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The paper presents comparison of several exact and approximate absorbing conditions, which 

are used to truncate computation domains of open (unbounded) initial boundary value 

problems of the electromagnetic theory of gratings. This comparison allows to judge the 

reliability and efficiency of absorbing conditions widely used in computational practice. The 

paper demonstrates that in cases, when resonant wave scattering is possible, only exact 

absorbing conditions allow to preserve the stability and convergence of computational schemes, 

and to provide a required level of accuracy in calculating the diffraction characteristics of open 

periodic resonators.  
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1. INTRODUCTION 

Many real-world devices or processes are described with open initial-boundary value 
problems, i.e., problems with unbounded domains of interest. To be able to solve such 
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problems numerically, one must truncate an unbounded domain of interest to a 
bounded computation domain. Correct and efficient limitation of computation domains 
is one of the most important and difficult issues in modern computational 
electrodynamics [1]. A significant progress in solving this issueis associated with 
development of the following domain truncation techniques: (i) Absorbing boundary 
conditions (ABCs), which mimic unbounded external regions with certain assumptions 
and simplifications [2–5]; (ii) Perfectly matched layers (PMLs), which wrap 
computation domain with special absorbing materials [6–8]; (iii) Exact absorbing 
conditions (EACs), which mimic unbounded external regions using mathematically 
rigorous boundary conditions [9–15]. All domain truncation techniques are aimed to 
turn open problems (problems with unbounded domains of interest) into closed ones 
(problems with bounded computation domains). But only EACs allow an equivalent, 
mathematically rigorous replacement of original open problem with a closed one. 
There are no general proofs of correctness and efficiency for each of the domain 
truncation techniques, thus additional arguments should be taken into account when 
choosing one for a particular physical or applied problem. Such arguments could be 
obtained from the results of a comprehensive comparative analysis of different domain 
truncation techniques, which are presented in this paper. 

This topic was briefly touched in [10,12,13,15–17]. In this paper, it is further 
developed via studies of solutions to initial boundary value problems of the 
electrodynamic theory of gratings [14,15].  

 

2. PROBLEM FORMULATION  

The physically and mathematically correct formulation of a closed initial-boundary 
value problem, which describes transformations of the electromagnetic field by a 
grating with periodicity in one dimension (Fig. 1), has the following form [14,15]: 
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Here, ( ) ( ), ,xU g t E g t=  in the case of E-polarization ( 0x∂ ≡ , 0y z xE E H= = = ), and 

( ) ( ), ,xU g t H g t=  in the case of H-polarization ( 0x∂ ≡ , 0y z xH H E= = = ); 

( ) { }, , ,
x y z

E g t E E E=
�

 and ( ) { }, , ,
x y z

H g t H H H=
�

 are the electric and magnetic field 
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vectors; { }, ,x y z  are the Cartesian coordinates; the piecewise-constant functions 

( ) 0gσ ≥  and ( ) 1gε ≥  are the specific conductivity and the relative permittivity of 

dielectric elements; ( )1 2

0 0 0η µ ε=  is the impedance of free space; 0ε  and 0µ  are the 

electric and magnetic vacuum constants; Φ  is a real-valued parameter introduced by 
the constant wavenumber approach to the oblique incidence treatment [1,14,15], 

0.5.Φ ≤  The surfaces of perfect electric conductors (PECs) Σ  and discontinuities in 

material parameters ,ε σΣ  are assumed to be sufficiently smooth. 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 1: 2-D grating with periodicity in one dimension 

 
The computation domain intΩ  of the problem (1) is a part of the Floquet channel 

{ }{ }R , : 0 , ,g y z y l z= = < < < ∞  bounded by the PEC surfaces and the virtual 

boundaries .±Γ On these boundaries the following conditions are enforced: 
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propagating towards reflection ( { }R :g z L+Ω = ∈ > ) and transition 

( { }R :g z L−Ω = ∈ < − ) zones of a grating. These waves are set by 
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Here, ( ){ }n n
yµ ∞

=−∞
 is complete (on interval 0 y l< < ), orthonormal system of functions 

( ) ( )1 2 exp ,n ny l i yµ −= Φ  ( )2 ,n n lπΦ = + Φ  and ( ) ( ) ( ), , ,i

p p pU g t v z t yµ+=  g +∈Ω  

is an incident pulse which excites a periodic structure. 
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In the frequency domain, a periodic structure is characterized by reflection and 

transmission coefficients, ( )npR k  and ( )npT k , given by the following formulas: 
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Here, ~ denotes application of the integral transform ( ) ( ) ( )
0
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2k π λ=  is a wavenumber (frequency parameter), λ  is a wavelength, T  is a duration 

of simulation. ( )npR k  and ( )npT k  are the amplitudes of plane homogeneous and 

inhomogeneous waves (harmonics) appearing in the reflection and transmission zones 

of a grating when it is excited by a plane wave ( ) ( ) ( ), expi
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which are obtained from analytical form of the energy conservation law. Here, 
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the plus sign and 0 0β ε=  should be used in the case of E-polarization, and the minus 

sign and 0 0β µ=  should be used in the case of H-polarization. 

