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Abstract. An optimization control problem for a nonlinear hyperbolic equa-
tion with non-smooth nonlinearity and infinite time horizon without global
solvability of the boundary problem is considered. This problem is solved using
an approximation. The convergence of the approximation is proved. Necessary
conditions of optimality are obtained.
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1. Introduction

We consider an optimization control problem for a system described by a nonlinear
hyperbolic equation. The existence and uniqueness of the boundary problem is
not guaranteed for arbitrary control data. Furthermore, the nonlinear term of the
equation is non-smooth and the problem is considered on an infinite time interval.

Optimization methods for systems described by nonlinear parabolic and el-
liptic equations are well known. There exist a lot of results for control systems
characterized by Goursat–Darboux problems. Some results for optimization prob-
lems for usual boundary problems are obtained by Matveev and Yakubovich [1],
Tiba [2], Fursikov [3]. They prove the existence of the optimal control and neces-
sary conditions for optimality in the following case. The boundary problem has a
unique solution for all admissible control data, nonlinear terms are smooth, and
the time interval is finite. Relaxation methods for these problems are used by Tiba
[4] and Sumin [5]. Banks and Kunisch [6] apply numerical methods for its solution.
Kuliev and Gasanov (see [7]) consider optimization problems for nonlinear hyper-
bolic equations with a control in coefficients and with state constraints. Optimiza-



288 S. Serovajsky and K. Shakenov

tion methods for systems described by regular boundary problems for nonlinear
hyperbolic equations under smoothness assumptions and with finite time horizon
are well known.

Singular control systems may be not solvable or may have non-unique so-
lutions for admissible control data. The use of variational methods or gradient
methods for functional minimization are a matter of serious difficulty in this sit-
uation. The control is the primary object, and the state function is second for
standard optimization methods. It is determined by the state equation for the
given value of the control. However, the unique solvability of the problem can be
violated when varying the control in the singular case. Then the control and the
state function should be interpreted as an equal in rights pair. The state equation
is interpreted as a constraint in this situation. The cost functional is minimized
here on the admissible set of pairs, that is the set of control-state pairs such that
the state equation holds true. This conditional extremal problem can be solved
by means of the infinite-dimensional Lagrange multipliers method (see Fursikov
[3]) or penalty method (see Lions [8]). Optimization problems for nonlinear hyper-
bolic equations are considered for the singular case in these papers. However the
considered systems are smooth and the corresponding time interval is finite.

Two types of non-smooth optimization problems are known. Non-smooth
terms can be included either in the cost functional or in the state equation. If
the state operator is smooth and there is non-smoothness only in the functional
the problem can be solved using nonsmooth analysis methods (see, for example,
Rockafellar [9] and Clarke [10]). The classical derivatives (Gataux, Fréchet, some
other) can be replaced by its non-smooth extension, for example, sub-gradient or
Clarke derivative. Using these methods for problems with non-smooth terms in
the equation is very difficult because of the absence of the effective non-smooth
analogues of the inverse function theorem and the implicit function theorem. They
are used for proving the differentiability of the control-state mapping. However,
such optimization problems can be solved by means of smooth approximation of
the state equation (see Barbu [11]). This idea is used for nonlinear singular elliptic
equation in [12].

The additional difficulty of our optimization problem is the non-compactness
of the time interval. Optimization problems with infinite time horizon are well
known for systems described by ordinary differential equations (see, for example,
Seierstad [13] or Aseev and Kryazhimskiy [14]). The analogous problems for dis-
tributed systems are seldom considered. However, we note the result of Lions [15]
for systems described by linear parabolic equations. He proposes the approxima-
tion of the initial system by the analogous system on the finite time interval. The
conditions of optimality for the given problem are obtained after passing to the
limit in the necessary conditions of optimality for the approximate problem. But
the linearity of the system is used substantially in this case. Optimization prob-
lems for nonlinear parabolic equations with infinite time horizon are considered by
[16] and Cannarsa and Da Prato [17]. However they solve only feedback problems
by means of Hamilton–Jacobi equations.
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Optimization problems for nonlinear hyperbolic equations without smooth-
ness and regularity, and with infinite time horizon are not solved yet. We will use
some ideas and technical methods for its resolution.

Our system is singular. So we will interpret the state equation as a constraint.
The control data and the state function are equal in rights in this situation (see [3]
and [8]). The considered problem can be solved using Lagrange multipliers method
or a penalty method. These methods are equivalent for the optimization problems
of [3] and [8]. However we have additional difficulties because of non-smoothness
and non-compactness of the time interval. So we prefer to use the Penalty method
because it is an approximation method as opposed to the Lagrange multipliers one.

The peculiarity of our problem is the existence of non-smooth terms in the
state equation but not in the cost functional. This difficulty will be overcome by
means of smooth approximations of the equation. This idea was used in [11], [18]
for regular systems. It will be natural to use two forms of approximation (penalty
method and smooth approximation) simultaneously. The approximation of the
non-smooth term will be realized in the penalty functional. The corresponding
smooth penalty approximation method was used in [12] for an optimization prob-
lem for a singular elliptic equation with non-smooth nonlinearity. However, it is
not sufficient for obtaining the effective results for the system with infinite time
horizon.

We know that an optimization problem for linear parabolic equations with
infinite time horizon was solved in [15] by means of the finite time approximation
method. The corresponding approximate optimization problem has a finite time
interval. We propose to use this idea in our problem. The approximation will be
realized here at two stages. At first we will use finite time approximation. The
obtained optimization problem will be solved with using of the smooth penalty
approximation method.

In known results based on approximation techniques (penalty method [8],
smooth approximation method [11], and finite time approximation method [15])
necessary conditions of optimality for the initial problem are obtained by passing
to the limit in the optimality conditions for the approximate problems. Here we
have several difficulties. The high order of difficulty of the given problem does not
allow to obtain an analogous statement. But this peculiarity is not an obstacle for
solving the problem.

