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Abstract 
 

In this paper, the integral 
expressions of the well-known 
‘Sommerfeld Radiation Problem’, 
derived by our research group entirely 
in the spectral domain – as opposed to 
most classical formulations – are re-
evaluated. Numerical integration has 
revealed various disadvantages 
regarding the accuracy as well as 
convergence times of existing 
formulas. This resulted in their limited 
practical validity, constrained in the low 
frequency regime. However, through a 
proper variable transformation it is 
possible to convert them into more 
compact formulas, which overcome the 
flaws of previous expressions. As a 
result, convergence times are 
significantly reduced and, even more 
important, the new expressions allow 
for the calculation of the total received 
EM field of a radiating dipole above flat 
lossy ground, at almost an arbitrarily 
chosen level of accuracy. Simulation 
results, presented herein, indicate the 
effectiveness and correctness of the 
proposed method, which can be easily 
implemented in a general – purpose 
computer code platform. 
 

 

1. Introduction 
 

The ‘Sommerfeld radiation problem’ 
is a well-known problem in the area of 
propagation of electromagnetic (EM) 
waves above flat and lossy ground [1]. 
The original Sommerfeld solution to 
this problem is provided in the physical 
space by using the ‘Hertz potentials’ 
[1]. An equivalent solution to the 
problem is achieved by working in the 
spectral domain. In that perspective, in 
[2] the authors derived simple 1-D 
integral expressions for the received 
EM field, which compared to the 
classical Sommerfeld formulation, do 
not require taking the potential’s 

derivative, in order to calculate the 
received field. They also allow the 
application of asymptotic techniques, 
like the Stationary Phase Method [3], 
leading to well-known analytic 
formulas, applicable in the high 
frequency regime. 

However, accurately evaluating 
Sommerfeld integrals is not a trivial 
task. Particularly, it is true that the 
integral expressions of [2] are 
generalized integrals, extending from 
minus infinite to plus infinite and with 
the integrands presenting singularities, 
along the integration path. For that 
reason, the residue theory, along with 
approximation techniques like the 
method of Saddle Points, is so widely 
used by most researchers in the 
literature in their attempt to evaluate 
Sommerfeld integrals [4], [5]. However, 
there is always an accuracy issue that 
arises when a pole point resides close 
to the path of integration and even 
evaluating those integrals purely 
numerically, required expensive 
commercial software [5].  

In this paper we show that using an 
appropriate variable transformation it is 
possible to convert the generalized 
integrals of [2] into fast converging 
formulas. Particularly, the integral 
expression describing the received EM 
field, is broken down into two parts, 
one easily computed definite integral 
and an integral of semi-infinite range. 
However, the integrand of this second 
generalized integral, becomes a fast 
decaying exponential function, 
resulting in very fast convergence 
times. 

Simulations and comparisons with 
known literature results [6] are given. 
Moreover, comparing the new results, 
with those obtained in [7], which refer 
to the evaluation of the original integral 
expressions of [2], without performing 
the variable transformation, introduced 
in this paper, indicate the accuracy and 
the effectiveness of the method. 
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2. Problem Geometry 
 

The problem geometry is shown in 
Fig. 1 and described extensively in [1], 
[2], [4 – 7]. In summary, p represents 
the dipole moment of a radiating 
vertical Hertzian Dipole at frequency f, 
located at altitude x0, above infinite, flat 
and lossy ground, σ being its ground 
conductivity. Here (ε1,μ1), (ε2,μ2) 
represent the constitutive parameters 
of the air and ground respectively, with 
ε0=8,854x10-12F/m being the absolute 
permittivity in vacuum or air.  

 
Figure 1. Geometry of the problem 

 

3. Disadvantages concerning 
the Numerical Integration of 
the original Spectral Domain 
Representation for the 
Received EM Field 

 
In [2], [4] it is shown that the 

scattered electric field at the receiver’s 
position, above the ground level (x>0) 
can be expressed by: 
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In (2), (3) H0
(1) is the Hankel function of 

first kind and zero order and 
01k , 

02k the 

wavenumbers of propagation in the air 
and lossy ground respectively. 

Expressions (1) – (3) expose the 
following difficulties when coming to 
numerically evaluate the respective 
integral: 
- The range of integration extends 

from   to  , resulting in 
potential errors for large evaluation 
arguments, despite the fact that the 

phase factor of (2), i.e.  1 0 κi x x
e


gets 

exponential decaying with respect to 

ρk . 

- The Hankel function exhibits a 

singularity at ρ 0k   and although it 

is proved that this singularity does 
not break the integral’s convergence 
[7], it can affect the accuracy of the 
numerical integration results, when 
implemented in the computer. 