For Re 0,pΓ >  the angle ( )arcsini

p p
kα = Φ  is the incidence angle of the wave 

( ),i

pU g kɶ  coming onto a grating. Every harmonic ( ),s

nU g k±
ɶ  of the fields 
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with Im 0nΓ =  and Re 0,nΓ >  is an homogeneous plane wave propagating away from 

a grating at the angle ( )arcsinn n kα = − Φ  into the reflection zone ( z L> ), and at the 

angle ( )arcsinn n kα π= + Φ  into the transmission zone ( z L< − ). All angles are 

measured anticlockwise from the z -axis in the plane 0y z  (Fig. 1). It is obvious that 

the propagation direction of each homogeneous harmonic of the secondary field 
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depends on its number ,n  as well as on the values of k  and i

pα . The angle between 

propagation directions of the primary and the ( m− )-th reflected plane waves is 

2 i

p mα α α−= − , it is obtained from the equation ( ) ( )sin cosi

p
kl p mα α α π− = + . At 

0α = , the corresponding harmonic propagates countercurrent to an incident wave, it is 

called the autocollimation phenomenon. According to (4), the values 
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determine the relative part of energy that is absorbed or redirected by a grating into 
reflected and transmitted harmonics. 

 

3. ABSORBING CONDITIONS  

From a fairly wide range of known exact and approximate absorbing conditions which 
could be used in the problem (1) [15,17], the following were chosen for the 
comparison: 

(i) Nonlocal EAC [12,18] 
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Its accuracy is controlled by a number of harmonics accounted in (7), N . 

(ii) Local EAC [12,18] 
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Its accuracy is controlled by ,M  which is a number of steps the interval ϕ π≤  is 

divided for numerical integration in (8). 



1586  Pazynin et al. 

Telecommunications and Radio Engineering 

(iii) ABC of second-order approximation [1] 
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(iv) ABC of third-order approximation [1] 
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(v) PML. Its accuracy is controlled by thickness ,d  index n  of absorption growth 

rate ( ) ( )max

n

z z L dσ σ  = −  , and theoretical reflection coefficient at normal 

incidence R  [1]. 

 

4. SIMPLE TEST  

For the first test, the grating profile is a PEC plane 0z = , 2 ,l π=  L π= . H-polarized 

wave, which is set by 
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falls on this grating. Here, ( )...χ  is the Heaviside step function, kɶ , ,Tɶ  and T  are 

central frequency, delay time and width of the pulse ( )1F t . Parameter k∆  specifies the 

frequency band k k k k k− ∆ ≤ ≤ + ∆ɶ ɶ  of the pulse. In our case, it is 0.35 0.55.k≤ ≤  

These values of k  correspond to the angles 021.3 34.8iα° ≤ ≤ °  of arrival of the plane 

waves ( ) ( ) ( )0 0 0, exp .i
U g k i z L yµ= − Γ −  
ɶ  The structure is not transformative, and 

therefore only one harmonic ( ) ( ) ( )0 00 0 0, exps
U g k R i z L yµ+ =  Γ −  
ɶ  exists in the 

reflection zone. The exact value of corresponding reflection coefficient is 

( ) ( )00 0exp 2R k i π= Γ . 

The standard FDTD method [1] is used for numerical tests in this paper. Its 

approximation error is ( )2
O h , where h  is space step, l  denotes time step. For the 

first test, they are set as 0.031416,h =  0.015;l =  the computation domain is meshed 

with 200 cells in both y  and z  directions; the number of time steps is 65 000, which 
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corresponds to the duration of computation 975;T =  the number of harmonics in 

nonlocal EAC (i) is 5;N =  the number of integration steps in local EAC (ii) is 

200;M =  PML thickness is 32 ,d h=  PML absorption has a quadratic profile ( 2n = ), 

and 410 .R −=  

Figure 2 presents the relative errors of ( )00R k  and ( )00arg R k  obtained using the 

absorbing conditions listed above. The smallest error is demonstrated by nonlocal EAC 
(i) and PML (v). The largest error is demonstrated by second-order ABC (iii). 

