# CONSTRUCTION OF SURFACE CORRESPONDING TO DOMAIN WALL SOLUTION 

Zh.Kh. Zhunussova<br>Al-Farabi Kazakh National University, Almaty<br>e-mail: zhzhkh@mail.ru


#### Abstract

Some generalizations of Landau-Lifschitz equation are integrable, admit physically interesting exact solutions and these integrable equations are solvable by the inverse scattering method [1]. Investigating of the integrable spin equations in $(1+1)$-, $(2+1)$-dimensions are topical both from the mathematical and physical points of view [2]-[5]. Integrable equations admit different kinds of physically interesting as domain wall solutions [2]. We consider an integrable spin equation [3]. There is a corresponding Lax representation. Moreover the equation allows an infinite number of integrals of motion. We construct a surface corresponding to domain wall solution of the equation. Further, we investigate some geometrical features of the surface. Keywords: surface, domain wall solution, integrable equation, integrals of motion, nonlinear equation.


We use the geometric approach to one of the generalized Landau-Lifschitz equation [3]

$$
\begin{align*}
\mathbf{S}_{t} & =\left(\mathbf{S} \times \mathbf{S}_{y}+u \mathbf{S}\right)_{x},  \tag{1a}\\
u_{x} & =-\left(\mathbf{S},\left(\mathbf{S}_{x} \times \mathbf{S}_{y}\right)\right), \tag{1b}
\end{align*}
$$

where $\mathbf{S}$ is spin vector, $S_{1}^{2}+S_{2}^{2}+S_{3}^{2}=1, \times$ is vector product, $u$ is a scalar function. The equation allows an infinite number of motion integrals and has several exact solutions. One of them is the domain wall solution. We identify the spin vector $\mathbf{S}$ and vector $\mathbf{r}_{x}$ according to [3] the geometric approach

$$
\begin{equation*}
\mathbf{S} \equiv \mathbf{r}_{x} \tag{2}
\end{equation*}
$$

Then (1a), (1b) take the form

$$
\begin{align*}
& \mathbf{r}_{x t}=\left(\mathbf{r}_{x} \times \mathbf{r}_{x y}+u \mathbf{r}_{x}\right)_{x}  \tag{3a}\\
& u_{x}=-\left(\mathbf{r}_{x},\left(\mathbf{r}_{x x} \times \mathbf{r}_{x y}\right)\right) . \tag{3b}
\end{align*}
$$

If we integrate (3a) by $x$, then it takes the form

$$
\mathbf{r}_{t}=\mathbf{r}_{x} \times \mathbf{r}_{x y}+u \mathbf{r}_{x}
$$

Taking into account Gauss-Weingarten equation and $E=\mathbf{r}_{x}^{2}=1$ the system is defined as

$$
\mathbf{r}_{t}=\left(u+\frac{M F}{\sqrt{\Lambda}}\right) \mathbf{r}_{x}-\frac{M}{\sqrt{\Lambda}} \mathbf{r}_{y}+\Gamma_{12}^{2} \sqrt{\Lambda} \mathbf{n}
$$

$$
u_{x}=\sqrt{\Lambda}\left(L \Gamma_{12}^{2}-M \Gamma_{11}^{2}\right),
$$

where

$$
\begin{gathered}
\Gamma_{11}^{2}=\frac{2 E F_{x}-E E_{t}-F E_{x}}{2 \Lambda}, \\
\Gamma_{12}^{2}=\frac{E G_{x}-F E_{t}}{2 \Lambda}
\end{gathered}
$$

$\Lambda=E G-F^{2}$. Equation (1a), (1b) is integrable equation and has soliton solutions.
Here we present the domain wall solution of the equation (1a), (1b) [3],

$$
\begin{align*}
S^{+}(x, y, t) & =\frac{e x p i b y}{\cosh \left[a\left(x-b t-x_{0}\right)\right]}  \tag{4a}\\
S_{3}(x, y, t) & =-\tanh \left[a\left(x-b t-x_{0}\right)\right] \tag{4b}
\end{align*}
$$

where $a, b$ are real constants.
Theorem. Domain wall solution (4a)-(4b) of the spin system (1a), (1b) can be represented as components of the vector $\mathbf{r}_{x}$, where

$$
\begin{gather*}
r_{1}=\frac{1}{a} \cos (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)+c_{1},  \tag{5a}\\
r_{2}=\frac{1}{a} \sin (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)+c_{2},  \tag{5b}\\
r_{3}=-\frac{1}{a} \ln \left|\operatorname{ch}\left[a\left(x-b t-x_{0}\right)\right]\right|+c_{3}, \tag{5c}
\end{gather*}
$$

where $c_{1}, c_{2}, c_{3}$ are constants. Solution of the form (5a)-(5c) corresponds to the surface with the following coefficients of the first and second fundamental forms

$$
\begin{gather*}
E=\frac{2+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]}{\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}}, \quad F=0,  \tag{6a}\\
G=\frac{b^{2}}{a^{2}} \operatorname{arctg}^{2}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right), \quad L=0,  \tag{6b}\\
M=0, \quad N=-\frac{b^{3} \operatorname{arctg}^{2}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)}{\sqrt{\Lambda} a^{2} \operatorname{ch}\left[a\left(x-b t-x_{0}\right)\right]} . \tag{6c}
\end{gather*}
$$

