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We calculate the dc Stark effect for three molecular hydrogen ions in the nonrelativistic approximation. The
effect is calculated both in dependence on the rovibrational state and in dependence on the hyperfine state. We
discuss special cases and approximations. We also calculate the ac polarizabilities for several rovibrational levels
and therefrom evaluate accurately the blackbody radiation shift, including the effects of excited electronic states.
The results enable the detailed evaluation of certain systematic shifts of the transitions frequencies for the purpose
of ultrahigh-precision optical, microwave, or radio-frequency spectroscopy in ion traps.
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I. INTRODUCTION

The molecular hydrogen ions represent a family of simple
quantum systems that are amenable both to high-precision ab
initio calculations [1,2] and to high-precision spectroscopy.
Therefore, they are of great interest for the determination
of fundamental constants [3], for tests of the time- and
gravitational-potential independence of fundamental constants
[4,5], and for tests of QED [2]. On the experimental side,
after early pioneering work on uncooled trapped ions and
ions beams [6-8], the sympathetic cooling of trapped molec-
ular hydrogen ions [9,10] has opened up the window for
high-precision radio-frequency, rotational, and rovibrational
spectroscopy. Precision infrared laser spectroscopy of two
rovibrational transitions has been achieved [3,11], and the
fundamental rotational transition has also been observed [12].

Because of the advances in experimental accuracy, and in
order to open perspectives for future work directions, it has
become important to evaluate the systematic effects on the
transition frequencies. It is an advantage of the molecular
hydrogen ion family that the sensitivities to external fields
can be calculated ab initio. The systematic effects treated so
far include the Zeeman shift [13—15], the electric quadrupole
shift [16], and the blackbody radiation (BBR) shift [17].
The electric polarizability of the rovibrational levels of the
molecular hydrogen ions has been of interest for a long time.
It was computed with high accuracy for a subset of levels
by several authors, in particular [18-23]. These calculations
used adiabatic or nonadiabatic wave functions. Reference [20]
reviews the experimental and theoretical values for the ground
state of H,™ and D,*. A particularly accurate calculation of
the polarizability of H,™ in its ground state was performed
by one of the present authors, by including the relativistic
corrections [24]. The dependence of the polarizability on the
hyperfine state has only recently been obtained [25], for the
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case of HD™, and it was shown that the dependence is very
significant. These results have permitted a first analysis of the
potential for ultrahigh accuracy spectroscopy of HD* and its
suitability as an optical clock [16,26].

In the present paper, extensive calculations of the polariz-
ability are presented. Its dependence on the hyperfine state is
derived in a more elegant way and discussed in depth, both for
HD™ and H,*, since it is of great relevance for experiments.

While the BBR shift is tiny, it will eventually become
of relevance for experiments requiring the highest levels of
accuracy, such as the mentioned test of time independence of
fundamental constants. Therefore, this shift is also computed
in detail. Results for H,* are presented for the first time. In
addition, the case of HD™ is treated extensively, in view of the
current experimental interest in this molecule.

This paper is structured as follows: In Sec. II we briefly
review the calculation approach for the polarizability of the
molecular hydrogen ions, neglecting spin effects. We define the
effective Hamiltonian and present the tables of polarizabilities.
In Sec. III we introduce the hyperfine structure (HFS) and
discuss the computation of the dc Stark shift in dependence of
the spin state. We also give a number of useful approximations.
Section IV presents detailed results for a large number
of hyperfine states potentially relevant for high-precision
spectroscopy. In Sec. V we discuss the energy-level shifts
induced by the oscillating (ac) electric field of the blackbody
radiation, which we accurately evaluate by taking into account
the precise frequency dependence of the polarizability.

II. EVALUATION OF POLARIZABILITY

A. Nonrelativistic polarizability: Spin-independent spatial
considerations

For the purposes of evaluating the systematic effects in
spectroscopy, it is at present sufficient to use the nonrelativistic
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approximation to the polarizability. Therefore, we start from
the nonrelativistic Schrodinger equation:

(Hy — E)¥o =0,
1 V2 — LV2 — LVZ
2M, ! 2M, 2 2m,

R , (1)

where M| and M, are the masses of the nuclei (proton or
deuteron), R is the internuclear distance, r; and r, are the
distances from nucleus 1 and 2 to the electron, respectively.
The state Wy = |v L) is the unperturbed state characterized by
the vibrational and rotational quantum numbers v, L, and E
is its energy.

The interaction with an external electric field E in the dipole
interaction form is expressed by

Vo=—E-d, d=¢[ZR;+Ry)—r], )

where d is the electric dipole moment of the three-particle-
system, R;, R,, and r are the position vectors of the nuclei and
of the electron with respect to the center of mass.

Since the static or quasistatic electric fields present in an ion
trap, and also the electric field of the radiation from continuous-
wave lasers and from the blackbody environmental radiation,
are typically weak, it is sufficient to apply second-order
perturbation theory for the calculation of the polarizability.
The energy shifts that result are typically at the level of 1 Hz,
orders of magnitude smaller than the rotational or hyperfine
splittings. For effects of higher order in the external electric
field, see Ref. [19].