Surprisingly, in all cases, ( )00Rel Error R k  vanishes at the same point 0.538,k =  

suggesting that ( )00arg .R k π=  In all cases, the computational scheme is stable, 

amplitude tails of pulses ( )0 ,u L t+  are 5 to 7 orders of magnitude smaller than their 

main parts. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. 2: Relative errors of ( )00R k  computed using conditions (i)–(v) 

 

5. TEST WITH RESONANT SCATTERING  

The second test is performed in usual for gratings conditions of possible resonant 
waves scattering. The periodic structure under study is 2-D photonic crystal with finite 

thickness ( 20 ,h π=  2y zl l l π= = = ), it is made of circular dielectric rods (radius 

0.38 ,r l=  8.9ε = ), Fig. 3. The structure is excited by the H-polarized wave (11). 

Within the band 0.35 0.55,k≤ ≤  where the values ( )00

TW k  are calculated, only the 

fundamental harmonics ( 0n = ) propagate in the reflection and transmission zones of 
the periodic structure. The parameters of the computational scheme are following: 

0.12566h =  and 0.06,l =  the duration of computation 7000T =  (116 666 time 
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steps), 2 .L h=  For absorbing conditions, the same settings were used as in the 
previous section. 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 3: Bandgap aned geometry of 2-D photonic crystal 

 
The only absorbing condition which provided a physically correct result was 

nonlocal EAC (i), Fig. 3. We use it below as a reference for calculating absolute errors 

( )00Abs Error TW k . In other experiments, the computational scheme has lost stability 

long before the end of observation time, Fig. 4. Under the loss of stability, here and 
further on, we mean an exponential increase of the field strength in the computation 
domain caused by the “transformation” of virtual boundaries into fictitious current 
sources. Numerical disaster occurs at different times and develops at different speeds. 
The speed is lowest with local EAC (ii). Surprisingly, the scheme with ABC (iii) turns 
out to be more stable than the schemes with ABC (iv) and PML (v).  

Reduction of the duration of computation to 3000T =  (50 000 time steps) 
prevents the collapse of computational schemes with local EAC (ii), ABC (iii) and 
PML (v), but errors levels remain unacceptable (Fig. 5) due to excitation of high-Q 
eigenmodes of the periodic structure. These modes correspond to complex 
eigenfrequencies with real parts within the band 0.35 0.55k≤ ≤  (it is occupied by the 

pulse ( )0 ,iU g t ) [19,20]. 

The thing is that time-domain results ( )f t  are converted correctly into frequency-

domain results ( )f kɶ  (see the integral transform after (3)) only when the values ( )f t  

are sufficiently small for ,t T>  i.e., only when the field ( ),U g t  decays fast enough at 

all points of the domain int .Ω  But the amplitude of high-Q free oscillations decreases 

very slow over time. For the same reason, the virtual boundaries ±Γ  with approximate 

absorbing conditions on them can “turn” into fictitious sources of the field. And this 
field’s rapidly increasing intensity leads to a numerical catastrophe. Such virtual 
boundaries simply do not stand the test of a long “contact” with waves whose 
amplitude remains high for a long time. 
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FIG. 4: Lack of stability in computations with conditions (i)–(v) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 5: Errors of ( )00

T
W k  computed using conditions (ii), (iii), (v) 

 

6. HARD TEST WITH SUPER-HIGH-FREQUENCY FREE OSCILLATIONS  

Let us now consider the following problem: H-polarized pulse wave 
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( ) ( ) ( )0 0 1, : 0 and , ; 0.5, 0.45, 100, 200i
U g t v L t F t k k T T+Φ = = = ∆ = = =ɶ ɶ  

(12) 
 
excites a lamellar semitransparent grating with a rather complex geometry (see Fig. 6: 

6.28314,l =  3.6018,h =  0.3;θ =  1 2ε =  and 2 4ε =  are the relative permittivities of 

the dielectric parts; thickness of the metal stripes is 2h ). The pulse (12) covers the 

frequency band 0.05 0.95,k≤ ≤  in which only principal harmonics propagate in the 

reflection and transmission zones of the grating without decay. From (4) and (6) 

follows that the relation ( ) ( ) ( )00 001 0T Rk W k W kη = − − ≡  must hold. In contrast to the 

case considered above, the virtual boundaries ±Γ  are located far enough from the 

grating: 2 7.6038.L =  On these boundaries, the absorbing conditions (i)–(v) with the 

parameters 5,N =  200,M =  32 ,d h=  2,n =  410R −=  are introduced. Discretization 

steps for the problem (1) are 0.02h =  and 0.01l = . 
 
 
 
 
 
 
 
 

FIG. 6: Lamellar grating with a complex geometry 

 
In the first series of computational experiments, the duration of computation was 

set to 1000,T =  the analyzed frequency interval was discretized with the step of 410 .−  

Only nonlocal EAC (i) provided the result with an acceptable accuracy, Figs. 7 and 8. 

