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A new approach to the analysis of the Smith-Purcell effect and its wave analogs has been 

proposed and implemented. It is based on the rigorous models of the exact absorbing conditions 

method and allows obtaining sufficiently reliable numerical data on the investigated processes 

in the conditions of a possible resonance waves scattering. Numerical experiments based on 

these models relieved and investigated in detail regimes with an anomalously high level of 

excitation of the outgoing waves that are of great interest both for theory and applications. 
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1. INTRODUCTION 

A plane density-modulated electron beam moving at a constant velocity above an 
infinite one-dimensional periodic grating radiates into the environmental space 
homogeneous plane electromagnetic waves, which number, wavelength and direction 
of propagation are determined by the velocity and modulation period of the beam, and 
also by the length of the period of grating. Simulation of this effect (the Smith-Purcell 
effect [1,2]) and its wave analogs within the approximation, usually called the 
approximation of a given current, analysis of its various features in the spatial-time and 
spatial-frequency transformations of electromagnetic fields arising during their 
implementation – that are the main topics of this work. The wave analogues of the 
Smith-Purcell phenomenon we call the effects of surface-spatial mode conversion – 
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the surface wave of a plane dielectric waveguide whose field is in many respects 
similar to the field of a charged particle beam, sweeping by an exponentially 
decreasing part the grating surface, generates in its radiation zones bulky waves, 
propagating without decaying (in the lossless medium) infinitely far. 

In the model based on the approximation of a given current (the approximation of 

a given field, in the case of the wave analogs of the Smith-Purcell effect), it is assumed 

that all the parameters of the electron beam remain unchanged along all the length of 

infinite space of its interaction with the periodic structure. Of course, this is not quite 

what happens in reality. But this approximation helps greatly simplify the analysis and 

unambiguously determine such important parameters of the simulated processes as the 

amount and direction of the outgoing bulk waves generated by the electron beam or by 

the surface wave; the energy that is allocated to these waves due a specific grating at a 

particular frequency [2–9]. The corresponding results, supplemented and verified by 

the experiments, served as basis for the creation of several fundamentally new devices 

for microwave technology: stable mm range coherent sources of electromagnetic 

oscillations operating on the Smith-Purcell effect [2,4,10]; diffraction radiation 

antennas with unique characteristics [11–13], etc. 

Returning to the topic, seeming almost exhausted, we propose a new approach to 
analyzing the Smith-Purcell effect and its wave analogs resulting in a number of 
physical results that have never been noted before. Our approach is based on the 
models of the method of exact absorbing conditions [14,15]. The EAC method solves 
correctly and efficiently the problem of limiting the computational domain of 
electromagnetic open initial boundary problems [16]. Such procedures enables the 
carrying out robust numerical analysis under conditions of possible resonant wave 
scattering [15,17,18]. The new physical results are mainly related to the anomalously 
high level of the transformation of an inhomogeneous plane wave into one of the 
propagating spatial harmonics of the periodic structure when a reflecting grating is 
installed in field of this inhomogeneous plane wave. 

We use SI, the International System of Units, for all physical parameters except 

the ‘time’ t  that is the product of the natural time and the velocity of light in vacuum, 

thus t  is measured in meters. In this paper, dimensions are omitted. According to SI, 

all geometrical parameters ( , ,a b c , etc.) are given in meters. However, this is 

obviously not a serious obstacle to extend the results to any other geometrically similar 

structure. 

 

2. PROBLEMS OF ELECTROMAGNETIC THEORY OF GRATINGS  

Correctly formulated initial boundary value problem, having solution ( ),U g t  easily 

convertible into conventional amplitude-frequency characteristics of periodic in the y  

direction and homogeneous in the x  direction reflecting grating (Fig. 1(a)), has the 
form [14,15]: 
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FIG. 1: Geometry of model problems: reflective grating (a) and a planar dielectric 

waveguide (b); 0
x

∂ ≡  
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impedance of free space; 0ε  and 0µ  are the electric and magnetic vacuum constants. 

