LOGIC COLLOQUIUM 2013 ÉVORA, PORTUGAL JULY 22-27

SCIENTIFIC PROGRAM
&
ABSTRACTS

Session 4 room 119

► THEODORE A. SLAMAN AND ANDREA SORBI, Downwards density and incomparability in initial segments of the enumeration degrees.

Department of Mathematics, The University of California, Berkeley, CA 94720-3840 USA. E-mail: slaman@math.berkeley.edu.

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, 53100 Siena, Italy.

E-mail: sorbi@unisi.it.

It is known that there is no minimal enumeration degree. We improve on this result by showing:

THEOREM 1. Below every nonzero enumeration degree one can embed every countable partial order.

The result is in fact a particular case of the following:

Theorem 2. If a, b are enumeration degrees, with a total, and a < b, then in the degree interval (a, b), one can embed every countable partial order.

Session 4 room 119

► ASSYLBEK ISSAKHOV, Computable numberings of the families of total functions in the arithmetical hierarchy.

Department of Mechanics and Mathematics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050038, Kazakhstan.

E-mail: asylissakhov@mail.ru.

A numbering $\nu:\omega\mapsto \mathfrak{F}$ of a family of unary computable functions is called computable if the binary function v(n)(x) is computable, [1]. A Friedberg numbering of a family is just a computable one-to-one numbering. It is well-known that the Rogers semilattice of a computable family F either consists of one element or is infinite, [1]; and that, in the non-trivial case, it is never a lattice and has no maximal elements; and contains either one or infinitely many minimal elements, [2].

We generalize the notion of computable numbering for the families of functions in the arithmetical hierarchy following [3]. Let \mathcal{F} be a family of total unary functions from $\Sigma_{n+1}^0, n \in \omega$. A numbering $\nu : \omega \mapsto \mathcal{F}$ is called Σ_{n+1}^0 -computable if the binary function v(n)(x) is computable relative to the oracle $\emptyset^{(n)}$ [3].

THEOREM 1. Let $\mathcal{F} \subseteq \Sigma_{n+2}^0$ be an infinite Σ_{n+2}^0 -computable family of total functions. Then F has infinitely many pairwise non-equivalent Friedberg numberings.

Theorem 2. There are a family $\mathcal F$ and Σ_{n+2}^0 -computable numbering α of the family $\mathcal F$ such that no Friedberg numbering of \mathcal{F} is reducible to α .

This is a solution to Question 2, [4]:

Theorem 3. If \mathcal{F} contain at least two functions, then \mathcal{F} has no principal Σ_{n+2}^0 -computable numbering.

[1] Yu. L. Ershov, Theory of numberings, Nauka, Moscow, 1977 (in Russian).

[2] S. S. MARCHENKOV, The computable enumerations of families of general recursive functions, Algebra and Logic, vol. 11 (1972), no. 5, pp. 326-336.

[3] S. A. BADAEV AND S. S. GONCHAROV, Rogers semilattices of families of arithmetic sets, Algebra and Logic, vol. 40 (2001), no. 5, pp. 283-291.

[4] S. A. BADAEV AND S. S. GONCHAROV, The theory of numberings: Open problems, Contemporary Mathematics (University of Colorado, Boulder), (Peter A. Cholak, Steffen Lempp, Manuel Lerman and Richard A. Shore, editors), vol. 257, American Mathematical Society, 2000, pp. 23-38.