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An example on existence of a Y| , -computable family

of total functions whose rogers semilattice contains an ideal without minimal elements

Abstract. We study computable families of total functions of any level of the Kleene-Mostowski
hierarchy above level 1 and try to find elementary properties of the Rogers semilaitices that are different
from the properties of the classical Rogers semilattices for families of computable functions. It is known
that on first level of the arithmetical hierarchy the Rogers semilattice of any computable family of total
functions contains no ideal without minimal elements, [1]. In this article we show an example how to

build Z?;-I-Q -computable family of total functions whose Rogers semilattice contains an ideal withoul

minimal elements, ne @.

Key words: Z{Lz -computable numbering, Z?Hz ~computable family,computability relative lo the oracle

@[H+l:l s i : ; . . : £ 2 .
. minimal numbering, Rogers semilattice,numerical equivalence, positive equivalence, ideal.

Introduction

We refer the reader to [1, 2, 3] for the standard
notions and notations in algorithm theory and in
numbering theory.

Let # bea X

i+

,-computable family of total
functions, where n € @. A numbering & : @ — F 1s
called >  -computable if the binary function
a(n)(x) is 23_,_2 -computable, which means that the
function a(n)(x) is computable relative to the
oracle 0 (scc [4, 51). A family F is called X, ,
-computable if it has an Zf:,,_z -computablc

numbering. The notion of a Y, -computable

numbering coincides with the classical notion of a
computable numbering of a family of computably

enumerable sets in [1]. Let Com,,, (F) be the set of
all " -computable numberings of a family F. If a
and f arc two numberings of a same family /7, then
we say that the numbering a is reducible to the
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numbering f, if there is a computable function /
such that a = £ f, and we write this symbolically as
a<f.If a<f and <« then the numberings &

and B are called equivalent, written as a=/.
Denote by deg(ex) the degree of a, i.e. the set
(3| f=a} of numberings. The reducibility relation
of numberings is a pre-order relation on Com . (F),
and it induces a partial order relation on a set of
degrees of the numberings in Com:;’ﬂ (F), which 18
usually also denoted by <. The partially ordered set
R, (F) =, ({deg@)| e Coml,, (F)}<) s an
upper scmilattice and called the Rogers semilattice
of the family F, [5].

A numbering a of a family F is called minimal if

for any numbering f of F, reducibility of f to «
implics that « is reducible to f. The numerical
equivalence @, of a numbering a is defined as
follows: 8, =,, {(x,y)|@(x) = a(y)}-

An cquivalence relation ¢ is said to be positive
if &£ is computably enumerable. Denote by [W],
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the set of all numbers, which arc & -equivalent to
some eclement from W. For the further undefined
notions, which are related to relativized computable
numberings we refer to [4, 5, 6].

Results

It is well known many infinite families of c.c. sets
whose Rogers scmilattice contains an ideal without
minimal elements, for instance, the family of all c.e.
sets, [1]. Morcover, there exists a computable family
of c.c. sets whose Rogers semilattice has no minimal
clements at all, [7, 8]. In opposite to the case of the
families of c.e. sets, for every computable numbering
« of an infinite family F of computable functions,
there is a Friedberg numbering of F which 1is
reducible to @, [1]. This means that the Rogers
semilattice of any computable family of total
functions from level 1 of the arithmetical hierarchy
contains no ideal without minimal clements.

In [7] Badaev proved the criterion for
numberings to be minimal:

Theorem 1. ([4]). Let a:@—>3S be a
numbering of an arbitrary set S. Then the following
statements are cquivalent:

a) ¢ is a minimal numbering;

b) for any ce. set WcCo

such that

[W], =@, there cxists a positive equivalence

relation £ < €, such that [W], =@.

And, this result was extended in [9] up to a
criterion for a numbering not bounded any minimal
numbering:

Theorem 2. ([9]). Let & be a numbering of an
arbitrary set S. Then § has a minimal numbering,

which is reducible to a if and only if there exists a
c.e. set W such that

a) a(W)=Sand

b) for any c.e. set V' < W where a(V) = S there
is a positive equivalence relation & such that &
restricted on W is a subset of &, and W < [V'], hold.