We will find an approximate solution of the problem, it is necessary to define
exactly the notion of approximate solution. It will be best to find an admissible
control, which is close enough to the optimal one. However, it is only possible for
simple enough optimization problems to obtain this form of approximate solution.
There is another notion of approximate solution, which is often used. For weak
approximate solutions the aim is to find an admissible control where the value of
the minimizing functional is close enough to its minimum on the admissible control
set. These two forms of approximate solutions are equivalent for optimization
problems well posed in the sense of Tikhonov [19]. But the values of the functionals
can be close for controls which are not close if the optimization problem is ill posed.
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It is known (see [20]), that the majority of optimization problems are ill posed.
So the weak approximate solution is used in the practical solution of optimization
problems as a rule.

Unfortunately, it may be hard to find a weak approximate solution if the
problem is very difficult. We will define a weaker approximate solution. Both,
strong and weak approximate solutions are admissible controls. We determine the
weaker approximate solution as a control, which is close enough to some admissible
control, and the corresponding value of the minimizing functional, which is close
enough to its minimum on the admissible control set. This object is weaker because
we permit the realization of the given constraint with some small error and do not
require it exactly. So the class of solvable problems is extended by weakening the
requirement of the approximate solution. The analogical idea was be realized in
[21] for an optimization problem for a singular elliptic equation. Our problem is
difficult enough. So we will try to find its weaker approximate solution.

There are different methods of practical solution of optimization problems.
The first class includes direct methods. The practical algorithm is determined by
the problem statement directly. This is true for example for gradient methods
(see [22]).

However, using direct practical methods can be very hard for a difficult prob-
lem. The given problem may be transformed to another form (condition of optimal-
ity) in this situation and the obtained problem may be easier for using numerical
methods. The methods of the second class are realized at two steps, obtaining of
the optimality conditions and its immediate resolution. However, using the opti-
mality conditions can be very hard too for very difficult optimization problems.
In these situations we can approximate the initial problem. So we obtain a third
class of practical optimization methods, which are realized in three steps. At first
we approximate the given problem. Then we obtain the conditions of optimality
for the approximate problem. The last step is the resolution of optimality condi-
tions for the approximate problem. Our problem is very difficult. So we will use a
method of the third class.

2. Statement of the problem

Let Ω be an bounded open 𝑛-dimensional set with smooth boundary 𝑆 and let
𝑄 = Ω× (0,∞) and Σ = 𝑆 × (0,∞). The state function 𝑦 = 𝑦(𝑥, 𝑡) is the solution
of the initial boundary value problem

𝑦′′ −Δ𝑦 + 𝑓(𝑦) = 𝑣, (𝑥, 𝑡) ∈ 𝑄, (2.1)

𝑦 = 0, (𝑥, 𝑡) ∈ Σ, (2.2)

𝑦(𝑥, 0) = 𝜑(𝑥), 𝑦′(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ Ω. (2.3)

The functions in the right side of the equations (2.3) are known. They satisfy the
inclusions

𝜑 ∈ 𝐻1
0 (Ω), 𝜓 ∈ 𝐿2(Ω).
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The function 𝑓 belongs to the set

𝐹 =
{
𝑓 ∈ 𝐶(ℝ) :

∣∣𝑓(𝜂)∣∣ ≤ 𝑐
∣∣𝜂∣∣3 ∀𝜂

}
,

where 𝑐 > 0.
The function 𝑣 = 𝑣(𝑥, 𝑡) is the control. It is an element of the set

𝑉 =
{
𝑥 ∈ 𝐿2(𝑄) : 𝑣(𝑥, 𝑡) ∈ 𝐺(𝑥), (𝑥, 𝑡) ∈ 𝑄

}
,

where 𝐺(𝑥) is closed and convex for all 𝑥 and 0 ∈ 𝐺(𝑥). The solution of the
boundary problem (2.1)–(2.3) will be found from the space

𝑌 =
{
𝑦 : 𝑦 ∈ 𝐿∞

(
0,∞; 𝐻1

0

)
, 𝑦′ ∈ 𝐿∞

(
0,∞; 𝐿2

)}
.

It is important that we cannot guarantee the existence of the solution of this
problem for arbitrary control (see [8]). However, we can determine the set 𝑈 of
admissible pairs for the system (2.1)–(2.3) (see [3] and [8]).

Definition 1. The pair (𝑣, 𝑦) from the set 𝑉 × 𝑌 is called admissible, if it satisfies
the equations (2.1)–(2.3).

The state functional is determine by

𝐼(𝑣, 𝑦) =
1

6

∥∥𝑦 − 𝑧
∥∥6
𝐿6(𝑄)

+
𝛼

2

∥∥𝑣∥∥2
𝐿2(𝑄)

,

where 𝛼 > 0 and 𝑧 is a given function from the space 𝐿6(𝑄). We consider the
following optimization problem.

Problem P. Find an admissible pair (𝑣, 𝑦) that minimizes the state functional 𝐼 on
the set 𝑈 .

The existence of its solution is guaranteed by the following result.

Theorem 1. If the set 𝑈 is nonempty, then the Problem P is solvable.