The surfaces x x Σ Σ × ≤ ∞ =  of perfectly conducting elements of a grating and the 

surfaces ,ε σΣ  of discontinuities of its material parameters are assumed to be 

sufficiently smooth. The analysis domain intΩ  is the part of the Floquet channel 

{ }R= : 0g y l< <  bounded by 
x

Σ  and by the virtual boundary { }L R: 0g z= ∈ = , 

{ }ext R : 0g zΩ = ∈ > . ( )...mJ  are the Bessel cylindrical functions and the asterisk ‘∗ ’ 

stands for the complex conjugation. The transverse functions ( ) ( )1 2 expn ny l i yµ −= Φ , 

0, 1, 2,...n = ± ± , ( )2n n lπΦ = + Φ  constitute a complete orthonormal system in the 

cross section of Floquet channel R . Thus, for extg ∈Ω  and 0t >  the following 

representations for the sought-for field are correct: 
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fundamentally open problem of the electrodynamic theory of gratings into a closed one 
and allowing the use for it solving the standard calculating schemes of the finite 
difference method [16] or the finite element method [19] does not distort the physics of 
processes modeled by mathematical means. This is also valid for the resonance 
processes appearing due to excitation of weakly decaying free oscillations of the 
electromagnetic field in the grating. The analytical form of this condition is obtained 
by putting the observation point g  in the representation (1,b) onto the virtual 

boundary L . 
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and the solution ( ),U g t  to the problem (1) can be related [15] by the following 

integral transform 
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Every harmonic of the field ( ), ,s
U g kɶ  for which Im 0

n
Γ =  and Re 0,

n
Γ >  is a 

homogeneous plane wave propagating away from a grating at the angle 

( )arcsinn n kα = − Φ  which is measured anticlockwise from the z -axis in the plane 

0y z  (Fig. 1(a)). The point grat

n nk k= = Φ  – by passing which the evanescent spatial 

harmonic (an inhomogeneous plane wave) turns into a propagating one – is called a 
threshold point. 

For Re 0,pΓ >  the angle ( )arcsini

p p
kα = Φ  is the angle of incidence of the wave 

( ),i

pU g kɶ  coming onto a grating. According to (5), the values 

( ) ( ) ( )2

abs 1 0 pW k k W β= Γ  and ( ) ( )2

Renp np n pW k R= Γ Γ  determine in this case the 

relative part of energy lost to absorption and directed by a grating into the relevant 
spatial harmonic. 

If a grating is excited by an inhomogeneous plane wave ( Im 0pΓ > ), the near-field 

to far-field conversion efficiency is determined by the value of Im ppR  (see (5)), which 

in this case is nonnegative and 
 

abs2Im .pp np

n

R W W= +                                                (7) 

 

As it follows from (6) and the equalities ( ) ( ) ,n n−Φ Φ = −Φ −Φ  

( ) ( ) ,n n−Γ Φ = Γ −Φ  one can study the excitation of a grating by an inhomogeneous 

plane wave in the context of conventional for the gratings theory diffraction problems: 

a structure is excited by homogeneous plane wave ( ), ,i

nU g k− −Φɶ  and the coefficients 

of conversion into evanescent ( p− )-th spatial harmonics ( ),p nR− − −Φ  are calculated. 

 

3. SIMULATION OF THE SMITH-PURCELL PHENOMENON AND ITS WAVE 

ANALOGS  

The field of a density-modulated electron beam, whose instantaneous charge density 

can be written as ( ) ( )( )exp ,z a i k y ktρδ β − −   0a ≥  is a H -polarized field with 

 

( ) ( ) ( ){ } ( )22, , 2 exp ;xH y z k i k k z a k y z a z a z aπρβ β β   = − − + − − ≠   
ɶ  

(8) 
 

[2,3]. Here, ( )...δ  is the Dirac delta-function, ρ  and k  are the modulation amplitude 

and the modulation frequency of the beam, and 1β <  is its relative velocity. 
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From (3,b) and (8) it follows that the beam-generated field (scattered field 

( ),s
U g kɶ  of the grating, placed into the proper field of the electron beam) can be 

obtained from the solution ( ) ( ) ( ), , ,i s

pU g k U g k U g k= +ɶ ɶ ɶ  of the problem (3) for  

H -case and for incident wave ( ) ( ) ( ) ( ), exp ,i

p p p p
U g k A k i z yµ= − Γɶ  0 z a≤ <  with 

( ) ( )2
2 exp 1 1pA k l kaπρβ β = − − −

  
 and p k βΦ =  ( Re 0,pΓ =  Im 0pΓ > ). 