The change of energy due to the polarizability of a
molecular ion is expressed by

E(pz) = <\IJQ|V,7(E0 - HO)_IVP|\IJ0>
= E'EV(Wy|d'(Ey — Ho) ™ 'd’ |Wy)
= Ll ETE, 3)

where aflj, the polarizability tensor of rank 2, has been
introduced,

af = —2(Wold'(Ey — Ho)~'d’ |Wy). 4)

The static dipole polarizability tensor is then reduced to scalar
o, and tensor «; terms, which may be expressed in terms of
three contributions corresponding to the possible values of
of the rotational angular momentum quantum number of the
intermediate state; L' = L £ 1,or L' = L:

2 3 (vL|ld|lp(L + D){(p(L + DId][vL)

ay = N
2L +1 4 Ey—E,
2 (uL|d|lpL)(pL]|d|[vL)
ag = — 3 b=np , 5)
2L +1 Ey—E,
p

_ 2 3 (vLid|lp(L —1){p(L = Dld|vL)

C2L+145 Ey—E, '

where L is the rotational quantum number of the state under
consideration, Ej is its energy, and E, is the nonrelativistic
energy of the intermediate state |p L').
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The polarizability tensor may be expressed as
af = 8oy +a(WolLiL; + L;L; — 38,17 %g),  (6)
where L; are the Cartesian components of the rotational
angular momentum operator, L? = L2 + Li + L%, and
1
o = §(a+ +aop+a-),

at n aop a-
2L+ 1DQ2L+3)  2L(L+1) 2LQRL-1)

We may also define longitudinal (cr) and transverse (o )
polarizabilities

) = oy + o (Wo[2 L — L7 |W), (7)

o =

ay = (o) + o)) = as + o (W|L] + L] — FL7|Wo)
= &y = 30 (Wo|2 L7 — L2 | Wo). ®)

The definition of «; as given above is reasonable, since
axial symmetry requires that the matrix elements of L2 and
of L2 are equal. Thus, the polarizabilities oy and «; actually
involve the expectation value of only a single operator, which
has an alternative representation as the zero component of the
rank-two tensor {L. ® L},,

2 8
207 - 3L = \@{L ® L}z ©)

In Sec. III, we will evaluate the polarizabilities of the hyperfine
states of a given rovibrational level. The approximation we will
use consists in introducing the polarizability operator, which
acts in a manifold of given L,

i 2
&dj(U,L) = (Sij()ls(U,L) + (YZ(U,L)[LI'L]' + L]‘L,' — §5ijL2:|-

The operator &, is the the sum of a scalar and an irreducible
tensor of rank 2; in what follows we use instead the following
linear combinations:

8
Q) (v,L) = ay(v,L) + a,(v,L)\/;{L ® L},

1 8
@ (v,L) = a,(v,L) - Ear(v,L)\/;{L ® Lixo,

which are defined in such a way that their expectation values
give the Stark shift in an electric field along or orthogonal to
the quantization axis, respectively. Here, we have included the
explicit dependence of the coefficients o, ; on the vibrational
and rotational quantum numbers v, L. We shall also explicitly
consider the polarizability anisotropy operator,

A A 3 /8 2 1 2
Ol” —OCLZOlt(v,L)E §{L®L}20=3a[(v,L) Lz —gL .
(10)

B. Numerical results

Wave functions of the rovibrational states in the molecular
hydrogen ions are obtained by using the variational approach
expounded in Ref. [24]. Briefly, the wave function for a state
with a total orbital angular momentum L and of a total spatial
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TABLE 1. Polarizabilities of the HD™ molecular ion in atomic units.

L=0 L=1 L=2 L=3 L=4 L=5

v o o o, o o, o o, o o o o

0 395.30633 3.99015 175.48275 4.00956 13.82797 4.03878 3.19075 4.07794 1.10141 4.12721 0.47319
1 462.65271 470314  205.20067 472694  16.14340 476278 3.71557 4.81084 1.27799 487136  0.54642
2 540.68636 5.56925 239.58035 5.59871 18.81611 5.64313 4.31921 5.70273  1.48001 5.77786  0.62955
3 631.40288 6.63284  279.47585 6.66965 21.91000 6.72541 5.01516 6.80017 1.71152 6.89451 0.72396
4 737.31802 7.95478  325.95893 8.00132  25.50477 8.07195 5.82011 8.16691 1.97742 8.28690 0.83127
5 861.64968 9.61839 380.39514 9.67856  29.70139 9.76943 6.75494 9.89175 2.28374 10.04654 0.95337
6 1008.5802 11.74323 44454814 11.82178 34.62944  11.94052 7.84610 12.10056 2.63789 12.30342 1.09241
7 1183.6432 14.50032 520.73882 14.60466 40.45801 14.76254 9.12757 14.97563 3.04910 15.24624 1.25088
8 1394.3075 18.14238 612.07821 18.28368 47.41173 18.49776 10.64364 18.78717 3.52889 19.15548 1.43147
9 1650.8846 23.05215 722.82833 23.24788 55.79504 23.54473 12.45301 23.94684 4.09171 24.45984 1.63690
10 1967.9875 20.82774 85897404 30.10584 66.03006 30.52844 14.63477 31.10210 4.75562 31.83608 1.86935

parity 7 = (— 1)’ is expanded as follows:

ViR = Y VINREDGI(Rrr),
ZI‘HZ:L
N
G{:Z(erlvré) = Z{CﬂRe[eia”Riﬂ”rliynrz]

n=1

+ Dylm[e™ f=hnnngy, (an
where the complex exponents «, B, y, are generated in a
pseudorandom way. The use of complex exponents instead
of real ones allows reproducing the oscillatory behavior of
the vibrational part of the wave function and improves the
convergence rate. In numerical calculations we utilize basis
sets as large as N = 7000 functions in order to provide the
required accuracy for the static polarizability of about eight
significant digits.