Proof. The functional 𝐼 is bounded from below. Therefore, there exists a minimiz-
ing sequence {𝑢𝑛} for this problem. Let 𝑢𝑛 = (𝑣𝑛, 𝑦𝑛), where 𝑣𝑛 ∈ 𝑉, 𝑦𝑛 ∈ 𝑌 . It
satisfies the equations

𝑦′′𝑛 −Δ𝑦𝑛 + 𝑓(𝑦𝑛) = 𝑣𝑛, (𝑥, 𝑡) ∈ 𝑄, (2.4)

𝑦𝑛 = 0, (𝑥, 𝑡) ∈ Σ, (2.5)

𝑦𝑛(𝑥, 0) = 𝜑(𝑥), 𝑦′𝑛(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ Ω. (2.6)

Furthermore, we have the convergence

𝐼(𝑢𝑛)→ inf
𝑢∈𝑈

𝐼(𝑢). (2.7)

The sequences {𝑣𝑛} and {𝑦𝑛} are bounded in the spaces 𝐿2(𝑄) and 𝐿6(𝑄) because
of the coercitivity of the functional. Therefore, the sequence

𝑓𝑛 = 𝑣𝑛 − 𝑓(𝑦𝑛)
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is bounded in 𝐿2(𝑄). The function 𝑦𝑛 is the solution of the equation

𝑦′′𝑛 −Δ𝑦𝑛 = 𝑓𝑛, (𝑥, 𝑡) ∈ 𝑄

with boundary conditions (2.5), (2.6). By the classical theory of linear hyperbolic
equations (see, for example, [15], Chapter 4) it follows that the sequence {𝑦𝑛} is
bounded in the space 𝑌 . Choosing a suitable subsequence, we obtain the conver-
gence 𝑣𝑛 → 𝑣 weakly in 𝐿2(𝑄) and 𝑦𝑛 → 𝑦 weakly in 𝑌 , in particular 𝑣 ∈ 𝑉 . So
𝑦𝑛 → 𝑦 strongly in 𝐿2(𝑄) and a.e. in 𝑄 by compactness of the embedding from 𝑌
into 𝐿2(𝑄) (see [23], Chapter 1, Theorem 5.1). Thus, 𝑓(𝑦𝑛)→ 𝑓(𝑦) a.e. in 𝑄. We
get the convergence 𝑓(𝑦𝑛) → 𝑓(𝑦) weakly in 𝐿2(𝑄) (see [23], Chapter 1, Lemma
1.3). We pass to the limit in the equations (2.4)–(2.6). Then the function 𝑦 satisfies
(2.1)–(2.3). Hence, for 𝑢 = (𝑣, 𝑦). we obtain 𝑢 ∈ 𝑈 .

Powers of the norms of the considered spaces are lower semicontinuous. So
we get the inequality

𝐼(𝑢) ≤ lim inf 𝐼(𝑢𝑛).

Using (2.7) we obtain, that the pair 𝑢 is a solution of the Problem P. □

Our next step is a solving this problem.

3. Finite time approximation

We will find an approximate solution of the given problem. If the control space is
normed, then it is naturally to define an approximate solution as an element of
the admissible control set 𝑈 such that∥∥𝑢− 𝑢0

∥∥ ≤ 𝜀

with small enough 𝜀 > 0, where 𝑢0 is an exact solution of the given problem.
Unfortunately finding such an approximate solution can be very hard for

difficult enough optimization problem. So one often defines a weak approximate
solution as a control 𝑢 ∈ 𝑈 , that satisfies the inequality∣∣𝐼(𝑢)− inf

𝑢∈𝑈
𝐼(𝑢)

∣∣ ≤ 𝜀

for small enough 𝜀 > 0. In reality it is sufficient that

𝐼(𝑢) ≤ inf
𝑢∈𝑈

𝐼(𝑢) + 𝜀,

because the value of the functional in the admissible control cannot be less than
its lower bound. The closeness of functional values is a corollary of the closeness of
controls if the functional is continuous. Then this approximate solution is weaker
than first one. Obviously these notions are equivalent if the optimization problem
is well posed in the sense of Tikhonov [19]. But the class of ill-posed optimiza-
tion problem is much larger. Thus, usually only weak approximate solutions will
be found practical optimization problems. Unfortunately, finding a weak approxi-
mate solution can be hard too if the optimization problem is very difficult. Then it
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is necessary to try to determine weaker forms of approximate solutions. Both of the
above-defined approximate solutions are elements of the set 𝑈 . We permit small
errors of the optimal control and of the minimum of the functional, but constraints
are satisfied exactly. However all objects of the problem statement are only known
in approximate form. Therefore it is naturally to require the approximate realiza-
tion of the given constraints. Of course, the corresponding error should be small.
So we have the following weaker form of approximate solutions of optimization
problems.

Definition 2. The control 𝑢 denotes a weaker approximate solution of the mini-
mization problem of the functional 𝐼 on the set 𝑈 , if 𝑢 ∈ 𝑂 and

𝐼(𝑢) ≤ inf
𝑢∈𝑈

𝐼(𝑢) + 𝜀

for a small enough neighborhood 𝑂 of the set 𝑈 and a small enough value 𝜀 > 0.

The weaker approximate solution may be not admissible. But it is close
enough to a point of the set 𝑈 . Besides this, the corresponding value of the func-
tional may exceed its lower bound only by a small value. It is obvious, that the
state functional in the weaker approximate solution must be approximated too. If
the weaker approximate solution belongs to the set 𝑈 , it is the weak approximate
solution of the given problem.

We have three difficulties of the optimization problem. It is the singularity of
the state equation, the smoothness of the nonlinear term, and the non-compactness
of the time interval. Therefore, we will use finite time approximation [15], the
penalty method [8], and a smooth approximation [16] for finding the approximate
solution of the given problem.

Our first step is the finite time approximation. We fix the value 𝑇 > 0. Let
𝑄𝑇 = Ω× (0, 𝑇 ) and denote by 𝑉𝑇 and 𝑌𝑇 the set of restrictions of functions from
𝑉 and 𝑌 to 𝑄𝑇 . The set 𝑈𝑇 of pairs (𝑣, 𝑦) is determined from the product 𝑉𝑇 ×𝑌𝑇

such that (2.1) is satisfied on the set 𝑄𝑇 and the initial conditions (2.3) hold true.
It is obvious that the restriction of an admissible pair of the system (2.1)–(2.3) to
the set 𝑄𝑇 is an element of the set 𝑈𝑇 . Furthermore, for all pair 𝑢 = (𝑣, 𝑦) from
𝑈𝑇 its trivial extension 𝑢 = (𝑣, 𝑦) by zero outside of the set 𝑈𝑇 is an admissible
pair of the system (2.1)–(2.3). We define the functional

𝐼𝑇 (𝑣, 𝑦) =
1

6

∥∥𝑦 − 𝑧
∥∥6
𝐿6(𝑄𝑇 )

+
𝛼

2

∥∥𝑣∥∥2
𝐿2(𝑄𝑇 )

and consider the finite time approximation problem of the given optimization
problem.