Represent now the x -component of E - or H -polarized eigenwave of a planar 

waveguide (Fig. 1(b)) as 
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Here, χ  is the complex-valued longitudinal propagation number for the eigenwave 

( ), , ;U g k χɶ  ( ) 2 2
kχ χΓ = −  (a branch of the square root is determined by the point 

χ  location on the two-sheeted Riemann surface Χ  with the algebraic branch points 

kχ ± = ±  [13]); ( ) 2 2
kε χ ε χΓ = −  (one can choose any branch of the root). On the 

axis Re χ  of the first (physical) sheet of Χ  we have ( )Re 0γ χ ≥  and ( )Im 0.γ χ ≥  

From the physically evident requirement it follows that the field ( ), ,U g k χɶ  does not 

contain waves incoming from infinity.  
An eigenwave, having field strength exponentially decreasing when moving from 

the dielectric layer ( ( )Im 0γ χ > ), is a surface wave, otherwise ( ( )Im 0γ χ ≤ ) it is a 

leaky wave. A wave ( ), ,U g k χɶ  is called a real wave if Im 0,χ =  and a complex wave 

if Im 0.χ ≠  A real surface wave is a true wave. Its relative phase velocity 1kβ χ= <  

and thus it is a slow wave.  

If a real, E - or H -polarized surface wave of plane dielectric waveguide covers 

by its exponentially decreasing component the surface z c= −  of periodic structure, 

then the field ( ),s
U g kɶ  generated as a result of such interaction, is defined by the 

solution ( ) ( ) ( ), , ,i s

pU g k U g k U g k= +ɶ ɶ ɶ  of the problem (3) for E - or H -case and for 

incident wave ( ) ( ) ( ) ( ), exp ,i

p p p p
U g k A k i z yµ= − Γɶ 0 z a≤ <  with 

( ) ( ) ( )exp
p p

A k A k l i a= Γ  and p χΦ =  ( Re 0,pΓ =  Im 0pΓ > ). It is easy to arrive 

to such conclusion comparing representations (3,b) and (9). 
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Thus, the analysis of Smith-Purcell effect and its wave analogs is reduced to the 

solution of problem (3) that is to the calculation of the secondary field ( ),s
U g kɶ  of the 

grating placed in the field of a plane wave ( ), .i

pU g kɶ  And, in general, it does not 

matter what kind of wave it is – homogeneous, propagating without decaying, or 
inhomogeneous, with field exponentially decreasing during the propagation. The first 
case is easily recalculated to the second one using simple formulas analytically 
representing the so-called reciprocity relations (6). 

 

4. THE SMITH-PURCELL EFFECT. ANOMALOUSLY HIGH LEVEL OF EXCITATION 

OF OUTGOING WAVES 

Let us put the period l  of all the grating under consideration equal 2π  – this will 
make it easy to treat all the analytic and numerical results presented in the paper in 
terms of those dimensionless parameters that are conventionally used in the theory of 

periodic structures. These are coordinates { } { }, 2 ,2 ,Y Z y l z lπ π=  time 2 ,t lτ π=  

frequency 2 .l klκ λ π= =  

We excite a lamellar grating (see lower fragment in Fig. 2) by a pulsed  
H -polarized wave 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1

1 1 1, : 0, 4sin cos ;

0.01, 0.5, 0.45, 150, 300.

iU g t v t k t T t T k t T T t F t

k k T T

χ
−

   = ∆ − − − − =   

Φ = = ∆ = = =

ɶɶ ɶ ɶ

ɶ ɶ

   (10) 

 

Here, ,kɶ  ,k∆  ,Tɶ  and T  stand for the central frequency of the signal, its band 

( k k k k k− ∆ ≤ ≤ + ∆ɶ ɶ ), delay time, and duration, respectively; ( )...χ  is the Heaviside 

step function. A detailed description of the temporal and spectral characteristics of the 

pulse ( )1F t  could be found in the book [15]. In the frequency band 0.05 0.95k≤ ≤  

occupied by the pulse (10), only one of the spatial harmonics of the secondary field 

( ),s
U g kɶ  of grating propagates without decaying: grat

0 0.01,k =  grat

1 0.99k− =  and 
grat

1 1.01.k =  We identify the field of the wave ( )1 ,i
U g kɶ  with the proper field of the 

electron beam moving above the grating with velocity 1 ,kβ = Φ  1 1.01.Φ =  The 

efficiency of its transformation into the field of the outgoing wave is determined by 