We note that a variational principle holds for the numerical
value for o (but not for «;): the larger the value, the closer it
is to the exact (nonrelativistic) value, provided that the initial
wave function is accurate enough.

The results of numerical calculations of the polarizabilities
for a wide range of rovibrational states are presented in

Tables I-III. These polarizabilities do not include relativistic
corrections. These have so far been computed only for
the ground rovibrational level (v = 0,L = 0) of Hy™ [24].
Therefore, the relative inaccuracy of the values of the table
as compared to the exact values is of order a2 ~ 1 x
10~#. This is sufficiently small for current and near-future
purposes.

C. Scaling with rotational angular momentum
For large L, we find for HDY,
1
L(L+1DQ2L —1DQRL +3)
This follows from an argument described below after Eq. (25).
We found heuristically that, for H,™ and D, t,
1
2L — DQRL +3)°

a(v,L) (12)

o;(v,L) (13)
D. Comparison with previous work
1. Contribution from ground electronic state

An approximation to the polarizability can be obtained us-
ing the well-known sum-over-intermediate-states expression,

TABLE II. Polarizabilities of the H,* molecular ion in atomic units.

L=0 L=1 L=2 L=3 L=4 L=5

v o o o o o o o o o o o

0 3.1687258 3.1783035 —0.8033729 3.1975081 —0.1931423 3.2264392 —0.0914467 3.2652493 —0.0544769 3.3141473 —0.0367142
1 3.8975634 39101018 —1.1442051 3.9352574 —0.2751013 3.9731892 —0.1302653 4.0241411 —-0.0776138 4.0884471 —0.0523179
2 4.8215004 4.8380889 —1.6000689 4.8713900 —0.3847653 4.9216560 —0.1822373 4.9892726 —0.1086157 5.0747693 —0.0732474
3 6.0093275 6.0315483 —2.2129563 6.0761862 —0.5322759 6.1436389 —0.2521973 6.2345166 —0.1503892 6.3496578 —0.1014845
4 7.5604532  7.5906530 —3.0434869 7.6513642 —0.7322875 7.7432180 —0.3471422 7.8671844 —0.2071498 8.0246002 —0.1399110
5 9.6217735 9.6635170 —4.1811566 9.7475033 —1.0064626 9.8747452 —0.4774336 10.046804 —0.2851555 10.265837 —0.1928182
6 12.416000 12.474853 —5.7615823 12.593371 —1.3876723 12.773211 —0.6588274 13.016932 —0.3939491 13.328069 —0.2667729
7 16.290999 16.375936 —7.9965515 16.547168 —1.9273337 16.807463 —0.9160304 17.161118 —0.5485440 17.614095 —0.3721509
8 21.809473 21.935532 —11.228720 22.189990 —2.7087984 22.577626 —1.2892120 23.105870 —0.7734466 23.785138 —0.5259729
9 29.920328 30.113886 —16.036300 30.505195 —3.8730473 31.102847 —1.8465559 31.920266 —1.1104555 32.976407 —0.7574477
10 42.306330 42.616316 —23.445884 43.244200 —5.6711124 44.206257 —2.7100058 45.528094 —1.6347702 47.246181 —1.1195247
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TABLE III. Polarizabilities of the D, molecular ion in atomic units.

L=0 L=1 L=2 L=3 L=4 L=5

v o o o oy o o ay a; o o

0  3.0719887 3.0765904 —0.7579521 3.0858052 —0.1813435 3.0996560 —0.0852443 3.1181777 —0.0503016 3.1414173 —0.0335048
1 3.5530258  3.5585822 —0.9782731 3.5697111 —0.2340592 3.5864444 —0.1100266 3.6088309 —0.0649271 3.6369364 —0.0432481
2 41195817 4.1263238 —1.2485988 4.1398301 —0.2987476 4.1601453 —0.1404432 4.1873367 —0.0828824 4.2214959 —0.0552137
3 47912827 47995087 —1.5808716 4.8159913 —0.3782716 4.8407920 —0.1778439 4.8740043 —0.1049671 4.9157545 —0.0699367
4 55933149 5.6034134 —1.9904009 5.6236531 —0.4763025 5.6541185 —0.2239603 5.6949390 —0.1322078 5.7462891 —0.0881048
5  6.5583187 6.5708021 —2.4970077 6.5958274 —0.5975951 6.6335113 —0.2810366 6.6840342 —0.1659357 6.7476365 —0.1106108
6 7.7290547 7.7446049 —3.1266348 7.7757864 —0.7483752 7.8227607 —0.3520126 7.8857801 —0.2078964 7.9651778 —0.1386263
7 9.1622096  9.1817469 —3.9136471 9.2209342 —0.9368936 9.2799934 —0.4407873 9.3592871 —0.2604068 9.4592730 —0.1737083
8 10933925 10.958708 —4.9041723 11.008431 —1.1742306 11.083398  —0.5526002 11.184144 —0.3265836 11.311297 —0.2179539
9 13.147977 13.179752  —6.1610454 13.243527 —1.4754879 13.339760 —0.6946003 13.469145 —0.4106838 13.632624 —0.2742310
10 15.948121 15.989359  —7.7712809 16.072159 —1.8615919 16.197178 —0.8766990 16.365416 —0.5186172 16.578236  —0.3465280