Problem P𝑇 . Find the control data from 𝑈𝑇 that minimize the functional 𝐼𝑇 on
this set.

Theorem 2. The problem P𝑇 is solvable.
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Proof. By lower boundedness of the functional 𝐼𝑇 there exists a sequence {𝑢𝑛}
from 𝑈𝑇 such that

𝐼(𝑢𝑛)→ inf
𝑢∈𝑈

𝐼(𝑢). (3.1)

We denote 𝑢𝑛 = (𝑣𝑛, 𝑦𝑛). Then we get the equations

𝑦′′𝑛 −Δ𝑦𝑛 + 𝑓(𝑦𝑛) = 𝑣𝑛, (𝑥, 𝑡) ∈ 𝑄𝑇 , (3.2)

𝑦𝑛 = 0, 𝑥 ∈ 𝑆, 𝑡 ∈ (0, 𝑇 ), (3.3)

𝑦𝑛(𝑥, 0) = 𝜑(𝑥), 𝑦′𝑛(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ Ω (3.4)

from the definition of the set 𝑈𝑇 . The sequence {𝑦𝑛} is bounded in the space
𝐿6(𝑄𝑇 ) and {𝑣𝑛} is bounded in 𝐿2(𝑄𝑇 ) because of the coercitivity of the functional
𝐼𝑇 . Therefore, the sequence is bounded in the space 𝐿2(𝑄𝑇 ) by definition of the
set 𝐹 . It is obvious that the function 𝑦𝑛 is a solution of the equation

𝑦′′𝑛 −Δ𝑦𝑛 = 𝑓(𝑦𝑛), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

where

𝑓𝑛 = 𝑣𝑛 − 𝑓(𝑦𝑛).

The sequence {𝑓𝑛} is also bounded in the space 𝐿2(𝑄𝑇 ) and the sequence {𝑦𝑛} is
bounded in 𝑌𝑇 by standard theory of linear hyperbolic equations. After passing
to subsequences we get 𝑣𝑛 → 𝑣 weakly in 𝐿2(𝑄𝑇 ), and 𝑦𝑛 → 𝑦 weakly in 𝑌𝑇

together with 𝑣 ∈ 𝑉𝑇 . We repeat reasoning from the proof of Theorem 1 to obtain
𝑓(𝑦𝑛)→ 𝑓(𝑦) weakly in 𝐿2(𝑄𝑇 ). After passing to the limit in the equation (3.2)–
(3.4), we obtain that the function 𝑦 is a solution to the equation (2.1) within 𝑄𝑇 .
Thus the pair 𝑢 = (𝑣, 𝑦) belongs to the set 𝑈𝑇 . Thus

𝐼𝑇 (𝑢) ≤ lim inf𝐼𝑇 (𝑢𝑛)

and the pair 𝑢 is a solution of the problem P𝑇 because of (3.1). □

We denote the solution of the approximate problem P𝑇 by 𝑢𝑇 = (𝑣𝑇 , 𝑦𝑇 ).
Now we prove the convergence of the approximation scheme.

Theorem 3. If 𝑇 → ∞ then 𝐼(𝑢𝑇 )→ min
𝑢∈𝑈

𝐼(𝑢).

Proof. By the lower boundedness of the functional 𝐼 on the set 𝑈 there exists for
all 𝛿 > 0 a pair 𝑢𝛿 such that

𝐼(𝑢𝛿) ≤ min
𝑢∈𝑈

𝐼(𝑢) + 𝛿.

Therefore, we get the inequality

𝐼𝑇 (𝑢𝑇 ) ≤ 𝐼𝑇 (𝑢
𝛿) ≤ 𝐼(𝑢𝛿) ≤ min

𝑢∈𝑈
𝐼(𝑢) + 𝛿. (3.5)



An Optimal Control Problem for the Nonlinear Hyperbolic Equation 295

Besides this, we obtain

min
𝑢∈𝑈

𝐼(𝑢) ≤ 𝐼(𝑢𝑇 ) =
𝛼

2

∫
𝑄

∣∣𝑣𝑇 ∣∣2𝑑𝑄+ 1
6

∫
𝑄

∣∣𝑦𝑇 − 𝑧
∣∣6𝑑𝑄

=
𝛼

2

∫
𝑄𝑇

∣∣𝑣𝑇 ∣∣2𝑑𝑄𝑇 +
1

6

∫
𝑄𝑇

∣∣𝑦𝑇 − 𝑧
∣∣6𝑑𝑄𝑇 +

∞∫
𝑇

∫
Ω

∣∣𝑧∣∣6𝑑Ω𝑑𝑡

= 𝐼𝑇 (𝑢𝑇 ) +

∞∫
𝑇

∫
Ω

∣∣𝑧∣∣6𝑑Ω𝑑𝑡.
By (3.5) we get

min
𝑢∈𝑈

𝐼(𝑢) ≤ 𝐼(𝑢𝑇 ) ≤ min
𝑢∈𝑈

𝐼(𝑢) + 𝛿 +

∞∫
𝑇

∫
Ω

∣∣𝑧∣∣6𝑑Ω𝑑𝑡.
After the passing to the limit we obtain

min
𝑢∈𝑈

𝐼(𝑢) ≤ lim
𝑇→∞

𝐼(𝑢𝑇 ) ≤ min
𝑢∈𝑈

𝐼(𝑢) + 𝛿.

Then 𝐼(𝑢𝑇 )→ min
𝑢∈𝑈

𝐼(𝑢) because of arbitrariness of 𝛿. □

By the proved assertion the extension 𝑢𝑇 of the solution 𝑢𝑇 of problem P𝑇

can be chosen as the weak solution of the initial optimization problem for a small
enough value 𝑇 . It is an admissible pair with the value of the minimizing functional
close enough to its minimum. Our next step is an analysis of the problem P𝑇 .