The error is estimated from values of the function ( ),kη  which, in the case of lossless 

materials, must vanish when the problem is solved exactly(it follows from (4)). The 
solution obtained with nonlocal EAC (i) deviates from the exact solution only in a 
small neighborhood of the point 0.823,k =  Fig. 7(a). This is the real part of the 

complex eigenfrequency 0.823 0.00038k i≈ −  corresponding to an eigenmode. The 

pattern of its xH -component at the moment of time 930t =  is presented in the upper 

fragment of Fig. 7(b). The quantities Re ,k  Im ,k  as well as the Q-factor of the 

eigenoscillation Re 2 Im 1080,Q k k= ≈  are determined from the data presented in 

the lower fragments of Fig. 7(a) (the spectral amplitudes ( )1, ,250U g k =ɶ  

( ) ( )1
250

, exp
T

U g t ikt dt=  of the eigenfield ( ) ( )1, 250U g t tχ − ) and Fig. 7(b) (decrease 

of the field amplitude ( ) ( )1, 250U g t tχ − ) [13,18,20–22]. In the vicinity of the point 
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0.823,k =  the characteristics ( )00

TW k  and ( )00

RW k  are changing anomalously sharply 

(Fig. 7(a)), but their true behavior has yet to be determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 7: Computation with condition (i): (a) Functions ( )00 ,T
W k  ( ) ,kη  and ( )1 , , 250U g kɶ  

within the frequency band 0.05 0.95;k≤ ≤  (b) Characteristics of high-Q eigenmodes of the 

grating 

 
The discrepancy characterizing the error in the energy conservation law is too 

large when conditions (ii)–(v) are used, and within frequency intervals where the total 

resonant reflection ( ( )00 0TW k = ) of H-polarized plane waves occurs (Fig. 8). In the 

case of local EAC (ii), regular errors of the computational scheme are superimposed 

with the errors associated with a violation of stability for 800.t >  For EACs (i) and 

(ii), and PML (v), we can try to improve the results changing the parameters ,N  ,M  

,d  n , and R . However, ABCs (iii) and (iv) are hopeless in this situation. 

In the second series of computational experiments (Fig. 9), the duration of 

computation was set to 5000T =  (500 000 time steps), 10,N =  2000,M =  64 ,d h=  

2,n =  and 610R
−= . The most accurate solution was obtained using nonlocal EAC (i). 

Local EAC (ii) provides good results for durations of computation up to 4000,T =  but 

the computational scheme begins to lose stability for 4500.t >  PML (v) provides less 

accurate solution, but its error virtually do not change when T  is varying from 2000 to 

5000. 
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FIG. 8: Function ( )kη computed using conditions (ii)–(v) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. 9: Functions ( )00

T
W k  and ( )kη computed using conditions (i), (ii), and (v) 

 
Thus, only two out of five tested absorbing conditions are suitable for further 

numerical experiments with significant influence of weakly decaying eigenoscillations. 
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These are nonlocal EAC (i) and local EAC (ii). Let us extend the duration of 
computation to 8000T =  (800 000 time steps). With nonlocal EAC (i), the 

computational scheme remains stable, the amplitude of ( )1,U g t  at the end of 

computation is 50 times smaller than at the end of excitation, Fig. 10(a). The 

maximum discrepancy level ( )kη  is reduced to 0.01, which corresponds to the 

maximum relative error of 1% in the determination of ( )00

TW k  and ( )00

RW k , Fig. 10(b). 

The same result could be also obtained with local EAC (ii) ( 5000M =  for 8000T = ). 
But in order to maintain the stability of the computational scheme with local EAC (ii), 
it is necessary to increase M  with increasing T . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 10: Functions Hard test of condition (i): (a) Time-domain characteristics; (b) Frequency-
domain characteristics 

 

7. CONCLUSIONS  

The type of absorbing conditions being used significantly affects the properties of 
computational schemes for solving electromagnetic initial boundary value problems, 
and the quality of numerical results obtained with their help. It is important for 
absorbing conditions to retain the classes of correctness of open problems when they 
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are replaced with closed ones, do not violate the stability and convergence of 
computational schemes, and ensure the predictable accuracy of final results. For 
gratings and waveguides problems, local and nonlocal EACs fully satisfy these 
requirements. EACs turn original open problems into equivalent closed ones [16,22] 
and therefore do not distort the physics of processes under study. Under the conditions 
of possible resonant wave scattering, only EACs can provide accurate numerical 
solutions, which approximate exact solutions good enough. 
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