Зыымырандык техникада қолданылатын авиациялық өткіннің қысқырға қатысты жану процесін компьютерлік зерттеу

Оспанова ІІ.С., Мұкашева Г.К., Түрсынбаева А.Е., Алматаов К.Е., ар-Фараби атындағы КазУУ

Гылыны жетекші: ф-м г. д., проф. Болегенова С.Ә.

Заманауи жағдайларда және болашақта экологиялық маселелерді ескеру және әсер ірі отын-энергетикалық көшкендерді. сонымен қатар әртінділігі техникалық құрылғыларды, оның ішінде іштен жану қозгалтыштарын көзден анықтауға фәнінде айналып отыр. Шетелдік және отынды тәжірибе корсеткіндей, жылу-энергетикастың қысымды көрделі маселелерді әртінділі көзден шекен әртінділік қозгылыс қысымдай процестерді мұжия зерттеуға әсер етеді болып отыр. Аталған жағдайлар отындайды көзден шекен қысымылық қозгылысының артықшылығын қозғалтады. АҚШ Республикасының өнеркәсібін үшін сұйық отындай шағындың тәжірибелері ғылыми болып отыр, оны жағу көңілімен коміркыр свой дәрісері қысымдай қалыптастыра алады келеді, сондай-ақ көршаган ортанды қарғау маселесі отындай үнемді көзденшайды әртінділықтың ылға байланысты.

Авиациялық қозгылтындының жану камералары қысымдырың үлкен диапазондын жұмыс істейді. Қозгылтындының жылжынды көъемі қоғамдық сапады өте малысы фактор болып есептелінеді. Ошіртінің диаметр үлкен болып, жылжының жылдамдығы градиентіне қатысты сәзмаң жола бастайды [1].

Біздің жұмысымымызда негізі екі отын түрі – откан және синтин колданылды. Октан (C₈H₁₈) – алканбар класына жататын органолитикалық қосылыс. Ерекше нәсі бар, түсіз сұйық. Октанның кайнау температурасы 216,2 ⁰С тән. Изоктан өзге ізомерлірімен коса құрылыстың, қысқырға және жылдамдығы ғызмет көрсететін органолитикалық қосылыстың көрсеткінде құрылысы. Синтин (C₁₀H₁₆) – жасанды синтилтікалық жарықтарға энергетикалық коміркырдың зығырындай отын. Синтипінің қасиеттері әрекетке жақын келеді. Синтин өзге жарықтың тәмді коміркырдың отындарға қарсы ағылшынды құрылықтың ұзақ үзактықтағы депей туралы ақырын бейіндетеді. Октан мен синтинің химиялық жайу реакцияларының ерекшеліктері өз басты ретінде көрсетілген:

\[
2\text{C}_8\text{H}_{18} + 2\text{O}_2 = 16\text{CO}_2 + 18\text{H}_2\text{O},
\]

\[
2\text{C}_{10}\text{H}_{16} + 2\text{O}_2 = 20\text{CO}_2 + 16\text{H}_2\text{O}.
\]

Компьютерлік моделдеу нәтижесінде откан мен синтин отындарының өз бөлінеден үйрену процесі, температура, температура мен жайу әндірісінің камера бікітті оқуын пользователінің камера бікітті өзгертеді. Жұмыс барысында тәмді массасы 6 мг мезеріндегі откан және синтин жайу процессі зерттеледі. Сандық тәжірибе нәтижесінде синтин тамшылары 0,62 см бікіткірк кетеулікіндігінің белгілі болды. Ал оқаның жайуы барысында тамшылар камера бойыншы 0,56 см бікіткірк кетеулікілі болды. Екі отындының бастағының қысымдырыңың әр түрлі мезерінің жайу процессі сәрі Рейнольдс бойынша арқылы қысымды көрсетеді. Сондай-ақ көліктен жұмыс барысында жазу камераасындағы жайу әндірісінің температурасының әртінділі мен коміркырдың әртінділі ғылыми концентрациясының қысымға қатысты түзілу механизмдері сипатталады.

Әлебеттер: