2.2.2. Rhizodegradation .. 5
 2.2.3. Phytovolatilization .. 5
3. Advantages and Limitations of Phytoremediation ... 5
 3.1. Advantages of Phytotechnologies ... 6
 3.2. Limitations to Phytotechnologies .. 6
4. Performance .. 7
5. Cost ... 7
6. Recent Developments in Phytotechnologies ... 9
7. Conclusions ... 9
Acknowledgements .. 10

Capacity Building in Phytotechnologies ... 15
N. Marmiroli, E. Samostokin, M. Marmiroli, E. Maziri, and V. Yanivuk
1. European Research in Phytoremediation ... 15
 1.1. COST Actions .. 16
 1.1.1. COST Action 837 ... 17
 1.1.2. COST Action 859 ... 18
2. Dissemination and Education in Phytoremediation 18
 2.1. Dissemination .. 18
 2.2. Education and Capacity Building ... 19
 2.2.1. The International University Master Course on Science
 and Technology for Sustainable Development
 of Contaminated Sites .. 20
3. NATO ASI School "Advanced Science and Technology for Biological
 Decontamination of Sites Affected by Chemical and Radiological
 Nuclear Agents" .. 21
4. Conclusions ... 23
Acknowledgements .. 24

Perspectives on Sustainable Agriculture in Ukraine: The Public View 25
V. Pidhirnyk, L. Sokol, and T. Stefanovska
1. Introduction .. 25
CONTENTS

2. Materials and Methods .. 28
3. Results and Discussion ... 28
 3.1. Governmental Officials .. 28
 3.2. Citizens of Rural Communities ... 30
4. Conclusions .. 30

A Review of Recent Research Developments into the Potential for Phytoremediation of Persistent Organic Pollutants (POPs) from Weathered Contaminated Soil ... 35
M. Whitfield-Leand and B. A. Zistb
1. Introduction .. 35
2. Why Phytoremediation? ... 35
3. Researching the Potential of POPs Physioextraction from Soil 38
 3.1. The Search for POPs Hyperaccumulating Plants 38
 3.2. Understanding the Mechanisms of POPs Uptake into
 Current Pop peps peps peps .. 40
 3.3. Identification of Soil Amendments and Other Treatment Processes
 that could Increase Contaminant Bioavailability to Plants 44
 3.3.1. Soil Amendment with Low Molecular-Weight Organic Acids
 (LMWOA) ... 44
 3.3.2. Nutrient Amendments .. 46
 3.3.3. Planting Density ... 47
 3.3.4. Surfactants .. 48
 3.3.5. Nocorral Fungi .. 49
 3.3.6. Other Growth Conditions (Fruit Prevention, Soil Moisture
 Consent, and Intercroping) .. 50
 3.4. Impediments to the Practical Application of this Technology ... 51
4. Conclusions .. 53

Elimination of Acute Risks from Obsolete Pesticides in Moldova:
Phytoremediation Experiment at a Former Pesticide Storehouse 61
G. Bogdanchik and G. Chibucelnov
1. Introduction .. 62
2. Materials and Methods ... 64
 2.1. Initial Site Characterization and Site Selection 64
 2.2. Method of Risk Assessment .. 65
 2.3. Analytical Determination .. 66
 2.4. Spatial Analysis .. 67
 2.5. Phytoremediation Study .. 67
3. Results .. 69
 3.1. Site Selection and Risk Assessment 69
 3.2. Characterization of Soil Pollution Impact on Surrounding
 Agricultural Land at the Cartana and Majer Sites 71
 3.2.1. Cartana Site .. 71
 3.2.2. Majer Site ... 74
 3.3. Phytoremediation Experiment .. 76
 3.3.1. Zucchini ... 76
 3.3.2. Pumpkin .. 78
CONTENTS

3.3.3. Total Pesticide Accumulation ... 78
3.3.4. Pesticide Uptake by Wild Carrot .. 81
4. Conclusions ... 84

Obsolete Pesticides Pollution and Phytoremediation of Contaminated Soil in Kazakhstan ... 87
1. Introduction ... 89
2. Methods and Results ... 91
2.1. Task 1: Inventory Former Obsolete Pesticide Warehouses to Document Obsolete Pesticide Stockpiles and to Characterize Levels of Soil Contamination ... 91
2.2. Task 2: Study Genotoxicity of Organochlorine Pesticides 95
2.3. Task 3: Identity Pesticide-Tolerant Plant Species Using Surveys of Plant Community Structure at Selected Hot Points 98
2.4. Task 4: Describe Physiological and Biochemical Characteristics of Pesticide-Tolerant Plants Grown in Pesticide-Contaminated Soil ... 99
2.4.1. Ratio of Chlorophyll a to Chlorophyll b ... 100
2.4.2. Transpiration Rate .. 100
2.5. Task 5: Document Pesticide Accumulation Patterns in Pesticide-Tolerant Plants .. 102
2.5.1. Histological Analysis to Locate Pesticides in Plant Tissue 105
2.6. Task 6: Study the Fate and Transport of Pesticides in Soil and Plants in the Greenhouse Using Soil Collected from Hot Points 105
2.7. Task 7: Study the Effect of Fertilization on Phytoremediation Potential in the Greenhouse and Field ... 107
2.7.1. Greenhouse Study ... 107
2.7.2. Field Plot Study ... 108
2.7.3. Phytoremediation Field Test Trial at Hot Point 2 109

