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� MANAT MUSTAFA, Reductions between Types of Numberings.
Department of Mathematics, Nazarbayev University, Qabanbay Batyr Ave 53., Astana,
010000, Kazakhstan.
E-mail: manat.mustafa@nu.edu.kz.

The theory of numberings is one of the fundamental topics in computability theory
and mathematical logic. It is basically due to Gödel’s idea to code countable families
of objects by numbers, so that objects of the family can be effectively identified with
numbers, or indices, and studied from their indices. While numberings are a powerful
tool to use the set of natural numbers in order to study families of constructive objects,
they are an interesting object of study in themselves: Here, an important device is
that of reducibility between numberings, where a numbering is reducible to another
numbering, if there is an effective way to go from indices of an object in the first
numbering to indices of the same object in the second numbering. Thus the relative
complexity of numberings of objects of a same family can be measured by this notion
of reducibility, and gives rise to the so called Rogers upper semilattice of the family,
whose elements are the degrees of numberings; H. Rogers[1] initiated the study of the
semilattice of numberings under many-one reduction and Ershov [4, 5, 6] transferred
it in particular to the study of the k-r.e. and, more generally, α-r.e. sets. The overall
goal of this talk is to show some reductions between various types of numberings:

• If a k-r.e. numbering can realise a certain type of Rogers semilattice, so can a
(k+1)-r.e. numberings or, more general, every (α+ k)-r.e. numbering where α is
a computable ordinal;

• Every type of Rogers semilattice realised by an r.e. numbering is also realised by
an α-r.e. for every computable ordinal α which is not a power of ω and which is
not 0 while if α is a power of ω then there is no α-r.e. numbering without minimal
numberings in the Rogers semilattice (which stands in contrast to the r.e. case);

This is joint work with F. Stephan and Ian Herbert from National University of Sin-
gapore.
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[5] Yuri L. Ershov., A certain hierarchy of sets II , Algebra i Logika , 7(4):15–47,
1968.

[6] Yuri L. Ershov., A certain hierarchy of sets III , Algebra i Logika ,9:34–51,
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� ASSYLBEK ISSAKHOV, A–computable numberings of the families of total functions.
Department of Mechanics and Mathematics, Al-Farabi Kazakh National University, 71
Al-Farabi Ave., Almaty 050038, Kazakhstan.
E-mail: asylissakhov@mail.ru.

Following [1], we say that a numbering ν : ω �→ F of a family of A–computable
functions is A–computable if the binary function ν(n)(x) is A–computable. In [2], it
was posed several natural questions on numberings that are computable relative to an
arbitrary oracle. We give answers for some of them below.

Theorem 1. Let A be an arbitrary set and F be an infinite A–computable family
of total functions. If F has at least two non-equivalent A–computable Friedberg num-
berings, then F has infinitely many pairwise non-equivalent A–computable Friedberg
numberings.

Theorem 2. Let A be a hyperimmune set. If A–computable family F of total func-
tions contains at least two functions, then F has no principal A–computable numbering.

Remind, [3], that every nonzero degree comparable with 0′ is hyperimmune.
Note that, for every A such that ∅′ ≤T A, it was shown, [4], that an infinite A–

computable family F of total functions has, up to equivalence, infinitely many A–
computable Friedberg numberings; and if F contains at least two functions, then F has
no principal A–computable numbering.

[1] S. S. Goncharov and A. Sorbi, Generalized computable numerations and non-
trivial Rogers semilattices, Algebra and Logic, vol. 36 (1997), no. 6, pp. 359–369.

[2] S. A. Badaev and S. S. Goncharov, Generalized computable universal num-
berings, Algebra and Logic, vol. 53 (2014), no. 5, pp. 355–364.

[3] W. Miller and D. A. Martin, The degree of hyperimmune sets, Z. Math.
Logik Grundlag. Math., vol. 14 (1968), pp. 159–166.

[4] A. A. Issakhov, Ideals without minimal elements in Rogers semilattices, Alge-
bra and Logic, to appear.

� LUCA SAN MAURO, Universal binary relations, preorders, and graphs.
Scuola Normale Superiore, Pisa.
E-mail: luca.sanmauro@sns.it.

Computable reducibility is a natural way to classify equivalence relations on ω ac-
cording to their complexity. This reducibility is defined as follows:

Let R and S be two equivalence relations. We say that R is computably reducible to
S iff there is a computable function f s.t., for all x, y ∈ ω, the following holds:

xRy ⇔ f(x)Sf(y).

In literature, the degree structure generated by computable reducibility has been
largely investigated. In particular, one the most prominent problem in the area has been
that of characterizing universal equivalence relations, i.e. relations to which all others
relations, of a given complexity, can be reduced. For instance, a rich theory for universal
computably enumerable equivalence relations has been formulated. Nonetheless, most
results do not extend to the whole arithmetical hierarchy. In fact, while, for each n, it
is easy to build a Σn equivalence relation which is universal, on the other hand, in [2]
authors prove that there is no universal Πn for n ≥ 2.

Thus, in this talk we consider the problem of universality in a more general context
than that of equivalence relations. First, we prove that, contrary to the case of equiv-
alence relations, for each level of the arithmetical hierarchy there is a universal binary
relation. Then we show how to make use of this latter construction in order to obtain
a similar result also for preorders (i.e., reflexive and transitive binary relations) and
graphs (i.e. symmetric binary relations).

[1] Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca
San Mauro, Andrea Sorbi, Universal computably enumerable equivalence relations,
The Journal of Symbolic Logic, vol. 79 (2014), no. 1, pp. 60–88.

[2] Egor Ianovski, Russell Miller, Keng Meng Ng, André Nies, Complex-
ity of equivalence relations and preorders from computability theory, The Journal of
Symbolic Logic, vol. 79 (2015), no. 3, pp. 859–881.

� SERGEY OSPICHEV, Computable numberings of partial computable functionals.
Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, Rus-
sia.
E-mail: ospichev@gmail.com.

Study the cardinality and the structure of Rogers semilattices of families of various
objects is one of the main questions in numbering theory. Here we concentrate our
interest on partial computable functionals of finite types.

Let’s define functional type. Let T will be the set of all types.
1. 0 ∈ T ;
2. if σ,τ are types, then (σ × τ) and (σ|τ) are also types;
3. T - minimal set, satisfying 1 and 2.
Now we define partial computable functionals. Let Cσ be family of all partial

computable functionals of type σ. Let C0 � C be the family of all partial com-
putable functions. If Cσ and Cτ are already defined, then C(σ×τ) � Cσ × Cτ and
C(σ|τ) � Mor(Cσ, Cτ ).

In work are proven
Theorem. For any σ ∈ T there is friedberg numbering of family Cσ.
Theorem. For any σ ∈ T there is positive undecidable numbering of family Cσ.
Supported by the Grants Council (under RF President) for State Aid of Leading

Scientific Schools (grant NSh-860.2014.1). The reported study was partially supported
by RFBR, research project No. 14-01-00376.
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