Proof. From (2) we have

$$
\begin{equation*}
\left(S_{1}, S_{2}, S_{3}\right)=\left(r_{1 x}, r_{2 x}, r_{3 x}\right) \tag{7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
r_{1 x}=S_{1}, \quad r_{2 x}=S_{2}, \quad r_{3 x}=S_{3} \tag{8}
\end{equation*}
$$

Hence

$$
\begin{align*}
& r_{1}=\int S_{1} d x+c_{1}  \tag{9a}\\
& r_{2}=\int S_{2} d x+c_{2} \tag{9b}
\end{align*}
$$

$$
\begin{equation*}
r_{3}=\int S_{3} d x+c_{3} \tag{9c}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}$ are constants of integration. Note

$$
S^{+}=S_{1}+i S_{2}=r_{x}^{+}
$$

then

$$
\begin{equation*}
r^{+}=r_{1}+i r_{2}=\int S^{+} d x+c^{+} \tag{10}
\end{equation*}
$$

where $c^{+}$is constant of integration. Substituting (4b) to the equation (9c) we have

$$
\begin{gather*}
r_{3}=\int S_{3} d x+c_{3}=-\int\left[\tanh \left[a\left(x-b t-x_{0}\right)\right] d x+c_{3}=\right. \\
=-\frac{1}{a} \ln \left|\operatorname{ch}\left[a\left(x-b t-x_{0}\right)\right]\right|+c_{3} \tag{11}
\end{gather*}
$$

where $c_{3}$ is constant. Thus

$$
\begin{equation*}
r_{3}=-\frac{1}{a} \ln \left|\operatorname{ch}\left[a\left(x-b t-x_{0}\right)\right]\right|+c_{3} \tag{12}
\end{equation*}
$$

Substituting (4a) to (10) we have

$$
\begin{aligned}
& r^{+}=r_{1}+i r_{2}=\int S^{+} d x+c^{+}= \\
& =\int \frac{\text { expiby }}{\cosh \left[a\left(x-b t-x_{0}\right)\right]} d x+c^{+}
\end{aligned}
$$

then

$$
\begin{aligned}
& r^{+}=\frac{1}{a} \cos (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)+c_{1}+ \\
& \quad+i\left(\frac{1}{a} \sin (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)+c_{2}\right),
\end{aligned}
$$

i.e. we have obtained

$$
\begin{align*}
& r_{1}=\frac{1}{a} \cos (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)+c_{1}, \\
& r_{2}=\frac{1}{a} \sin (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)+c_{2} . \tag{13}
\end{align*}
$$

Thus, (12), (13) give us (5a)-(5c).
We proceed to prove the second part of the theorem. From (12) and (13) we have

$$
\begin{gather*}
r_{1 x}=\frac{\cos (b y)}{1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]}, \quad r_{2 x}=\frac{\sin (b y)}{1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]},  \tag{14a}\\
r_{3 x}=-\frac{1}{c^{2}\left[a\left(x-b t-x_{0}\right)\right]}, \quad r_{1 y}=-\frac{b}{a} \sin (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right), \tag{14b}
\end{gather*}
$$

$$
\begin{equation*}
r_{2 y}=\frac{b}{a} \cos (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right), \quad r_{3 y}=0 \tag{14c}
\end{equation*}
$$

Then we can calculate

$$
\begin{gather*}
E=\mathbf{r}_{x}^{2}=r_{1 x}^{2}+r_{2 x}^{2}+r_{3 x}^{2}= \\
=\frac{\cos ^{2}(b y)}{\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}}+ \\
+\frac{\sin ^{2}(b y)}{\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}}+\frac{1}{c h^{2}\left[a\left(x-b t-x_{0}\right)\right]}=\frac{2+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]}{\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}} . \tag{15}
\end{gather*}
$$

Similarly, using (13) and (14c) we obtain

$$
\begin{gather*}
G=\mathbf{r}_{y}^{2}=r_{1 y}^{2}+r_{2 y}^{2}+r_{3 y}^{2}=\frac{b^{2}}{a^{2}} \operatorname{arctg}^{2}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right) .  \tag{16}\\
F=\left(\mathbf{r}_{x}, \mathbf{r}_{y}\right)=r_{1 x} r_{1 y}+r_{2 x} r_{2 y}+r_{3 x} r_{3 y}=0 . \tag{17}
\end{gather*}
$$