( ) ( )01 112ImW k R k=  (see formula (7)). For values θ  equal to 0.1, 0.3, and 0.5, and 

values 0.1 0.9δ = ÷  the efficiency varies within the limits ( )010 9.0W k≤ <  

(Fig. 2).These are the usual rates for the situation in question [2,5,8]: a low level of 
energy extraction into the zero spatial harmonic over the greater part of the considered 

frequency range and local spikes of ( )01W k  due to low-Q resonances on TEM -wave 

propagating in the grating grooves. 
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FIG. 2: H -polarization. The efficiency of radiation at zero spatial harmonic at different values 
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wave

1 0.555k ≈  for 0.9;θ =  wave ,
m

k n dπ=  1,2,...m =  are the cut-off points for 0m
TM - 

and 0m
TE -waves in an empty parallel-plane waveguide of width d ). The values of the 

function ( )01W k  in the neighborhood of the points Rek k=  corresponding to the 

resonances on the trapped in the grooves 01TM -wave reach dozens and hundreds. The 

quality factor Re 2 ImQ k k=  of these resonances and eigen field patterns at 

complex eigen frequencies Re Im ,k k i k= +  we find out by exciting the grating with 

the narrow band Gaussian pulses 
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i
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and watching the ( ),U g t -field, intg ∈Ω  damping process for t T>  (free oscillations 

regime) [20–23].  
The result of one of such computational experiments is presented in Fig. 3. The 

quality of the free oscillation excited in the grating, as far as can be estimated from the 

right fragment of Fig. 3 is rather high. Comparison of the field amplitudes ( )1,U g t  at 

time instants 400t ≈  and 1000t ≈  (determining the actual rate of decrease of the 

signal envelope ( )exp Im ,A k t⋅  400t > ) allows us to estimate it by value of 

12000.Q ≈  

 
 
 
 
 
 
 
 
 
 

FIG. 3: Excitation of the grating by a narrow-band H -polarized pulse (11): Re 0.884,k k= =ɶ  

0.2 ;c l=  0.9;θ =  0.9.δ =  Pattern ( ) ( ), , ,
x

U g t H g t=  int ,g ∈ Ω  600t =  and function 

( ),U g t  in the antinode of the free oscillation field. 

 
What is the reason of the excitation such high-Q field oscillation, providing the 

anomalously high level of energy transformation into the zero harmonic of the 

secondary field ( ),s
U g kɶ  of the grating? To answer this question, we recall first of all 
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that the most general characteristic adequately describing the principal features of the 

processes of resonant scattering of plane waves by any transparent or reflective 

waveguide-type grating [15,24–26] can be represented by a couples of numbers 

{ },N M . Here Re n nn
N = Γ Γ  – is the number of spatial harmonics propagating 

without decaying in the reflection and transmission zones of the grating, and M  is the 

total number of propagating modes with mismatched propagation constants in the 

regular intervals of all waveguide channels connecting these zones. The couple 

{ } { }, 1,2N M =  ( Re ,m mm
M γ γ=  ( )22 ,m k m dγ π= −  Re , Im 0,

m m
γ γ ≥  

0,1, 2,...m = ) corresponds to the situation of interest: in the reflection zone of the 

grating, only zero spatial harmonic propagates without decaying, and TEM -,  

01TM -waves propagate in the groove without decaying. 

It was noted in [15,26] that ultrahigh-Q free field oscillations in lamellar grating 

operating in the regime { } { }, 1,2N M =  can be excited as a result of mode coupling of 

eigen oscillations of the first and second families belonging to the same symmetry 

class as well as operation within the parameter range, where the slightest change of 

one of the parameters results in the change of regimes from { }1,2  to { }1,1 .  The mode 

coupling, caused by the closing in (coincidence) of the Rek  values corresponding to 

one of the free oscillations on the TEM -wave in the grating groove (one of the free 

oscillations of the first family) and to one of the free oscillations on the 01TM -wave 

(one of the free oscillations of the second family) results in a sharp, practically 

unlimited growth of Q  of the second of them. This effect is point-like (on the plane 

“frequency, one of the other parameters of the problem”), and it is almost impossible 

to find it by chance, without a preliminary solution of spectral problems [15,26]. 

Obviously, this is not our case. The option with mode change remains, and just its 

implementations in a pointed out anomalously high spikes of function ( )01W k  are 

confirmed by the results shown in Figs. 4 and 5. 