Phytoremediation of Soil Polluted with Obsolete Pesticides in Ukraine ... 113
L. Boldyshchuk, I. Gonchuk, O. Sobodnyuk, and V. Pereshchyna
1. Introduction ... 114
1.1. Obsolete Pesticide Problem in Ukraine .. 114
1.2. Cleanup Technologies for Pesticide-Polluted Soil 115
1.3. Phytoremediation – A Promising Soil Remediation Method 116
2. Materials and Methods .. 116
3. Results and Discussion .. 117
3.1. Site Characterization .. 117
3.2. Testing Phytoxicity of DDT-Contaminated Soil 118
3.3. Plant Uptake of DDT .. 119
3.4. Identification of Pesticide-Tolerant Plant Genotypes 120
4. Conclusions ... 122
Acknowledgments .. 123
CONTENTS

Baltra Experience in Reduction of Radionuclides and Heavy Metals
Corient in Plants Following the Chernobyl Disaster .. 125
M. Kalnin, Y. Tsubakiya, and N. Chubrik
1 Introduction ... 125
2 Soil Rehabilitation Technology .. 126
3 Conclusions ... 134

Arsenic Content in and Uptake by Plants from Arsenic-Contaminated Soil 135
A. C. Zechowski, Z. Ciecko, and T. Nogowska
1 Introduction ... 136
2 Materials and Methods .. 136
3 Results and Discussion ... 138
4 Conclusions ... 144

Long-Term Effect of Coal Fly Ash Application on Soil Total Nitrogen and Organic Carbon Concentration .. 147
Z. Ciecko, A. C. Zechowski, and A. Uszlowski
1 Introduction ... 148
2 Materials and Methods .. 148
3 Results and Discussion ... 149
3.1 Organic Carbon ... 150
3.2 Total Nitrogen ... 152
3.3 C:N Ratio ... 154
4 Conclusions ... 157

Phytoremediation of Lead Soil Contaminated by Organic Compounds 159
E. Zhu, H. Chen, and L. Nan
1 Introduction ... 159
2 Land Issues in China .. 160
3 Availability of Phytoremediation for Cleanup of Soils Contaminated with Organic Pollutants ... 163
3.1 Review of Published Literature .. 163
3.2 Limitations in Applications of Phytoremediation 165
3.3 Technical Considerations .. 166
4 Application of Phytoremediation for Petroleum-Contaminated Soils
Soils in China ... 166
4.1 Characteristics of Lead Plateau ... 166
4.2 Characterization of Petroleum-Contaminated Land 168
4.3 Possibilities to Apply Phytoremediation on Petroleum-Contaminated Land ... 168
4.4 Experimental Study of Phytoremediation by Selected Plants in Lead Plateau ... 170
5 Conclusions ... 172
Acknowledgements ... 173

Phytoremediation of Contaminated Groundwater .. 177
L. Newman
1 Introduction and History .. 177
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Selection</td>
<td>119</td>
</tr>
<tr>
<td>Plant Contaminant Interactions</td>
<td>110</td>
</tr>
<tr>
<td>Designing a Site and Other Factors to Consider</td>
<td>111</td>
</tr>
<tr>
<td>4.1 Most Common Problem and Solution</td>
<td>111</td>
</tr>
<tr>
<td>4.1.1 Deep Rooting Methods</td>
<td>112</td>
</tr>
<tr>
<td>4.1.2 Pump and irrigate</td>
<td>113</td>
</tr>
<tr>
<td>4.2 Monitoring</td>
<td>113</td>
</tr>
<tr>
<td>Genetic Manipulation of Plants</td>
<td>115</td>
</tr>
<tr>
<td>Plants and Bacteria</td>
<td>115</td>
</tr>
<tr>
<td>Acceptance by the Public and Regulators</td>
<td>116</td>
</tr>
<tr>
<td>Evapotranspiration Covers for Landfills</td>
<td>119</td>
</tr>
<tr>
<td>S. A. Rock</td>
<td></td>
</tr>
<tr>
<td>1. Background</td>
<td>190</td>
</tr>
<tr>
<td>2. ET Cover Design Considerations</td>
<td>191</td>
</tr>
<tr>
<td>3. Regulation</td>
<td>194</td>
</tr>
<tr>
<td>4. Economics</td>
<td>197</td>
</tr>
</tbody>
</table>
Obsolete Pesticides Pollution and Phytoremediation of Contaminated Soil in Kazakhstan

A. Nurzhanova
P. Kulakow
E. Ruhin
I. Rakhimboyev
A. Sefrovskiy
K. Zhumbakin
S. Kalugin
B. Kolycheva
I. Eriklason

Abstract

In Kazakhstan, a deepening ecological crisis has been caused by contamination of the environment with obsolete and expired pesticides. Large-scale physical and chemical technologies for managing pesticide-contaminated soils are expensive and unacceptable for Kazakhstan because of limited financial resources. Phytoremediation is a promising innovative technology for managing pesticide-contaminated soils. Pesticide contamination is common on land surrounding destroyed warehouses that were part of the official plant protection service of the former Soviet Union.