where the sum is truncated to a subset of levels. For HD™,
such a calculation has been performed using transition dipole
moments computed in the Born-Oppenheimer approximation
[25], including in the sum only levels of the ground electronic
state (the inaccuracy of the used dipole moments is mentioned
further below). At first sight, it may appear that the polarizabil-
ity of a level (v,L) in HD* is dominated by the contribution
from the rotational levels adjacent in energy to the particular
state, namely (v,L £ 1). This is evidently true for L =0
levels. However, for L # 0, there is partial cancellation of the
two contributions from L’ = L + 1. Even then, the «;, values
indeed arise essentially from the rovibrational transitions.
However, the ay(L > 0) values are actually dominated by the
contribution from the excited electronic states. This has been
pointed out by several authors before. The comparison of the
accurate results given in the tables above with the truncated-
sum results allows us to put in evidence the contribution
from the excited electronic states. The comparison is shown
in Table IV, showing that for low-lying rovibrational levels
(v,L < 5), the difference is of order several atomic units for
o and less than 2.5 atomic units for «,. The increase of the
difference with v is due to the fact that the contributions from
excited electronic states become more important since the level

TABLE 1V. Difference da between the accurate polarizabilities
of HD" (this work) and those computed by a summation over all
intermediate rovibrational states in the ground electronic state, in
atomic units. The latter are calculated from the results of Ref. [25]

(which are there given in terms of “fjlesuz ,ot,(fZFS”Z) as o, (v,L) =

(“yZFsu, + 201;'2””:)/3 [where any hyperfine state (F,S,J,J;) can
be chosen] and o, (v,L) = (&), — &), )/[LQL — 1)], where n,
denotes the stretched state, defined in Sec. III C 3.

L =4

v  Say doy Sy Say  Say  Say  Say Sy Sy

0 33 31 -072 31 -0.18 32 -0.08 32 -0.06
1 39 37 -098 38 —-024 38 -0.12 38 -0.08
2 47 45 —-134 45 -034 46 -0.16 46 -0.10
3 56 54 —-180 55 —-044 55 -022 56 —-0.12
4 68 66 —-242 66 —-0.60 6.7 —-0.28 6.8 —0.16

v is getting closer in energy to them. Note that the values in
Table IV are similar to those in Tables II, III, as it should be,
according to the above interpretation.

For the homonuclear H,™ and D, the polarizability arises
only from the excited electronic states, since there is no
electric-dipole coupling between levels of the ground elec-
tronic state. As a consequence, the polarizabilities o;(L = 0)
and o, (v, L) are much smaller than in the case of the heteronu-
clear ions, as has been noted in previous studies cited above.

2. General calculations

We can compare our results with some previous studies.

Early on, Bishop and Lam [18] studied the states v =
0, L =0-10 of Hpy". The largest number of levels was
considered by Moss and Valenzano, who covered the three
ion species also treated here, with L = 0,1, and all v [21]. Our
results agree with theirs to within two units of the last digit
reported by them, except for the level (v = 8, L = 1), where
the largest discrepancy occurs, 0.007 a.u.

The agreement with the L = 0 values for the three ion
species determined by Hilico ef al. [20] and Karr et al. [23] is
better than 4 x 10~% in relative terms.

Pilon and Baye recently computed the polarizabilities
of H,™ for a number of levels [27]. The values for
v=0, L=0,1,2,3,4,5 agree to better than 2 X 1078
in relative terms. For L =1, v=0,1,2,3 and for
L=2 v=0,1,2,3 the values agree with the present
values to better than 3 x 10~ in relative terms.

III. PERTURBATION THEORY FOR HYPERFINE STATES
A. Energy shifts

The hyperfine interactions split each rovibrational level into
a number of hyperfine sublevels. We denote the corresponding
kets as |m) = |vLnJ.), where n is a label for the particular
hyperfine state in a rovibrational level (v,L) (note that this
notation includes both pure and nonpure spin states). n is
written as (F, S, J) for HD" and (1, S, J) for H,T; see Sec. III B
below. When the Stark shifts of the quantum levels are small
compared to other shifts, we can apply first-order perturbation
theory. The Stark energy shift of a state |m) can be expressed
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in different ways [28]:

PHYSICAL REVIEW A 89, 052521 (2014)

1
AEmn::—EwmmmmE§+om&gme§+E@]

1 1 8
e G P e Eg)}<m|f§{L®L}zo|m>}

2

2

1 1
:——WL%+%G®§9—DWM?—?ﬂmq

1 1
:._Emﬂ[agm,L)+(3cos20-—1)§<anJA&“-&i|anJg], (14)

where 6 is the angle between the quantization axis and the
direction of the electric field E.

In Refs. [16,25] the levels shifts were described in terms
of longitudinal polarizability "’ and transverse polarizability
o', They are related to the expectation values of the operators
introduced here by (m|&|m) = «® and (m|&, |m) = o®.

B. Hyperfine structure

We limit ourselves in the following to the ion species Hy™
and HD™, which are most relevant for experimental work at
present.