The maximum values ( )max

01 01 ReW W k=  of the function ( )01W k  calculated in the 

frequency range 0.55 0.85k≤ ≤  for the grating of parameters 0.9,θ =  0.3δ =  and 

with parameter Φ  values approaching to 0.01 (mode { }1,2 ), monotonically increase 

(Table 1). The Q-factor of free oscillations formed by 01TM  counter waves in the 

grating groove also increases (see left fragment in Fig. 5). We find it out by exciting 

the grating with a pulse wave ( ) ( ) ( )0 0 2, : 0, ;i
U g t v t F t=  0.01 0.15,Φ = ÷  Re ,k k=ɶ  

40,α =ɶ  200,T =ɶ  400,T =  and observing how fast the function ( )10Reu t−  (the near 

field of the periodic structure) decreases after the source is turned off at the time 

instants 1500T t≤ ≤ . 
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FIG. 4: H -polarization. Anomalously high radiation efficiency at zero spatial harmonic: 

0.9;θ =  0.3;δ =  0.02 .c l=  

( )10Re 0,u t−   
 

  3.0 
 

     0 
 

–3.0 
 
 
 

 
  3.0 
 

     0 
 

–3.0 
 
 

 
 
  1.5 
 

     0 
 

–1.5 
 
 
 

 
  1.0 
 

     0 
 

–1.0 
 
 

 

 
  0.5 
 

     0 
 

–0.5 

( )01W k  

 9.0 

 
 6.0 
 
 3.0 

 
    0 

 
  24 

 
  16 

 
    8 
 
    0 
 

  60 

 
  40 

 
  20 

 
    0 
 

120 
 

  90 
 

  60 
 

  30 
 

    0 
 

400 
 

300 
 

200 
 

100 
 

    0 
0       400    800     1200  t  

0.6                              0.7                              0.8          k  

0.15Φ =  

 
 

( )Rek Φ  

 
 
 

0.10Φ =  
 
 

 
 
 
 

 
0.07Φ =  

 
 
 
 
 
 

 
0.05Φ =  

 
 

 
 

 
 

0.03Φ =  

free oscillations 



The Smith-Purcell Effect: High Level Wave 481 

Volume 77, Issue 6, 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 5: H -polarization. Excitation of high-Q free oscillations of the field on the 01TM -wave 

in the grating groove: 0;p =  0.01;Φ =  0.9;θ =  0.3;δ =  0.02 .c l=  

 
The smaller the value of Φ  is, the closer we are to the “boundary” 0,Φ =  

separating the grating operation regime { }1,2  from { }1,1 ,  in the case of a zeroing of 

the value ,Φ  the 01TM -wave in the grating’s groove is not excited by virtue of that the 

planes of grating’s symmetry divide the groves in half. 
 
TABLE 1: The efficiency of transformation 

Φ =  ( )max

01 01 ReW W k= ≈  Re Imk k i k= + ≈  Re 2 ImQ k k= ≈  

0.15 9 0.7380 0.0063628i−  58 

0.10 26 0.7540 0.0029640i−  127 

0.07 56 0.7605 0.0012770i−  298 

0.05 105 0.7635 0.0007841i−  486 

0.03 350 0.7657 0.0002944i−  1300 

0.01 520 0.7670 0.0000377i−  10160 

 
So, the reason for the abnormally high level of energy takeoff from the electron 

beam into the zero spatial harmonic of lamellar grating is established. Sure, a similar 
effect can be implemented also when the field of the H -polarized surface wave of a 
planar dielectric waveguide but not the field of charged particle beam, becomes a 

source of excitation. Thus, the case considered above: Re 0.767,k =  

0.01Φ =  - corresponds to the velocity 1 0.759kβ = Φ ≈  and the beam modulation 

frequency 0.767k =  and, in the same time, the propagation constant 1 1.01χ = Φ =  

(the delay coefficient) and the frequency 0.767k = of the surface wave. 
We now demonstrate one of the possible ways of practical application of the 

theoretical result obtained here. While exciting a grating of parameters 0.9θ =  and 
0.3δ =  with an ultra-long quasimonochromatic H -polarized pulse 
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( ) ( ) ( ) ( ) ( )
( )

1 1 3, : 0, cos ;

0.01, 0.767, 0.5, : 0.1 5 9995 10000

i
U g t v t P t k t T F t

k T P t

 = − = 

Φ = = = − − −

ɶ ɶ

ɶ ɶ
         (12) 

 

( kɶ  is the central frequency of the signal and ( ) 1 2 3 4:P t t t t t− − −  is its trapezoidal 

envelope, which equals unit for 2 3t t t< <  and is zero for 1t t<  and 4t t> ), we see that 

the grating effectively accumulate input energy in a near field (see Fig. 6 – amplitudes 

( )11 0,u t±  and Fig. 7 – ( ), ,U g t  intg ∈Ω , 10000t ≈ ). 