Indeed theorem 2 is a corollary of theorem I,
andwe just reformulate thcorem 2:

Theorem 3. Let a be a numbering of an
arbitrary set S. Then there is no minimal numbering
of S that is reducible to a if and only if, for every
c.c. set W, if a(W) = S then there exists a c.c. set V
such that o(¥) = S and, for every positive
equivalence &, either & restricted on W is not a

subsetof 8, or W ¢ [V],.

These criteria (thcorem 1-3) hold for
numberings of any sct, not only for numberings of
families of total functions. The next theorem is
based on thcorem 3 and relates to [10]. It is an

cxample of a Y. ,-computable family whose

Rogers semilattice contains an  ideal without

minimal clements. Before formulating theorem 4,
0

we note that every Rogers semilattice of a 2., ,-
computable family F contains the lcast element if F
is finite, [1], and infinitely many minimal elements,
otherwise, [5].

Theorem 4. For every n € @, therc exists a

>."  -computable family of total functions whose

Rogers semilattice contains an  ideal without
minimal elements.

Proof. By theorem 3 it is clear that it is enough
to construct numbering a of X ,-computable
family which satisfy the following condition:

VI \a) = a(@) >3V, W laW) = @) nVe (&, | W, 20,3, 21,

where W; and V; arc c.c. sets, &; Is a positive

equivalence.

Construction of a.:

Our Y. ,-computable family will consist of
constant functions and functions, which differ from
constant functions exactly on one point.

On stage i, we ask oracle @' about belonging of
clements « and b to W;, where we denote o = 2 < i ,j
> andb=2<ij>+lforanyj=0,1 2, ...

If agW . AbgW, for some j, then we put
afa)(0)=i+1a(a)(s+1)=i, , for s =0,1,2,...;

a(b)(0)=i+1,a(b)(s+1)=i, for s = i 1 [ -

If aeW.AbgW, for some j, then we put
a(a)s)=1i,for s = T [ M-

a(b)(0)=i+1,a(b)(s+1)=i, for s =0,1,2,...;

If agW,AbeW, for some j, then we put
afa@)(0)=i+1,a(a)(s+1)=i, for s =0,1,2,...;
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a(b)(s)=i,for s=0,12,...;

And finally, 1f
construct a(a) and a(b) step by step:

Step 0, we put a(a)0)=a(a)(l)=i and
a(b)(0) =i (indeed, a(b) will be constructed like
a(a) , but little bit slowly).

Step s+1, on this step we know that
a(a)0)=a(a)l)=...=ala)(s+1)=i and we
know the values of

acW, nbeW,, then we

a(B)(0),a(B)(D),....ab)s). @)

If in (2) there is the value i+1, then we put
al(a)(s+2)=a(b)(s+1)=1i;

If in (2) therc is no value i+1, then we check
the following condition: (a,b) € &; i

if  “yes”, then a(a)s+2)=i and
a(b)(s+1)=i+1,

if “no”, then a(a)(s +2)=a(b)(s+1)=1.

We put  y —w,\F, V,=f{x|x=
=2<i,j> j=lor x=2<i,j>+1,j 20} — compu-
table set, then the condition (1) is holds for
numbering & .

Checking:

If for some j (with fixed i) one of aorb

doesn’t belong to W, , then a(W,) # a(w);

where

If for any j, a and b belong to W, then we

have two cases.

. (a,b)eg; for some j, then by

construction a(a) # a(b),ie. &; 'W. ¢ 8,.
2. (a,b)¢ e, forany j, then by construction

a(a)(x)=a(b)(x) forany x € @ and there is only
one index-number ¢ = 2 < i ,0 > of function
a(a)s)=i in V., what means that the

corresponding b=2<i0>+leW,, but
b=2<i,0>+1¢[V], ,ie. W, V],

Conclusion

It is the next step in studying the generalized
computable families of total functions and their
generalized computable numberings. Constructed

example of X' . -computable family of total

functions whose Rogers semilattice confains an
ideal without minimal clements, where nea®.
shows that the clementary properties of the
corresponding Rogers semilattices are very rich.
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