- As seen from (2), ρ 01k k  is another 

singularity of the integrand and 
consequently a sufficient small 
range around it must be excluded 
when numerically evaluating (1). As 
mentioned in [7], doing so may 
severely affect the accuracy of the 
results. 
 

4. Re-formulating the integral 
representation for the EM field 

 
Eq. (1) may be written as: 
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For I1, we perform the following 

variable transformation: 
ρ 01 sin αk k , 

which obviously maps the [
01 01,  k k  ] 

range in the kρ domain to [-π/2 , π/2] of 
angle α. With this transform it also 
holds true: 

 2 2 2

1 01 2 02 01κ cos α, κ sin αk k k    (6) 

Applying the above mentioned variable 
transform to (5a) and with the use of 
(2),(6), the expression for Ι1 becomes: 

 

     01 0

π
2

ρ x3

1 01
 cos α (1)

π
|| 0 012

ˆ ˆ cos α e sin α  e sin α sin α

 α H ρ sin α α
i k x x

I k
R k e d






 



 (7) 

with: 

 
2 2 2

2 01 1 02 01

||
2 2 2

2 01 1 02 01

ε cos α ε  sin  α
α

ε cos α ε  sin  α

k k k
R

k k k

 


 
 (8) 

Expression (7) may be further broken 
down into two integrals: 
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Finally, observing from (8) that 

   || ||α αR R   and using the 

properties of the Hankel function: 

 (1) (2)

0 0 0H ( ) H ( ) 2J ( )z z z   (9) 

 (1) π (2)

0 0H ( ) H ( )iz e z    (10) 

it is easy to show that: 

   

   01 0

π 2
2

ρ x ||3

1 01
 cos α 

0 0 01

ˆ ˆcos α e sin α e  sin α α
2  α

J ρ sin α   
i k x x

R
I k d

k e


    
 
  
  (11) 

with J0 being the zero order Bessel 
function. 

For I2 and I3, a similar approach is 
followed. This time the variable 

transformations, ρ 01coshαk k  and 

ρ 01coshαk k   are used respectively, 

which both map the original ranges of 

integration in ρk , i.e. [
01,  k  ] and 

[
01, k  ] to [0,  ] of variable α. 

Moreover, in both cases: 
2 2 2

1 01 2 02 01κ sinh α, κ cosh αik k k    (12) 

Consequently, applying a similar 
reasoning, as with I1 and also using 
(9), (10), it is easy to combine the 
results for I2 and I3 as following: 
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From (4), (11), (13), the expression for 
the scattered electric field becomes : 
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5. Comparisons – Numerical 
Results 

 
The new integral form, given by 

(15), facilitates the numerical 
evaluation of the EM field, since it 
overcomes the major drawbacks of 
expressions (1) – (3), outlined in 
section 3. Particularly: 

- The Hankel function, (1)

0H , is 

substituted by the zero order Bessel 

function,
0J ,which has no singularity, 

whatsoever.  
- The integrand has no singularity at 

ρ 01k k , hence no need to exclude 

any range around 
01k is required. 

- The result is expressed as the sum 
of two integrals, one bound definite 
integral, ranging from [0, π/2] and 
an improper integral extending from 
[0,  ]. However, due to the 
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presence of  01 0 sinh ξk x x
e
  , the second 

integrand is a fast decaying function, 
practically making the integral a 
bound limits one that is fast 
converging and easily evaluated in 
the computer. 
 
The above justifications are 

validated by simulation results.  

 

 
Figure 2.  Comparison of Numerical 

Integration results for the scattered field 

using : (i) redefined integral expressions 

(upper figure), (ii) earlier derived spectral 

integral expressions (lower figure) 
 
The top graph of Fig. 2 depicts the 

numerical evaluation for the scattered 
electric field, using (15). It is compared 
(bottom graph) against the equivalent 
results of [7], in which the computation 
was based on the original integral 
form, given by (1) – (3). In both cases, 
numerical integration (NI) data are 
represented by the solid lines of Fig. 2. 
The parameters for the simulation (i.e. 
transmitter – receiver heights, ground 

parameters, operating freq. etc) are 
given in the bottom plot of Fig.2. 

Along with the NI results, the high 
frequency approximation data, 
obtained after the application of the 
SPM method to the integral 
expressions for the Electric field [2], 
are shown as well (dashed lines). As 
mentioned in [7], SPM formulas are 
expected to be accurate in the far field, 
i.e. at least at distances over 10 – 15 
wavelengths, or above 100 – 150m, for 
the 30MHz case and the problem 
parameters shown in Fig. 2. Therefore, 
using the SPM data as the baseline, it 
is obvious that only the numerical 
evaluation of (15) achieves the 
required accuracy. On the contrary, 
numerical computation of (1) – (3) fails 
to describe the electric field and this 
may be attributed to the reasons 
analyzed in Section 3 above. 

