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Resonance states in the simple schematic two-body model
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The aim of this work is to obtain resonance states in the simple schematic two-body model.
We take up two-body systems, which are described by Schrodinger equation. To obtain
resonance states, we apply a simple schematic potential and complex scaling method (CSM).
In the CSM, the resonance wave functions are obtained as eigenstates together with bound
states by carrying out the diagonalization of the complex scaled Hamiltonian. By finding
eigenvalues, we can show the distribution of resonance states in the complex energy plane

As a result, we obtain 5 and 4 resonance states for /T = 0%, 17 states, respectively.

INTRODUCTION

During the last several decade resonance problems
have covered an important and crucial research area
in nuclear physics. Recently, it has attracted much
attention that the complex scaling method (CSM)
[1-2] is successfully utilized for description of
many-body resonant states in light and middle mass
nuclei. Although many problems have been solved
so far, but further researches are required still.

In this study, the complex scaling method is applied
to a simple schematic two-body model [3] and its
reliability is confirmed. For this purpose, several
resonance states of J* = 0% and 17 partial waves
are investigated using the simple schematic
potential.

COMPLEX SCALING METHOD

In the last quarter century, a remarkable
development in the description of resonances in
guantum many-body systems has been realized
through application of the CSM.

Originally, the CSM was proposed by Aguilar,
Combes, and Balslev in 1971 [1]. Simon advocated
this method as a direct approach of obtaining many-
body resonances. The use of “direct” implies that the
resonance wave functions are directly obtained with
complex energy eigenvalues of the quantum many-
body system by solving an eigenvalue problem of
the complex-scaled Schrodinger  equation,
HOw ® = EPWP with a real scaling angle 6. In the
CSM, we take the imaginary value i6 as a parameter
of the transformation.

The CSM has been proposed to solve the resonance
states in the similar way as bound state problems. In
the CSM, the distance of the relative coordinate is

* Electronic address: dolzodmaal004@yahoo.com

41

rotated as r — re'® in the complex coordinate
plane by introducing a real parameter 6. Therefore

the Schrodinger equation

H|¥) = E|¥) (1)
is rewritten as
A(@)|w%) = E%|wY), (2

where H(0) and ¥? are the complex scaled
Hamiltonian and the wave function, respectively.
U(8) operates on a function W, that is,

Yo = U(O)(r) = e0W(re®).  (3)

The eigenvalues and eigenstates are obtained by
solving the complex scaled Schrodinger equation
Eq.(2). The eigenvalues of resonance states are
found as E® = E, — il}./2, where E, is resonance
energy and [;.-width of the resonant state. More
detailed explanation of the CSM is given in Refs.[1,
2]. The complex scaled Hamiltonian of inter cluster
motion is given by

H(0) = UO)HU(8). 4)
RESULTS AND DISCUSSIONSSIONS

The Hamiltonian of the present model is given as

- Pz ,
H= 2#V + Vir), (5)
where
V(r) = —8.0 exp(—0.1672) + 4.0exp(—0.04r2) .

(6)

=1 (MeV fm2). This

potential introduced in Ref. [3] has an attractive

For simplicity, we put
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pocket in a short range but a repulsive barrier at a
large distance. Putting Eq.(6) in Eq.(5), we solve the
Schrodinger equation (Eq.(2)). To solve the Eq. (2),
we employ the Gaussian basis functions given as

% 1 .
w (@) = Nbr' exp (~ 5372 ) Vi), ()
where the range parameters are given by a geometric
progression as by = byt X
i=12,..,N.

In this calculation, we apply N = 20 and employ
the optimal values of by and y to obtain stationary
resonance solutions.
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Figure 3. Distribution of energy eigenvalues of the J™ = 0%
wave. Symbols (b1) and (v1, r2, r3, r4, r5) represent bound and
resonance solutions, respectively. We here employ scaling
angle 6 = 15°. The solid line from the origin indicates the so-
called 20 line describing the branch cut.
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Figure 4. Distribution of energy eigenvalues of the |™ = 1~
wave. Symbols (bl) and (rl, r2, r3, r4) represent bound and
resonance solutions, respectively. We here employ scaling
angle 6 = 15°. The solid line from the origin indicates the so-
called 26 line describing the branch cut.

To obtain stationary values for the parameters of
resonances, we apply the so-called b and 6
trajectory methods. Using a property that is b and 8
trajectories should be orthogonal to each other, we
can easily determine the stationary point of the
resonance energy with high precision by drawing
these trajectories for the obtained eigen-energies [4].

We fixed Gaussian basis function’s length
parameter b from 0.15 to 0.25 and 6 from 5 to 25
for the 8 trajectory. The b trajectory was found to
be roughly a circle. The true solution for resonance
energy should be inside this circle, because the b
trajectory is orthogonal to the 6 trajectory.
Therefore, we determined resonance energy as the
center of the circle.

When we plot both the b and 6 trajectories, we
obtain an accurate estimate of the resonance
position. |
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Figure 1. Resonance energy eigenvalues of the ]™ = 0% wave
by drawing b and 0 trajectories.
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Figure 2. Resonance energy cigenvalues of the J™ = 1~ wave
by drawing b and 6 trajectories.

In Tables 1 and 2, we show numerical values of the
calculated bound and resonant states for the J™ =
0* and 1~ waves respectively, and compare to the
results (left) that takes from the Ref. [5].

Table 1. Bound and resonance states energies with decay widths
calculated for the J™ = 0T wave.

0*twave* 0" wave
E(MeV) State E(MeV) State
-1.928 Bound -1.928 Bound
0.310-
i10°¢ Resonance 0.310-i10° | Resonance
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1.632- 1.633-
i0.123 Resonance i0.123 Resonance
2.249- 2.249-
i1.040 Resonance i1.075 Resonance
2.854- 2.850-
i2.570 Resonance i1.800 Resonance
3.875-
12573 Resonance

* From previous data [5]

Table 2. Bound and resonance energies with decay widths
calculated for the J™ = 17 state.

1~ wave* 1~ wave
E(MeV) State E(MeV) State

-0.675 Bound -0.675 Bound
1.171- 1.171-

i0.005 Resonance i0.005 Resonance
2.031- 2.018-

i0.489 Resonance 10.493 Resonance
2.832- 2.830-

i1.199 Resonance i1.510 Resonance
3.934- 3.655-

i1.788 Resonance i2.500 Resonance

* From previous data [5]

It can be seen that from Tables 1 and 2, two
calculated results are similar to each other.

SUMMARY

In this study, we employed the simple potential
model which gives a bound and several resonance
states for J™ = 0*and 1~ waves. Present calculated
results are compared with the previous calculated
result and we obtained both results are similar to
each other.
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