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It is known that there is no minimal enumeration degree. We improve on this result

by showing:
THEOREM 1. Below every nonzero enumeration degree one can embed every countable partial
order.

The result is in fact a particular case of the following:

TaHEOREM 2. If a,b are enumeration degrees, with a total, and a < b, then in the degree
interval (a, b), one can embed every countable partial order.
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A numbering v : w + F of a family of unary computable functions is called com-
putable if the binary function v(n)(x) is computable, [1]. A Friedberg numbering of
a family is just a computable one-to-one numbering. It is well-known that the Rogers
semilattice of a computable family F either consists of one element or is infinite, [1];
and that, in the non-trivial case, it is never a lattice and has no maximal elements: and
contains either one or infinitely many minimal elements, [2].

We generalize the notion of computable numbering for the families of functions in
the arithmetical hierarchy following [3]. Let F be a family of total unary functions from
i) +1/M € W. A numbering v : w — F is called £¥  ,-computable if the binary function

v(n)(x) is computable relative to the oracle (™) [3].

THEOREM 1. Let F C X9 2 be an infinite 0 +2-computable family of total functions. Then
F has infinitely many pairwise non-equivalent Friedberg numberings.

THEOREM 2. There are a family F and £°_ ,-computable numbering o of the family F such
that no Friedberg numbering of F is reducible to .

This is a solution to Question 2, [4]:

THEOREM 3. If F contain at least two functions, then F has no principal £° 1 p-computable
numbering.
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