In case of the molecular ion H,™ we have identical
nuclei and nuclear permutation symmetry. This makes some
spin configurations forbidden and splits the consideration of
hyperfine states into two cases (see Ref. [29]): for even L, the
total nuclear spin / is zero and only two hyperfine sublevels
are possible; for states with odd L, the total nuclear spin is
one and the rovibrational level is split into five or six hyperfine
sublevels, depending on the value of L.

The most suitable coupling scheme of the angular momen-
tum operators is

S=I+s,, J=S+1L, (15)

where I is the total nuclear spin operator, and s, is the
electron spin operator. The basis states which correspond to
this coupling are

USLIJ)= Y Cii 1y Crpy o (L) - [se£) - |LLz)), (16)
I..§.S;

and will be called pure states [30].
The effective HFS Hamiltonian is expressed as [29]

Hee = brp(I-s,)+c.(L-s,)+c;(L-I)
T — { L350~ [(L-DL-5)
QL-D2L+3) |3
d>

+(L-Se)(L-I)]} + m

]221 2
XBLI—E@Jy%LD}. (17)

For the case of even L, the pure states are the true HFS
eigenstates, since the 2 x 2 effective HFS Hamiltonian
matrix is diagonal. Even for odd-L states, the pure states are
good approximations to the true HFS states [30], since the

(

coefficients of admixture of other states to a given true HFS
state are small, e.g., for L = 1 do not exceed 0.04, and for
L = 3 do not exceed 0.06. This means that even in this case,
a good approximation for expectation values such as Eq. (14)
may be obtained using the pure states.

For the hydrogen molecular ion HD™ the coupling scheme
of the particle angular momentum operators is [31]

F=I,+s.,, S=F+1;, J=S+L, (18)

where I,,I; are the proton and deuteron spin operators,
respectively. The effective Hamiltonian is given in Ref. [31].
The pure states are determined in a similar way as in Eq. (16).
In zero magnetic field, the pure states represent a good
approximation to some of the true HFS states and may be used
to calculate approximate values of the polarizabilities. Details
are given in Sec. IV below. Hyperfine states are labeled by
n=(FSJ).

C. Analytical results

In this section we discuss some useful results that allow
to understand several dependencies. In particular we discuss
the polarizabilities of the pure spin states, for two reasons.
First, a significant part of hyperfine states may be well
approximated by pure spin states; second, since all hyperfine
states can be expressed as weighted sums of pure spin states,
their polarizabilities can conveniently be computed from the
pure-state polarizabilities.

1. Zero magnetic field

When the magnetic field is zero, the total angular momen-
tum squared J?> commutes with the hyperfine Hamiltonian and
J is a good quantum number. Therefore we can apply the
Wigner—Eckart theorem, and separate the J, dependence of
the expectation value:

(vLnJ,|{L ® L}|vLnJ;)
= Czjoj,zuz(anH{L Q L}s|[vLn) /20 + 1
_ J(J+1)—=3J2

CJTT DRI — DT + D2J +3)
x(vLn|{L ® L},||vLn). (19)
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We therefore obtain the J, dependence of the polarizability
anisotropy as follows:

(vLnJ,|&) — &1 lvLnJ;)
—w(anJ =Jlay —arlvLnd, =J
T Jei-) 2= Jlay —aulnd. = ).
(20)
Note that this result holds both for pure and nonpure spin states.
It follows that for J = O states, the polarizability anisotropy

J

1
(SLJJZ|2<L§ - §L2>|SLJJZ)

[J(J +1)=3J2]BD(D — 1) —4J(J + DL(L + 1)]

8
\/;(SLJJZHL ® L}x|SLJJ;) =

PHYSICAL REVIEW A 89, 052521 (2014)

is zero. For HD", J = 0 states can only occur for L < 3,
since the minimum J value permitted by angular momentum
algebra is L — 2. For H,™, there are no such states, since J is
a half-integer number.

2. Pure states

For pure angular-momentum states, the matrix elements
of the polarizability anisotropy can be evaluated explicitly.
Considering only the coupling scheme J =S 4+ L, we have
(note that this is independent of 7 or F)

JJ,
8 Ciia

———=—_(SLJ|{L® L} |SLJ
3J21—Jr1< It LlSLJ)

) 2n

3J(J +DH2J - DH(2J +3)

where

D=JUJ+D+LL+1)-SS+1D. (22)

This result is obtained using the following relations [32,33]:

(SLJ {L @ L},|| SLJ) = (2J + 1)(—=1)StE+/+2 {

L L 2

e S} (LIL®LpL),

(LI{L® Lh||L) = %JL(L + DyQ2L - D2L + DL +3).

In H,™ we consider first the states having even L, so I = 0. Then S = 1/2. These pure states are exact HFS eigenstates, and
therefore Eq. (22) immediately gives the exact Stark shift using Egs. (14) and (20):

o 3 [J(J +1)=3J2]3D(D — 1) —4J(J + DL(L + 1]
(m(even L)|&) — & |m(even L))y~ = —zal(v,L) 390U £ D0J — DT 1 3) , (23)
with D = J(J + 1)+ L(L + 1) — 3/4.
For pure states with odd L (and therefore I = 1):
(I =1SLJ|{LQL}|| I = I1SLJ) = (2J + 1)(—1)StL+/ {I; ; i} (LI{L® L}, |IL)
27 4+13D(D —1)—4J(J + DL(L + 1) o
B 6 2JTT ¥ DRI =DRJT +3)

where D is given by Eq. (22). We see that the actual value of I does not occur on the right-hand side, and that we obtain the
same result as for the I = 0 pure states. Equation (23) is an approximate result also for the odd-L hyperfine states of H,* which
are not pure, provided they are approximately pure (see below).