4. Smooth penalty approximation

We use the penalty method with a smooth approximation for solving P𝑇 . For this
we define the functional

𝐼𝑘𝑇 (𝑣, 𝑦) =
1

6

∥∥𝑦 − 𝑧
∥∥6
𝐿6(𝑄𝑇 )

+
𝛼

2

∥∥𝑣∥∥2
𝐿2(𝑄𝑇 )

+
1

2𝜀𝑘

∥∥𝑦′′ −Δ𝑦 + 𝑓𝑘(𝑦)− 𝑣
∥∥2
𝐿2(𝑄𝑇 )

,

where 𝜀𝑘 > 0 and 𝜀𝑘 → 0 as 𝑘 → ∞ and where 𝑓𝑘 are continuous functions with(
𝜀𝑘
)−1/2

∥∥∥𝑓𝑘(𝑦)− 𝑓(𝑦)
∥∥∥
𝐿2(𝑄𝑇 )

→ 0 (4.1)

uniformly with respect to 𝑦 ∈ 𝑌𝑇 . We denote further by 𝑊𝑇 the set of pairs (𝑣, 𝑦)
from (𝑉𝑇 × 𝑌𝑇 ) such that the function 𝑦 satisfies the initial conditions (2.3).

Problem P𝑘
𝑇 Find the pair that minimizes the functional 𝐼𝑘𝑇 over the set 𝑊𝑇 .

Theorem 4. The problem P𝑘
𝑇 is solvable.
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Proof. Obviously, there exists a sequence {𝑢𝑛} from 𝑊𝑇 , where 𝑢𝑛 = (𝑣𝑛, 𝑦𝑛),
such that

𝐼𝑘𝑇 (𝑢𝑛)→ inf
𝑢∈𝑈

𝐼𝑘𝑇 (𝑢). (4.2)

By coercitivity of the functional 𝐼𝑘 the sequence {𝑦𝑛} is bounded in the space
𝐿6(𝑄𝑇 ) and the sequences {𝑣𝑛} and {𝑔𝑛} are bounded in 𝐿2(𝑄𝑇 ), where

𝑔𝑛 = 𝑦′′𝑛 −Δ𝑦𝑛 + 𝑓𝑘(𝑦𝑛)− 𝑣𝑛.

Furthermore, 𝑦𝑛 is the solution of the equation

𝑦′′𝑛 −Δ𝑦𝑛 = ℎ𝑛, (𝑥, 𝑡) ∈ 𝑄𝑇

with boundary conditions

𝑦𝑛 = 0, 𝑥 ∈ 𝑆, 𝑡 ∈ (0, 𝑇 ),

𝑦𝑛(𝑥, 0) = 𝜑(𝑥), 𝑦′𝑛(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ Ω,
where

ℎ𝑛 = 𝑔𝑛 + 𝑣𝑛 − 𝑓𝑘(𝑦𝑛).

The sequence {ℎ𝑛} is bounded in the space 𝐿2(𝑄𝑇 ). So the sequence {𝑦𝑛} is
bounded in the space 𝑌𝑇 . After passing to subsequences we get 𝑣𝑛 → 𝑣 weakly in
𝐿2(𝑄𝑇 ), 𝑔𝑛 → 𝑔 weakly in 𝐿2(𝑄𝑇 ), and 𝑦𝑛 → 𝑦 weakly in 𝑌𝑇 , besides 𝑣 ∈ 𝑉𝑇 .
Thus the pair 𝑢 = (𝑣, 𝑦) is an element of 𝑈𝑇 . We repeat the reasoning from the
proof of Theorem 1 and obtain 𝑓𝑘(𝑦𝑛)→ 𝑓𝑘(𝑦) weakly in 𝐿2(𝑄𝑇 ). Then ℎ𝑛 → ℎ,
where

ℎ = 𝑔 + 𝑣 − 𝑓𝑘(𝑦).

Hence we get

𝐼𝑘𝑇 (𝑢) ≤ lim inf 𝐼𝑘𝑇 (𝑢𝑛).

Therefore, the pair 𝑢 = (𝑣, 𝑦) is a solution of the problem P𝑘
𝑇 . □

Next, we prove the convergence of the approximation scheme. We denote by
𝑢𝑘
𝑇 = (𝑣

𝑘
𝑇 , 𝑦

𝑘
𝑇 ) the solution of the problem P𝑘

𝑇 .

Theorem 5. If 𝑘 → ∞ then

lim inf 𝐼𝑇 (𝑢
𝑘
𝑇 ) ≤ min

𝑢∈𝑈𝑇

𝐼𝑇 (𝑢),

and 𝑢𝑘
𝑇 → 𝑢𝑇 weakly in 𝐿2(𝑄𝑇 )× 𝑌𝑇 where 𝑢𝑇 is the solution of the problem P𝑇 .

Proof. By lower boundedness of the functional 𝐼𝑇 on the set 𝑈𝑇 there exists for
all 𝛿 > 0 a pair 𝑢𝛿 = (𝑣𝛿, 𝑦𝛿) from 𝑈𝑇 such that

𝐼𝑇 (𝑢
𝛿) ≤ inf

𝑢∈𝑈𝑇

𝐼𝑇 (𝑢) + 𝛿.