We surveyed substances stored in 76 former pesticide warehouses in Almaty and Akmola oblasts of Kazakhstan to demonstrate an inventory process needed to understand the obsolete pesticide problem throughout the country. The survey areas were within 250 km of Almaty (the former capital of Kazakhstan) and within 100 km of Astana (the new capital). In Almaty oblast, a total of 352.6 t of obsolete pesticides and 250 pesticide containers were observed. In Akmola oblast, 36.0 t of obsolete pesticides and 263 pesticide containers were observed. Persistent organic pollutants (POPs) pesticides contaminated soil around 26 of the former storehouses where the concentration of POPs exceed the Kazakhstan MAC (maximum allowable concentration) for soil contaminated...
by tens to hundreds of times. The POPs pesticides include metabolites of DDT (dichlorodiphenyltrichloroethane) and isomers of HCH (hexachlorocyclohexane).

We studied plant community structure at six "hot points" contaminated sites with three located in Almaty oblast and three in Akmola oblast. From these studies, 17 pesticide-tolerant plant species were selected from colonizing plants that grew near the centers of the hot points.

A greenhouse experiment using the pesticide-tolerant species showed some plant species have the ability to change plant growth characteristics when grown in contaminated versus uncontaminated soil. These characteristics include biomass production, rate of phenological development, peroxidase activity in roots and leaves, ratio of chlorophyll a to chlorophyll b, rate of evapotranspiration, and phytoaccumulation of organochlorine pesticides and their metabolites (1,4 DDE, 2,4 DDD, 4,4 DDT, α-HCH, β-HCH and γ-HCH).

We observed pesticide accumulation was influenced by plant species, plant biomass, and soil pesticide concentrations. Among the investigated species, four accumulated metabolites of DDT and isomers of HCH in plant tissue concentrations exceeding the Kazakhstan MAC (maximum acceptable concentration) for plant tissue by 400 times. The Kazakhstani MAC for DDT and HCH metabolites in plant tissue is 20 μg/kg. Species in this category included: Artemisia annua L., Kochia sieveriana (Pall) CA. Mey., Kochia scoparia (L.) Schrad., and Xanthium strumarium L. Three species exceeded the MAC by up to 90 times including A. annua, Ambrosia artemisiifolia L., and Erigeron canadensis L. Most pesticides accumulated in the root systems; however, among the species investigated, K. scoparia, A. annua, Barbarea vulgaris W.T. Aiton, and A. artemisiifolia demonstrated capabilities to translocate pesticides from roots to aboveground tissues.

To help identify the location of accumulated pesticides within plant tissue, we employed histological analysis whereby a few species indicated pesticides were distributed unevenly within different plant tissues. If a species had a dorsiventral and isoscalar leaf type, then pesticides accumulated in palisade mesophyll tissue. If a species had homogeneous mesophyll, then pesticide appeared to accumulate in mesophyllous cells around conducting bundles. For example, X. strumarium has a dorsiventral type of leaf, thus, pesticides collected in the palisade mesophyll. In the stem, pesticides accumulated in walls of xylem cells. In root tissue, pesticides accumulated in parenchymous cells and xylem walls.

We investigated cultivation methods to enhance plant uptake of pesticides. Use of mineral fertilizers resulted in stimulation of growth and biomass accumulation that increased phytoextraction. The concentration of DDT metabolites and isomers of HCH in soil and the application of fertilizers lengthened the rate of phenological development increasing plant height and biomass. In a greenhouse experiment using fertilizer applications to pesticide-contaminated soil, tolerant species showed increased phytoextraction of pesticides. Phytoextraction by X. strumarium increased from 0.3% to 0.6%, A. annua from 0.5% to 0.7%, and Cucurbita pepo L. pepo from 0.4% to 0.7%. K. scoparia and Amaranthus retroflexus L. showed high bioaccumulations factors but showed low biomass compared to other species and thus weak phytoextraction. A. annua, K. scoparia, A. retroflexus, and X. strumarium decreased pesticide...
concentration of rhizosphere soil 11–24% more in treatments with fertilizer compared to treatments without fertilizer. Field experiments using selected wild species demonstrated reduction of pesticide concentrations in soil in excess of reductions observed without plants and without fertilizers. Additional work is needed to determine if practically useful phytoremediation applications can effectively manage pesticide-contaminated soil at former storehouse sites.

Keywords

obsolete pesticides phytoremediation DDT HCH pesticide tolerance inventory

References

About this Chapter

Title: Obsolete Pesticides Pollution and Phytoremediation of Contaminated Soil in Kazakhstan

Book Title: Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination

Pages: pp 87-111

Copyright: 2010

DOI: 10.1007/978-90-481-3592-9_6

Series Title: NATO Science for Peace and Security Series C: Environmental Security

Series ISSN: 1874-6519

Publisher: Springer Netherlands

Copyright Holder: Springer Netherlands