 
 
 
 
 
 
 
 
 
 
 
 

FIG. 6: H -polarization. The accumulation of energy in the near field of a grating excited by a 

H -polarized quasimonochromatic pulse (12): 0.01;Φ =  0.9;θ =  0.3;δ =  0.02 .c l=  The 

imaginary parts of the amplitudes ( )11 0,u t±  and ( )01 0,u t  practically do not differ from zero. 

 
 
 
 
 
 
 
 
 
 
 

FIG. 7: The rate limits for the field strength in the grating groove at the end of the 
accumulation process 
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powerful pulse ( ) ( ) ( )0 01, ,s

nU g t u z t yµ=  [27–30], having smaller in the amplitude 

precursor, which was radiated throughout the entire time interval 0 10000.t< ≤  This 
effect can be used for designing a new class of diffraction antennas comprising two 
functions: creation and radiation of powerful short RF pulses. 

 

5. CONFIRMATION OF THE CONCLUSION ABOUT THE REASONS OF 

ANOMALOUSLY HIGH LEVEL OF EXCITATION OF OUTGOING WAVES  

For confirming the conclusion made in the previous section, let us consider the results 
of a computational experiment in which a lamellar grating with a complex structure of 

a period (see Fig. 8: 1 1.0,ε =  1 1 0.48 ,d l lθ= =  2 2 0.48 ,d l lθ= =  0.7h l lδ= = ) was 

installed in the field of H -polarized wave ( ) ( ) ( )1 1 1, : 0, ;i
U g t v t F t  0.2,Φ =  0.5,k =ɶ  

0.25,k∆ =  150,T =ɶ  300.T =  

 
 
 
 
 
 
 
 
 
 
 
 

FIG. 8: The geometry of the lamellar grating with a complex structure of a period 

 

Within the frequency band 0.25 0.75,k≤ ≤  occupied by pulse ( )1 , ,i
U g t  the only 

one of the spatial harmonics of the secondary field ( ),s
U g kɶ  of grating propagates 

without decaying: grat

0 0.2,k =  grat

1 0.8k− =  and grat

1 1.2k = . In the same frequency band, in 

the grooves of the grating with 21.0 1.3ε< ≤  only TEM -waves with unmatched 

propagation constants ( )0 1
kγ =  and ( ) 20 2

kγ ε=  ( ( )
wave

1 1
1.04,k ≈  ( )

wave

1 2
0.914 1.04k≤ ≤ ) 

propagate without decaying. So, again we are dealing with the grating operation 

regime with couple of numbers { }1,2 . Reducing the value 2ε  to a value just slightly 

exceeding unity, we come very close to the boundary, beyond which the regime { }1,2  

is replaced by the regime { }1,1 ;  when 2 1.0,ε =  the propagation constants of  

TEM -waves in the grooves coincide. 
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We identify the field of the wave ( )1 , ,i
U g kɶ  as before, with the proper field of the 

electron beam moving above the grating with velocity 1 ,kβ = Φ  1 1.2.Φ =  

Information on the efficiency of its transformation into the field of outgoing at an 

angle 0α  wave for values 2ε  equal to 1.3, 1.2, and 1.1 is presented in Fig. 9 and 

Table 2. Just as in the case considered in the previous section, the regular behavior of 

functions ( )01W k  is violated by sharp spikes in the neighborhood of points Re .k k=  

The Q-factor of the resonances corresponding to these spikes, and the values 

( )max

01 01 ReW W k=  increase indefinitely for 2 1.0.ε →  This trend is clearly visible in 

the graphs of Fig. 9. The dependences ( )11Re 0,u t  for t T>  presented here make it 

possible to estimate the rate of damping of free oscillations of the field near the 
grating, or, what is the same, about their Q-factor. 

It can be confirmed that for any given 0W >  it is always possible to specify 

values 2 1.0,ε >  0δ >  and Rek k=  such that the conversion efficiency ( )01 ReW k  of 

an inhomogeneous plane wave ( )1 ,i
U g kɶ  into a homogenous outgoing wave will 

exceed the value .W  Only fixing the corresponding effect with each step along 2 ,ε  

approaching to the value 2 1.0,ε =  will be increasingly difficult. There is a high 

probability that using standard frequency-domain methods it will simply be missed 
because of insufficiently fine sampling of the varying parameter. 
 