An Optimal Control Problem for the Nonlinear Hyperbolic Equation 297

Using the optimality of the pair 𝑢𝑘
𝑇 for the problem P𝑘

𝑇 , we get

𝐼𝑘𝑇 (𝑢
𝑘
𝑇 ) = min

𝑢∈𝑊𝑇

𝐼𝑘𝑇 (𝑢) ≤ 𝐼𝑘𝑇 (𝑢
𝛿)

= 𝐼𝑇 (𝑢
𝛿) +

1

2𝜀𝑘

∥∥∥(𝑦𝛿)′′ −Δ𝑦𝛿 + 𝑓𝑘(𝑦𝛿)− 𝑣𝛿
∥∥∥2
𝐿2(𝑄𝑇 )

≤ min
𝑢∈𝑈𝑇

𝐼𝑇 (𝑢) + 𝛿 +
1

2𝜀𝑘

∥∥∥𝑓𝑘(𝑦𝛿)− 𝑓(𝑦𝛿)
∥∥∥2
𝐿2(𝑄𝑇 )

because of the previous inequality and the inclusion 𝑦𝛿 ∈ 𝑌𝑇 . Using (4.1), we
obtain after passing to the limit 𝑘 → ∞

lim inf 𝐼𝑘𝑇 (𝑢
𝑘
𝑇 ) ≤ min

𝑢∈𝑈𝑇

𝐼𝑇 (𝑢) + 𝛿.

After passing to the limit 𝛿 → 0, we obtain

lim inf 𝐼𝑘𝑇 (𝑢
𝑘
𝑇 ) ≤ min

𝑢∈𝑈𝑇

𝐼𝑇 (𝑢). (4.3)

Then by definition of the functional 𝐼𝑘𝑇 we obtain the boundedness of the sequences
{𝑣𝑘𝑇 } and {𝑦𝑘𝑇} in the spaces 𝐿2(𝑄𝑇 ) and 𝐿6(𝑄𝑇 ), besides 𝑦

𝑘
𝑇 is a solution of the

equation (
𝑦𝑘𝑇
)′′ −Δ𝑦𝑘𝑇 + 𝑓𝑘(𝑦𝑘𝑇 )− 𝑣𝑘𝑇 =

√
𝜀𝑘𝑔𝑘𝑇 , (𝑥.𝑡) ∈ 𝑄𝑇 , (4.4)

where the sequence {𝑔𝑘𝑇} is bounded in 𝐿2(𝑄𝑇 ). So the sequence {𝑓𝑘(𝑦𝑘𝑇 )} is
bounded in this space. Thus the function 𝑦𝑘𝑇 satisfies the equation(

𝑦𝑘𝑇
)′′ −Δ𝑦𝑘𝑇 = ℎ𝑘

𝑇 ,

where

ℎ𝑘
𝑇 = 𝑣𝑘𝑇 +

√
𝜀𝑘𝑔𝑘𝑇 − 𝑓𝑘(𝑦𝑘𝑇 ).

It is obvious that the sequence {ℎ𝑘
𝑇 } is bounded in the space 𝐿2(𝑄𝑇 ). Using the

theory of linear hyperbolic equations, we prove the boundedness of the sequences
{𝑦𝑘𝑇 } in the space 𝑌𝑇 .

After passing to subsequences we obtain convergence 𝑣𝑘𝑇 → 𝑣𝑇 weakly in
𝐿2(𝑄𝑇 ) , 𝑦

𝑘
𝑇 → 𝑦𝑇 weakly in 𝑌𝑇 , 𝑔

𝑘
𝑇 → 𝑔𝑇 weakly in 𝐿2(𝑄𝑇 ), and in particular

𝑣𝑇 ∈ 𝑉𝑇 . Using the standard method, we get 𝑓
𝑘(𝑦𝑘𝑇 )→ 𝑓(𝑦𝑇 ) weakly in 𝐿2(𝑄𝑇 ).

Then we obtain∣∣∣∣∣
∫
𝑄𝑇

(
𝑓𝑘(𝑦𝑘𝑇 )− 𝑓(𝑦𝑇 )

)
𝜆𝑑𝑄𝑇

∣∣∣∣∣
≤
∣∣∣∣∣
∫
𝑄𝑇

(
𝑓𝑘(𝑦𝑘𝑇 )− 𝑓(𝑦𝑘𝑇 )

)
𝜆𝑑𝑄𝑇

∣∣∣∣∣+
∣∣∣∣∣
∫
𝑄𝑇

(
𝑓(𝑦𝑘𝑇 )− 𝑓(𝑦𝑇 )

)
𝜆𝑑𝑄𝑇

∣∣∣∣∣
≤ sup

𝑦∈𝑌

∥∥∥𝑓𝑘(𝑦)− 𝑓(𝑦)
∥∥∥
𝐿2(𝑄𝑇 )

+

∣∣∣∣∣
∫
𝑄𝑇

(
𝑓(𝑦𝑘𝑇 )− 𝑓(𝑦𝑇 )

)
𝜆𝑑𝑄𝑇

∣∣∣∣∣
for all 𝜆 ∈ 𝐿2(𝑄𝑇 ).
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Using the uniform convergence of the sequence {𝑓𝑘}, we get 𝑓𝑘(𝑦𝑘𝑇 )→ 𝑓(𝑦𝑇 )
weakly in 𝐿2(𝑄𝑇 ). After the passing to the limit in (4.4), we obtain, that the
function 𝑦𝑇 satisfies the equation (2.1) in 𝑄𝑇 . Thus we get the inclusion 𝑦𝑇 ∈ 𝑌𝑇 .
Then 𝑢𝑇 ∈ 𝑈𝑇 , where 𝑢𝑇 = (𝑣𝑇 , 𝑦𝑇 ). The following inequality

𝐼𝑇
(
𝑢𝑘
𝑇

) ≤ 𝐼𝑘𝑇
(
𝑢𝑘
𝑇

)
is true because of the definition of the functional 𝐼𝑘𝑇 . Using 4.3, we get (if 𝑘 → ∞)

lim inf 𝐼𝑇
(
𝑢𝑘
𝑇

) ≤ lim inf 𝐼𝑘𝑇 (𝑢𝑘
𝑇

) ≤ min
𝑢∈𝑈𝑇

𝐼𝑇
(
𝑢
)
.