In the case of HD, where the pure states are denoted as |FSLJ J.), Eq. (23) also holds, where L now can be even or odd.
There is no dependence on F.

Summarizing, for any pure state of H,™ and HD" and, by consequence, also for all other molecular hydrogen ions, Eq. (23)
gives the polarizability anisotropy [with D given in Eq. (22)]

< (ateldy — &, | cate) 3 ( L)[J(J +1)=3J2|3D(D — 1) — 4J(J + DL(L + 1)]
I — T jes — ——= s - .
pure state|c O [pure Stat€)any species 2(1, v 3.](] n 1)(21 — 1)(2] T 3)

(25)

We note that Roeggen [34] developed an approximate the- 3. Stretched states
ory of the polarizability of heteronuclear diatomic molecules
with spin, neglecting nuclear spin. If we combine our Eq. (25)
and the approximate dependencies Eq. (12) we reproduce the

result given in Egs. (62) and (63) of Ref. [34].

The stretched states are those exact HFS states having
maximal total angular momentum J and maximal (absolute)
projection |J,|. These are also pure states. In HD, these are
the states |vLng), where n; denotes the stretched hyperfine
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TABLE V. The normalized anisotropic polarizabilities for the J. = 0 hyperfine states of HD* in L = 1 levels. The first column shows the
hyperfine state’s label n,J, (F and S are usually approximate, J is an exact quantum number), the second column contains the normalized
values (vVLFSJJ, =0|&; — &, [vLFSJJ, =0)/(vLn,|&; — & |vLny) for the pure state [vLFSJJ, = 0) giving the largest contribution to
the exact HFS state |[vLnJ, = 0) (note that the values are independent of F and of v). The following columns give the actual values
(vLnJ, = 0|&; — &, |vLnJ, = 0)/(vLn,|&; — & |vLn,) for each hyperfine state. The normalization is with respect to the polarizability
anisotropy of the stretched state |[vLn;) of the same rovibrational level, Eq. (26). The three states marked with an asterisk are pure states. The
values for states with J, # 0 are obtained by multiplying the values in the table by (1 — 3 J2 /LI + D).

Hyp. state Eq. (25) Level

(F,S,J,J;) (normalized) (v,L) = (0,1) (v,L)y=(1,1) (v,L) =(2,1) (v,L)=(3,1) (v,L)y=(4,1)
(0,1,2,0) —1 —0.999422 —0.999457 —0.999491 —0.999525 —0.999558
(0,1,1,0) 1 0.998747 0.998825 0.998902 0.998978 0.999053
(0,1,0,0)* 0 0 0 0 0 0
(1,0,1,0) -2 —1.66845 —1.69239 —1.71585 —1.73892 —1.76151
(1,1,1,0) 1 0.590503 0.619326 0.647628 0.675521 0.702883
(1,1,0,0)* 0 0 0 0 0 0
(1,1,2,0) -1 —0.999973 —0.999972 —0.999971 —0.99997 —0.99997
(1,2,1,0) -0.2 —0.120803 —0.125763 —0.130681 —0.135574 —0.140428
(1,2,3,0)* -0.8 —0.8 -0.8 -0.8 —0.8 -0.8
(1,2,2,0) 1 0.999395 0.999429 0.999462 0.999495 0.999528

state: F =1, =2,J = L+ 2,J, = £(L + 2). We find from
Eq. (25) or by analytical evaluation of the matrix elements
for these two stretched states (the evaluation is simple, if
the calculations is done with the basis functions being the
eigenfunctions of the individual angular momenta /,,1;,S,L),

(vLng|&y — &, |vLng) = LQL — Dey(v.L).  (26)

Compare with the discussion in Ref. [16].

In H,%, the stretched states are |vLng) = |v,L,I =
1,§=3/2,J =L+3/2,J, = £(L + 3/2)). The same result
Eq. (26) is obtained.

By evaluating the polarizabilities of all hyperfine states, we
find that if L > 1, the largest value of (m|& — & |m) within
a rovibrational level occurs for the stretched states (see tables
below). Therefore, in the following discussion, we normalize
the polarizability anisotropy values of any hyperfine state in
a particular rovibrational level relative to that of the stretched
states in that same level.

For HD™, combining the result Eq. (26) for the stretched
states with the approximate behavior Eq. (12), we obtain
(vLng|@) — &, |vLng) < (3 4+ 5L +2L*)~". This describes a
rather strong decrease in the magnitude of all anisotropic
polarizability values, not only those of the stretched states,
with increasing L.

IV. NUMERICAL RESULTS FOR HYPERFINE-STATE
DEPENDENCE

The evaluation of the matrix elements of Eq. (10) for all
(exact) hyperfine states is straightforward, once the hyperfine
states in absence of electric field are known. The calculation
can for example proceed by considering the expansion of the
hyperfine states in pure states, and then applying Eq. (25),
which holds for the pure states of any molecular hydrogen
ion. Actually, the matrix elements are the same (apart from
prefactors such as «;) as the matrix elements for the electric
quadrupole shift evaluated in Ref. [16], and an explicit formula
is given there.