TABLE 2: Efficiency of transformation 

2ε =  ( )max

01 01 ReW W k= ≈  Re k ≈  

1.3 34 0.283 

1.2 59 0.288 

1.1 210 0.2928 

 

6. CONCLUSIONS  

Considerable amount of efficient devices in modern vacuum and optoelectronics, 
accelerator and microwave technology are oriented in their conceptual schemes to the 
implementation of the Smith-Purcell effect or its wave analogs. The theory of these 
effects, developed mainly using the approximation of a given current (given field), 
opens up a lot of possibilities for applications. But, as it turns out, a problem-oriented 
analysis can significantly expand the range of these possibilities. And with present 
work we open a series of papers devoted to such a study. For the begining, as well as 
here, we plan to consider the problems for which solution it is sufficient to involve 
approaches based on the approximation of a given current. Then we move on to more 
realistic models and to problems whose solution will allow us to obtain qualitatively 
new physical results, important for both theory and applications.  
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FIG. 9: H -polarization. Anomalously high radiation efficiency at zero spatial harmonic: 1;p =  

0.2;Φ =  1 2 0.48;θ θ= =  1 1.0;ε =  0.7;δ =  0.02 .c l=  

 

REFERENCES 

1. Smith, S.J. and Purcell, E.M., (1953) Visible light from localized surface charges moving across a 
grating, Physical Review, 92, pp. 1069-1070. 

2. Shestopalov, V.P., (1998) The Smith-Purcell Effect, New York: Nova Science Publishes Inc. 
3. Tretyakov, O.A., Tretyakova, S.S., and Shestopalov, V.P., (1965) Electromagnetic wave radiation by 

electron beam mowing over diffraction grating, Radiotehnika I Elektronika, 10(7), pp. 1233-1243, (in 
Russian). 

( )01W k  

 
  30 

 
  20 

 
  10 

 
    0 

 
  60 

 
  40 

 
  20 

 
    0 

 
200 
 
150 
 

100 
 
  50 
 

    0 

 0.25                                 0.50                                 0.75         k  

53.13                               23.58                               15.47     [ ]0α− °  

0.208                               0.417                                0.625        β  

( )11Re 0,u t  

 

  0.1 
 

     0 
 

–0.1 
 
 
 
 
 
 
 

  0.1 
 

     0 
 

–0.1 
 
 
 
 
 

 
  0.1 
 

     0 
 

–0.1 

0     3000  6000  9000  t  

free oscillations 
2 1.3ε =  

 
 
 

( )2Rek ε  

 

 
 

2 1.2ε =  

 
 
 
 
 
 

 
2 1.1ε =  



486  Sautbekov et al. 

Telecommunications and Radio Engineering 

4. Shestopalov, V.P., (1976) Diffraction Electronics, Kharkiv, Ukraine: Vishcha Shkola, (in Russian). 
5. Budanov, V.Ye., Kirilenko, A.A., Masalov, S.A., and Shestopalov, V.P., (1977) Characteristics of 

Diffraction Radiation of Different Reflecting Gratings, Kharkiv, Ukraine: IRE, Academy of Sciences 
of Ukraine, Preprint no. 83, (in Russian). 

6. Masalov, S.A., (1980) On a possibility of using an echelette in the diffraction radiation generators, 
Ukrainskiy Fizicheskiy Zhurnal, 25(4), pp. 570-574, (in Russian). 

7. Shestopalov, V.P., (1997) Physical Foundation of the Millimeter and Sub Millimeter Waves 

Technique. Vol. I. Open Structures, Utrecht, Netherland & Tokyo, Japan: VSP Books Inc. 
8. Sirenko, Y.K. and Velychko, L.G., (2001) The features of resonant scattering of plane 

inhomogeneous waves by gratings: model problem for relativistic diffraction electronics, 
Telecommunications and Radio Engineering, 55(3), pp. 33-39. 

9. Granet, G., Melezhik, P., Poyedinchuk, A., Sirenko, Y. et al., (2015) Resonances in reverse Vavilov-
Cherenkov radiation produced by electron beam passage over periodic interface, International 

Journal of Antennas and Propagation, 2015, Article ID 784204. 
10. Shestopalov, V.P., Ermak, G.P., Vertiy, A.A. et al., (1991) Diffraction Radiation Generators, Kyiv, 

Ukraine: Naukova Dumka, (in Russian). 
11. Melezhik, P.N., Sidorenko, Y.B., Provalov, S.A., Andrenko, S.D. et al., (2010) Planar antenna with 

diffraction radiation for radar complex of millimeter band, Radioelectronics and Communications 

Systems, 53(5), pp. 233-240. 
12. Yevdokymov, A.P., (2013) Diffraction radiation antennas, Fizicheskie Osnovy Priborostroeniya, 

2(1), pp. 108-125, (in Russian). 
13. Sautbekov, S., Sirenko, K., Sirenko Y., and Yevdokymov, A., (2015) Diffraction radiation 

phenomena: Physical analysis and applications, Antennas and Propagation Magazine, IEEE, 57(5), 
pp. 73-93. 