Thus, we obtain
𝐼𝑇 (𝑢𝑇 ) ≤ lim inf

𝑘→∞
𝐼𝑇
(
𝑢𝑘
𝑇

) ≤ min
𝑢∈𝑈𝑇

𝐼𝑇
(
𝑢
)

from the weak lower semicontinuity of the powers of norms. Therefore 𝑢𝑇 is a
solution of the problem P𝑇 . □

Therefore, a weaker approximate solution can be found from the obtained
results.

Theorem 6. The extension 𝑢𝑘
𝑇 of the solution 𝑢𝑘

𝑇 of the problem P𝑘
𝑇 is a weaker

approximate solution of the problem P for large enough 𝑘 and 𝑇 .

Proof. Using Theorem 3, we obtain that for all 𝜀 > 0 there exists a value 𝑇 such
that the extension 𝑢𝑇 of the solution 𝑢𝑇 of the problem P𝑇 satisfies the inequality

𝐼
(
𝑢𝑇

) ≤ min
𝑢∈𝑈

𝐼(𝑢) + 𝜀/2. (4.5)

By Theorem 5, we obtain the convergence 𝑢𝑘
𝑇 → 𝑢𝑇 weakly in 𝐿2(𝑄𝑇 ) × 𝑌𝑇 .

Therefore,
𝑢𝑘
𝑇 → 𝑢𝑇 weakly in 𝐿2(𝑄𝑇 )× 𝑌. (4.6)

Furthermore,
lim inf
𝑘→∞

𝐼𝑇
(
𝑢𝑘
𝑇

) ≤ min
𝑢∈𝑈𝑇

𝐼𝑇 (𝑢). (4.7)

It is obvious, that 𝐼𝑇 (𝑢) = 𝐼(𝑢) for all 𝑢 ∈ 𝐿2(𝑄𝑇 )× 𝑌𝑇 . So we get

min
𝑢∈𝑈𝑇

𝐼𝑇 (𝑢) = 𝐼𝑇 (𝑢𝑇 ) = 𝐼(𝑢𝑇 )) ≤ min
𝑢∈𝑈

𝐼(𝑢) + 𝜀/2 (4.8)

from inequality (4.5). Based on (4.6) and (4.7), we obtain for given 𝜀 > 0, corre-
sponding value 𝑇 and neighbourhood 𝑂 of 𝑈 in the sense of the weak topology of
the product 𝐿2(𝑄𝑇 )× 𝑌𝑇 a sufficiently large number 𝑘 such that 𝑢𝑇 ∈ 𝑂 and

𝐼
(
𝑢𝑘
𝑇

)
= 𝐼𝑇

(
𝑢𝑘
𝑇

) ≤ 𝐼𝑇 (𝑈𝑇 ) + 𝜀/2.

Using (4.8), we get

𝐼
(
𝑢𝑘
𝑇

) ≤ 𝐼(𝑈) + 𝜀/2.

Hence, the assertions of the theorem are true. □

Thus we can choose the extension 𝑢𝑘
𝑇 of the solution to the problem P𝑘

𝑇 as
the weaker approximate solution of the initial optimization problem. Our last step
is to obtain necessary conditions of optimality for the problem P𝑘

𝑇 .
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5. Solving the approximate optimization problem

We consider the problem P𝑘
𝑇 of minimizing the smooth functional 𝐼

𝑘
𝑇 on the convex

set 𝑊𝑇 . This problem can be solved by means of standard methods.

Theorem 7. The solution 𝑢𝑘
𝑇 = (𝑣

𝑘
𝑇 , 𝑦

𝑘
𝑇 ) to the problem P𝑘

𝑇 satisfies the variational
inequality ∫

𝑄𝑇

(
𝛼𝑣𝑘𝑇 + 𝑝𝑘𝑇

)(
𝑣 − 𝑣𝑘𝑇

)
𝑑𝑄𝑇 ≥ 0 ∀𝑣 ∈ 𝑉𝑇 , (5.1)

where 𝑝𝑘𝑇 is the solution of the initial boundary value problem(
𝑝𝑘𝑇
)′′ −Δ𝑝𝑘𝑇 +

(
𝑓𝑘
)′(

𝑦𝑘𝑇
)
𝑝𝑘𝑇 =

(
𝑦𝑘𝑇 − 𝑧

)5
, (𝑥, 𝑡) ∈ 𝑄𝑇 , (5.2)

𝑝𝑘𝑇 = 0, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ), (5.3)

𝑝𝑘𝑇 (𝑥, 𝑇 ) = 0,
(
𝑝𝑘𝑇
)′
(𝑥, 𝑇 ) = 0, 𝑥 ∈ Ω, (5.4)

and 𝑦𝑘𝑇 is the solution of the initial boundary value problem(
𝑦𝑘𝑇
)′′ −Δ𝑦𝑘𝑇 + 𝑓𝑘

(
𝑦𝑘𝑇
)
= 𝑣𝑘𝑇 + 𝜀𝑘𝑝𝑘𝑇 , (𝑥, 𝑡) ∈ 𝑄𝑇 , (5.5)

𝑦𝑘𝑇 = 0, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ), (5.6)

𝑦𝑘𝑇 (𝑥, 0) = 𝜑(𝑥),
(
𝑦𝑘𝑇
)′
(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ Ω. (5.7)

Proof. By Theorem 3.1 (of [15], Chapter 1) the minimal point 𝑢𝑘
𝑇 of the functional

𝐼𝑘𝑇 on the convex set 𝑊𝑇 satisfies the variational inequality〈(
𝐼𝑘𝑇
)′(

𝑢𝑘
𝑇

)
, 𝑢− 𝑢𝑘

𝑇

〉
≥ 0 ∀𝑢 ∈ 𝑊𝑇

where
〈
𝜆, 𝑢

〉
is the value of the linear continuous functional 𝜆 in the point 𝑢, and(

𝐼𝑘𝑇
)′(

𝑢𝑘
𝑇

)
is the Gataux derivative of the functional 𝐼𝑘𝑇 in the point 𝑢

𝑘
𝑇 . Using the

definition of the set 𝑊𝑇 , we obtain, that the last formula can be transformed to
the variational inequality〈(