 

 
Figure 3.  Numerical evaluation of the 

EM field at the ‘low Frequency regime’ 
 

In Fig. 3 (top graph), the 
components of the total received field, 
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for a Low Frequency (LF) scenario, are 
shown. For the direct (LOS) field and 
the Space Wave, analytic formulas 
exist, as used in [7]. The scattered field 
was numerically computed via (15). 

Due to the small antenna heights 
and the long distances involved 
(~10km), the space wave is expected 
to diminish [3]. As a result, the link is 
established primarily by means of the 
Surface Wave, which is defined as the 
remaining field, after subtracting the 
space wave from the total field [5]. This 
is actually verified in Fig. 3, with the 
Total Field curve being very close to 
the Surface Wave results. As a 
confirmation of the validity of the 
results, our Surface Wave calculations 
are compared with the respective 
Norton formulas [6]. The respective 
curves are almost identical! 

The bottom half of Fig. 3 displays 
the behavior of the integrand, gex(α) 
(actually the real part of the x-directed 
component), of the second integral 
expression of (15). It is evident that this 
integrand is confined in a small window 
of the integration variable α, outside of 
which and especially for large values of 
α, it actually becomes equal to zero. 
This is attributed to the behavior of the 
exponential function of the integrand, 

 01 0 sinhαk x x
e
 

. Due to the presence of 
the sinh function in the exponent, it is a 
vastly decreasing factor, making the 
whole integrand almost zero for even 
modest values of α. The bottom line is 
that the generalized integral of (15) 
becomes a practically bound limits 
one, easily and quickly evaluated in the 
computer. 

The oscillations in gex(α) originate 
from the behavior of the Bessel 

function
0J . Its effects on the integrand 

are visible by comparing the two 
bottom graphs of Fig. 3. Due to these 
oscillations, most of the effect of gex(α) 
is cancelled, which is why the relative 
large values of gex(α) (~104) are not 
reflected in the final field values (~10-5) 

The simulation of Fig. 3 is now 
repeated at Fig. 4 for a high frequency 
scenario in the VHF/UHF band. Again, 
the source and observation points are 
located close to the ground level and 
the electric field values at various 
distant observation points are 
calculated. 

As shown in Fig. 4, in this case the 
observed Surface Wave is negligible, a 
result also predicted by Norton [6]. 
Consequently, the Space Wave almost 
completely describes the total received 
field and hence the SPM method, an 
asymptotic method that converges to 
the space wave formulas [2], [7], is 
validated in this high frequency case, 
despite the small grazing angle (angle 
φ of Fig. 1) of the scenario [7].  Finally, 
notice in the bottom graph of Fig. 4 
how quickly, gex(α) vanishes, making 
thus the convergence of (15) very fast. 

 

 
Figure 4.  Numerical evaluation of the 

EM field at the VHF/UHF band (‘high 

frequency regime’) 
 
As a final validation, the field values 

(this time for the magnetic field) for the 
scenario of Fig. 2 (i.e. frequency f=30 
MHz) are shown in Fig. 5. Again, it 
seems there is a very good match 
between our calculations with the 
respective Norton’s results [6]. 
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Figure 5.  Magnetic field components at 

the frequency of 30MHz 

 
4. Conclusion 

 
In this paper we continue our 

previous research work on the solution 
of the ‘Sommerfeld radiation problem’ 
in the spectral domain. Using an 
appropriate variable transformation, it 
is shown that the disadvantages of the 
previous integral expressions for the 
EM field are effectively addressed. The 
EM field is now expressed as an 
integral formula, which is easy and fast 
to evaluate in the computer, using a 
general purpose computer code suite, 
as opposed to commercially 
specialized software, used in the 
literature [5]. 

Details about the algorithm, used 
and the specifics of the implementation 
code will be given in the accompanying 
Journal paper, currently prepared by 
our research team. For the time it is 
enough to say that the results, 
presented herein, were obtained with a 
required relative accuracy level of 10-3, 
although in most of the cases the 
achieved, estimated accuracy was less 
than 10-5 (meaning that the algorithm 
might accept further improvements for 
even faster computation times).  With 
this setting, only a few seconds or 
even parts of a second (depending on 
the case) were just enough to estimate 
the EM field, at each reception point 
(horizontal distance from the source). 

Higher accuracy levels are 
addressable by the algorithm (e.g. the 
algorithm was run with a 10-10 setting) 
requiring, however, larger convergence 
times. Nevertheless, from a 
visualization perspective, the captured 
graphs differed imperceptibly from the 
ones shown here. 
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