We have performed the computation for the rovibrational
levels up to v =4 and L = 4. Note that the polarizability
anisotropy vanishes for L = 0 states and is therefore not
reported in the tables. We confine ourselves to the case of
zero magnetic field.

The results are summarized in Tables V and VI where we
give the values for the hyperfine states having J, = 0. The
values for J, # 0 can be easily obtained using Eq. (20). Note
that for a given hyperfine state and value of L the dependence
on v is usually weak, limited to several percent, except for a
few cases.

By looking at the values in the Tables V, VI, one can see
that the approximation that the polarizability does not depend
on F is quite good for some hyperfine states, and moderate
in others, which is due to their more-or-less pure character. A
main result of the analysis is therefore that in order to obtain
values accurate to better than one atomic unit for HD™, because
of its large values of «; it is necessary to use the exact hyperfine
dependence of the polarizability anisotropy,

The results for Hy* in odd-L states are shown in Table VII.
We can see that in this species, the anisotropic polarizabilities
are always very close to those of the pure states. The maximum
deviation is approximately 0.01 atomic unit. Thus, for current
purposes, for Hy™ one may use Eq. (25) for all rovibrational
levels.

V. BLACKBODY RADIATION FREQUENCY SHIFT

A. Generalities

The blackbody radiation shift of a level m is computed as
1 [e.¢]
AEgpr(m,T) = 3 / ay(m,w)ppr(T. @) dw, (27)
0

if the BBR electric field Egpg is unpolarized. The contributions
from the magnetic field are neglected. Therefore, under this
assumption and because of the small hyperfine splittings
compared to the (smallest) rotational levels splitting (20 MHz
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TABLE VI. Same as Table V, but for levels L = 2,3,4. Note that the values in the second column are rounded.

Hyp. state Eq. (25) Level (v,L)
(F,S,J,J,) (normalized) (v,L) = (0,2) (v,L) =(1,2) (w,L) =(2,2) (v,L)=(3,2) (v,L) = (4,2)
(0,1,3,0) -0.8 —0.799487 —0.799517 —0.799548 —0.799578 —0.799608
(0,1,2,0) -0.5 —0.499349 —0.49939 —0.49943 —0.499469 —0.499508
(0,1,1,0) —-0.7 —0.698944 —0.699011 —0.699076 —0.699141 —0.699205
(1,0,2,0) -1 —0.89668 —0.902108 —0.907625 —0.913227 —0.918913
(1,1,1,0) —-0.7 —0.598522 —0.605382 —0.612152 —0.618825 —0.625393
(1,1,2,0) —-0.5 —0.572569 —0.56875 —0.564853 —0.560883 —0.556839
(1,1,3,0) —-0.8 —0.798847 —0.798904 —0.798961 —0.799019 —0.799079
(1,2,0,0)* 0 0 0 0 0 0
(1,2,1,0) 0.7 0.597466 0.604392 0.611229 0.617966 0.624598
(1,2,2,0) 0.2143 0.182884 0.184534 0.186194 0.187865 0.189546
(1,2,3,0) -0.2 —0.201666 —0.201579 —0.201491 —0.201403 —0.201313
(1,2,4,0)* —0.7143 —0.714286 —0.714286 —0.714286 —0.714286 —0.714286
(v,L) = (0,3) (v,L)=(1,3) (v,L) = (2,3) (v,L) = (3,3) (v,L) = (4,3)
(0,1,4,0) —0.7143 —0.713807 —0.713835 —0.713864 —0.713892 —0.71392
(0,1,3,0) —0.6 —0.599383 —0.599421 —0.599459 —0.599496 —0.599533
(0,1,2,0) —0.6857 —0.684872 —0.684925 —0.684977 —0.685028 —0.685079
(1,0,3,0) -0.8 —0.743487 —0.745805 —0.748206 —0.750693 —0.753272
(1,1,2,0) —0.6857 —0.641563 —0.644157 —0.646756 —0.649358 —0.651959
(1,1,3,0) -0.6 —0.638925 —0.637509 —0.636019 —0.634449 —0.632793
(1,1,4,0) —0.7143 —0.712034 —0.712155 —0.712277 —0.712399 —0.712523
(1,2,1,0)* —-0.48 —0.48 —0.48 —-0.48 —0.48 —-0.48
(1,2,2,0) —0.1714 —0.216421 —0.213776 —0.211124 —0.208471 —0.205819
(1,2,3,0) —0.2533 —0.271538 —0.270598 —0.26965 —0.268696 —0.267735
(1,2,4,0) —0.4286 —0.431302 —0.431152 —0.431002 —0.430852 —0.4307
(1,2,5,0)* —0.6667 —0.666667 —0.666667 —0.666667 —0.666667 —0.666667
(v,L) = (0,4) (v,L)=(1,4) (v,L) = (2,4) (v,L)=(3,4) (v,L) = (4,4)
(0,1,5,0) —0.6667 —0.666213 —0.66624 —0.666267 —0.666293 —0.66632
(0,1,4,0) —0.6071 —0.606572 —0.606607 —0.606642 —0.606676 —0.60671
(0,1,3,0) —0.6548 —0.654035 —0.654081 —0.654126 —0.65417 —0.654214
(1,0,4,0) —0.7143 —0.677583 —0.678822 —0.68012 —0.68148 —0.682906
(1,1,3,0) —0.6548 —0.627904 —0.62934 —0.630793 —0.632265 —0.633749
(1,1,4,0) —0.6071 —0.630532 —0.629989 —0.62939 —0.628733 —0.628016
(1,2,2,0)* —-0.5612 —0.561224 —0.561224 —0.561224 —0.561224 —0.561224
(1,1,5,0) —0.6667 —0.663695 —0.663856 —0.664019 —0.664183 —0.664348
(1,2,3,0) —0.3929 —0.420442 —0.41896 —0.417462 —0.415946 —0.414418
(1,2,4,0) —0.4096 —0.423439 —0.422708 —0.421974 —0.421236 —0.420494
(1,2,5,0) -0.5 —0.503426 —0.503237 —0.503047 —0.502857 —0.502666
(1,2,6,0)* —0.6364 —0.636364 —0.636364 —0.636364 —0.636364 —0.636364