𝐼𝑘𝑇𝑣

)(
𝑢𝑘
𝑇

)
, 𝑣 − 𝑣𝑘𝑇

〉
≥ 0 ∀𝑣 ∈ 𝑉𝑇 (5.8)

and stationarity condition

𝐼𝑘𝑇𝑦

(
𝑢𝑘
𝑇

)
= 0, (5.9)

where 𝐼𝑘𝑇𝑣

(
𝑢𝑘
𝑇

)
and 𝐼𝑘𝑇𝑦

(
𝑢𝑘
𝑇

)
are the partial derivatives of the functional 𝐼𝑘𝑇 in the

considered point. Using the definition of the functional 𝐼𝑘𝑇 we find the values of its
partial derivatives from the formula

𝐼𝑘𝑇𝑣

(
𝑢𝑘
𝑇

)
= 𝛼𝑣𝑘𝑇 − 1

𝜀𝑘

((
𝑦𝑘𝑇
)′′ −Δ𝑦𝑘𝑇 + 𝑓𝑘

(
𝑦𝑘𝑇
)− 𝑣𝑘𝑇

)
,
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such that〈(
𝐼𝑘𝑇𝑦

)(
𝑢𝑘
𝑇

)
, ℎ
〉
=

∫
𝑄𝑇

(
𝑦𝑘𝑇 − 𝑧

)5
𝑑𝑄𝑇

+
1

𝜀𝑘

∫
𝑄𝑇

((
𝑦𝑘𝑇
)′′ −Δ𝑦𝑘𝑇 + 𝑓𝑘

(
𝑦𝑘𝑇
)− 𝑣𝑘𝑇

)(
ℎ′′ −Δℎ+

(
𝑓𝑘
)′(

𝑦𝑘𝑇
)
ℎ
)
𝑑𝑄𝑇

holds true for all ℎ ∈ 𝑌𝑇 . We define

𝑝𝑘𝑇 =
1

𝜀𝑘

((
𝑦𝑘𝑇
)′′ −Δ𝑦𝑘𝑇 + 𝑓𝑘

(
𝑦𝑘𝑇
)− 𝑣𝑘𝑇

)
.

Then the function 𝑦𝑘𝑇 satisfies the equation (5.5). The boundary conditions (5.6),
(5.7) can be obtained by using of the definition of the set 𝑊𝑇 . We find the value
of the partial derivative

𝐼𝑘𝑇𝑣

(
𝑢𝑘
𝑇

)
= 𝛼𝑣𝑘𝑇 − 𝑝𝑘𝑇.

Thus the variational inequality (5.8) is transformed to (5.1). We obtain in an
analogous way the partial derivative from the equation〈(

𝐼𝑘𝑇𝑦

)(
𝑢𝑘
𝑇

)
, ℎ
〉
=

∫
𝑄𝑇

((
𝑦𝑘𝑇 − 𝑧

)5
ℎ+ 𝑝𝑘𝑇

(
ℎ′′ −Δℎ+

(
𝑓𝑘
)′(

𝑦𝑘𝑇
)
ℎ
))

𝑑𝑄𝑇

=

∫
𝑄𝑇

((
𝑦𝑘𝑇 − 𝑧

)5
+
(
𝑝𝑘𝑇
)′′ −Δ𝑝𝑘𝑇 +

(
𝑓𝑘
)′(

𝑦𝑘𝑇
)
𝑝𝑘𝑇

)
ℎ𝑑𝑄𝑇

+

∫
Ω

(
𝑝𝑘𝑇 (𝑥, 𝑇 )ℎ

′(𝑥, 𝑇 )− (𝑝𝑘𝑇 )′(𝑥, 𝑇 )ℎ(𝑥, 𝑇 ))𝑑𝑥

+

𝑇∫
0

∫
𝑆

𝑝𝑘𝑇
∂ℎ

∂𝑛⃗
𝑑𝑆𝑑𝑡 ∀ℎ ∈ 𝑌𝑇 ,

where 𝑛⃗ is the outward normal of 𝑆. Using (5.9), we obtain∫
𝑄𝑇

((
𝑦𝑘𝑇 − 𝑧

)5
+
(
𝑝𝑘𝑇
)′′ −Δ𝑝𝑘𝑇 +

(
𝑓𝑘
)′(

𝑦𝑘𝑇
)
𝑝𝑘𝑇

)
ℎ𝑑𝑄𝑇

+

∫
𝑆

(
𝑝𝑘𝑇 (𝑥, 𝑇 )ℎ

′(𝑥, 𝑇 )− (𝑝𝑘𝑇 )′(𝑥, 𝑇 )ℎ(𝑥, 𝑇 ))𝑑𝑥+
𝑇∫
0

∫
𝑆

𝑝𝑘𝑇
∂ℎ

∂𝑛⃗
𝑑𝑆𝑑𝑡 = 0

for all ℎ ∈ 𝑌𝑇 and the function 𝑝𝑘𝑇 solves the boundary problem (5.2)–(5.4). □

Thus we have obtained a system including the variational inequality (5.1),
the state equations (5.5)–(5.7), and the adjoint system (5.2)–(5.4) for solving the
problem P𝑘

𝑇 . It can be computed by using standard iterative methods, see [24].
By Theorem 6 the extension of the solution 𝑢𝑘

𝑇 = (𝑣𝑘𝑇 , 𝑦
𝑘
𝑇 ) of the problem P𝑘

𝑇
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can be chosen as the weaker approximate solution of the initial problem for large
enough value of 𝑘 and 𝑇 . Note, that the equation (5.5) implies that the initial state
equation is satisfied approximately but not exactly because of the second term in
its right-hand side. Therefore, the pair 𝑢𝑘

𝑇 is not admissible and we have indeed a
weaker approximate solution of the problem P.
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