Formulas (15) - (17) give us the first three equations (6a) - (6c). Using (15) - (17) we compute

$$
\Lambda=E G-F^{2}=\frac{b^{2}\left(2+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)}{a^{2}\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}} \operatorname{arctg}^{2}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)
$$

We calculate the components of the vector $\mathbf{n}$

$$
\begin{gather*}
\mathbf{n}=\frac{\mathbf{r}_{x} \times \mathbf{r}_{y}}{\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|}=\frac{\mathbf{r}_{x} \times \mathbf{r}_{y}}{\sqrt{\Lambda}}=\frac{1}{\sqrt{\Lambda}}\left(n_{1}, n_{2}, n_{3}\right), \\
n_{1}=\frac{1}{\sqrt{\Lambda}}\left(r_{2 x} r_{3 y}-r_{3 x} r_{2 y}\right)=\frac{b \cos (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)}{\sqrt{\Lambda} \operatorname{ach}\left[a\left(x-b t-x_{0}\right)\right]} . \tag{18}
\end{gather*}
$$

Similarly, for the components

$$
\begin{gather*}
n_{2}=\frac{1}{\sqrt{\Lambda}}\left(r_{3 x} r_{1 y}-r_{1 x} r_{3 y}\right)=\frac{b \sin (b y) \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)}{\sqrt{\Lambda} \operatorname{ach}\left[a\left(x-b t-x_{0}\right)\right]},  \tag{19a}\\
n_{3}=\frac{1}{\sqrt{\Lambda}}\left(r_{1 x} r_{2 y}-r_{2 x} r_{1 y}\right)=\frac{b \operatorname{arctg}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)}{\sqrt{\Lambda} a\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)} . \tag{19b}
\end{gather*}
$$

Now, from (14a), (14b) we have

$$
\begin{gather*}
r_{1 x x}=-\frac{2 a \cos (b y) \operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right] \operatorname{ch}\left[a\left(x-b t-x_{0}\right)\right]}{\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}},  \tag{20a}\\
r_{2 x x}=-\frac{2 a \sin (b y) \operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right] \operatorname{ch}\left[a\left(x-b t-x_{0}\right)\right]}{\left(1+\operatorname{sh}^{2}\left[a\left(x-b t-x_{0}\right)\right]\right)^{2}} .  \tag{20b}\\
r_{3 x x}=\frac{a \operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]}{c h^{2}\left[a\left(x-b t-x_{0}\right)\right]} . \tag{20c}
\end{gather*}
$$

Thus, using (18), (19a), (19b), (20a) - (20c) we can compute

$$
L=\left(\mathbf{n}, \mathbf{r}_{x x}\right)=n_{1} r_{1 x x}+n_{2} r_{2 x x}+n_{3} r_{3 x x}
$$

It is followed

$$
\begin{equation*}
L=0 . \tag{21}
\end{equation*}
$$

Similarly, we calculate other coefficients of the second fundamental form

$$
\begin{gather*}
M=0,  \tag{22}\\
N=-\frac{b^{3} \operatorname{arctg}^{2}\left(\operatorname{sh}\left[a\left(x-b t-x_{0}\right)\right]\right)}{\sqrt{\Lambda} a^{2} c h\left[a\left(x-b t-x_{0}\right)\right]} . \tag{23}
\end{gather*}
$$

The formulas (21) - (23) give us the last three equations (6a) - (6c). Finally, Theorem is proved.

Based on the results of work [3], where Gauss-Codazzi-Mainardi equation considered in multidimensional space, we have studied generalized Landau-Lifschitz equation and built the surface corresponding to domain wall solution. Thus, this work fully reveals the meaning of the geometric approach [3] in (2+1) - dimensions.

## References

1. Ablowitz M.J. and Clarkson P.A Solitons, Non-linear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge,1992.
2. Bliev N.K., Myrzakulov R., Zhunussova Zh.Kh. Some exact solutions of the nonlinear sigma model // Doclady AN RK. 5 (1999) 3-10.
3. Myrzakulov R., Vijayalakshmi S., et all. On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrïodinger equations. // J. Math. Phys., 39 (1998) 2122.
4. Lakshmanan, M. Myrzakulov, R., et all. Motion of curves and surfaces and nonlinear evolution equations in 2+1 - dimensions. // J. Math. Phys., 39 (1998) 3765-3771.
5. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-de Vries equation // Phys. Rev. Lett. - 19 (1967) 1095-1097.