14. Sirenko, K.Y., Sirenko, Y.K., and Yashina, N.P., (2010) Modeling and analysis of transients in 
periodic gratings. I. Fully absorbing boundaries for 2-D open problems, Journal of the Optical 

Society of America A, 27(3), pp. 532-543. 
15. Sirenko, Y.K. and Strom, S. (eds), (2010) Modern Theory of Gratings. Resonant Scattering: Analysis 

Techniques and Phenomena, New York: Springer. 
16. Taflove, A. and Hagness, S.C., (2000) Computational Electrodynamics: The Finite-Difference Time-

Domain Method, Boston: Artech House. 
17. Sirenko K.Y., Sirenko Y.K., and Yashina N.P., (2010) Modeling and analysis of transients in 

periodic gratings. II. Resonant wave scattering, Journal of the Optical Society of America A, 27(3), 
pp. 544-552. 

18. Pazynin, V.L., Sirenko, K.Y., Sirenko, Y.K., and Yashina, N.P., (2017) Exact absorbing conditions 
for the initial boundary value problem of computational electrodynamics. Review, Fizicheskie 

Osnovy Priborostroeniya, 6(4), pp. 1-35, (in Russian). 
19. Jin, J., (2002) The Finite Element Method in Electromagnetics, New York: John Wiley & Sons. 
20. Sirenko, Y.K., Strom, S., and Yashina, N.P., (2007) Modeling and Analysis of Transient Processes in 

Open Resonant Structures. New Methods and Techniques, New York: Springer. 
21. Sirenko, Y.K., Velychko, L.G., and Erden, F., (2004) Time-domain and frequency-domain methods 

combined in the study of open resonance structures of complex geometry, Progress In 
Electromagnetics Research, 44, pp. 57-79. 

22. Velychko, L.G., Sirenko, Y.K., and Velychko, O.S., (2006) Time-domain analysis of open 
resonators. Analytical grounds, Progress In Electromagnetics Research, 61, pp. 1-26. 

23. Sirenko, Y.K. and Velychko, L.G., (2009) Controlled changes in spectra of open quasi-optical 
resonators, Progress In Electromagnetics Research B, 16, pp. 85-105. 

24. Shestopalov, V.P., Lytvynenko, L.M., Masalov, S.A., and Sologub, V.G., (1973) Wave Diffraction by 

Gratings, Kharkiv, Ukraine: Kharkiv State Univ. Press, (in Russian). 
25. Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., and Sirenko, Y.K., (1986) Resonance Wave 

Scattering. Vol.1. Diffraction Gratings, Kyiv, Ukraine: Naukova Dumka, (in Russian). 
26. Shestopalov, V.P. and Sirenko, Y.K., (1989) Dynamic Theory of Gratings, Kyiv, Ukraine: Naukova 

Dumka, (in Russian). 
27. Kuzmitchev, I.K., Melezhyk, P.M., Sirenko, Y.K., Sirenko, K.Y. et al., (2008) Model synthesis of 

energy compressors, Radiofizika I Elektronika, 13(2), pp. 166-172. 



The Smith-Purcell Effect: High Level Wave 487 

Volume 77, Issue 6, 2018 

28. Sirenko, K., Pazynin, V., Sirenko, Y., and Bagci, H., (2011) Compression and radiation of high-
power short radio pulses. I. Energy accumulation in direct-flow waveguide compressors, Progress In 

Electromagnetics Research, 116, pp. 239-270. 
29. Sirenko, K., Pazynin, V., Sirenko, Y., and Bagci, H., (2011) Compression and radiation of high-

power short radio pulses. II. A novel antenna array design with combined compressor/radiator 
elements, Progress In Electromagnetics Research, 116, pp. 271-296. 

30. Sirenko, Y.K. and Velychko, L.G. (eds.), (2016) Electromagnetic Waves in Complex Systems, New 
York: Springer.  

 