versus 1 THz, i.e., 2 x 1072 in relative terms), the BBR shift
is to a high approximation equal for all hyperfine states of a
given rovibrational level.

B. Approximate treatment
1. Homonuclear ions

We may approximate the polarizability of the homonuclear
ions by its zero-frequency value: o, ((v,L),®) >~ o;((v,L),0 =
0) = o, (v, L), where the values are given in the Tables I and I1I
above. Then

AEppr(m,T) > AEg((v,L),T)
= —1o,((v,L),0)(831.9 V/m)*(T /300 K)*. (28)

(In this expression, the value of o in atomic units is to be
multiplied by the value of 47 eoaS in ST units.) A polarizability
of one atomic unit gives a frequency shift of —8.6 mHz at
300 K. The shifts of several selected rovibrational levels are
given in Table VIIIL.

2. Heteronuclear ions

For the heteronuclear ions, we express the polarizability as
as ((U ) L)va)) = as((v’ L)a 0) + 8as,dyn,rv((v’ L),CL))
+ 8as,dyn,elec ((v,L),w). (29)

oy((v,L),0) is the variational calculation result. Here,
Sty aynelec((v,L),w) is the frequency-dependent contribution
from the excited electronic levels. It does not include the
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TABLE VII. Anisotropic polarizability of the states of Hy™ in L = 1,3 normalized to those of the stretched states and divided by
1-3 JZ2 /[J(J + D)]). Second column: approximate value (value corresponding to the dominant pure component). Columns 3 to 7: exact

result. States with an asterisc are pure states.

Hyp. state Eq. (25) Level (v,L)
1,8,J4,J;) (normalized) v=20 v=1 v=2 v=3 v=4
L=1
(1.3.2.7) —-1.25 —1.24946 —1.2495 —1.24951 —1.24956 —1.2496
(1.3.5.72) —0.125 —0.1216 —0.12186 —0.12212 —0.12238 —0.12262
(1.3.4.7) 2.125 2.12158 2.12185 2.12212 2.12239 2.12262
(1.3,3,7.)% —0.875 —0.875 —0.875 —0.875 —0.875 —0.875
(1.3.2.7) 1 0.99946 0.9995 0.99952 0.99956 0.9996
L=3
(1.3.2.7) -0.75 —0.74955 —0.74958 —0.74961 —0.74964 —0.74967
(1.3.3.7) —0.75 —0.74871 —0.7488 —0.7489 —0.74899 —0.74909
(1.3,3,7.)% —-0.6 —0.6 —-0.6 —0.6 —-0.6 —0.6
(1.3.2.7) —0.4125 —0.41379 —0.41369 —0.41359 —0.4135 —0.41341
(1.3.2.1) -0.5 —0.50044 —0.50041 —0.50038 —0.50035 —0.50032
(1.2,2,7,)% —0.6875 —0.6875 —0.6875 —0.6875 —0.6875 —0.6875
frequency-independent part, which is instead included in The total BBR shift is

(XS((U,L),O). Both 8as,dyn,elec((vaL)’w) and 8as,dyn,rv((v’L)aa))
are defined so that they vanish at w = 0. The frequency-
dependent contributions from FE'1 rovibrational transitions
within the ground electronic state give rise to [17]

Sas,dyn,rv((v’ L),w)

1 1
= = > 'L |ld]v, L)
32L+1 54

1 1
x +
(Ev’L’ - EvL + ha) Ev'Lr — EuL — ha)

2
- —) (30)
Evp — EyL

In this sum, the value of L’ can only take on the values L + 1,
due to the selection rule.

As a first approximation, we can neglect §o gyn elec, as done
above for the homonuclear ions, since the transitions to the
excited electronic states are of similar character. This neglect
will be corrected in the next section.

TABLE VIII. Static approximation of BBR shift and dynamic
contribution of some levels of Hy* at T = 300 K. The total BBR
shift is obtained by adding the values in the third and fourth columns.

AEslal((v’L)aT) AEdyn,elec((UyL% T)

v L [mHz] [mHz]
0 0 —27.3 —0.0023
0 1 —27.4 —0.0023
0 3 —27.8 —0.0024
1 1 —33.7 —0.0044
1 3 —34.2 —0.0046
2 1 —41.7

3 1 -519 —0.0156

AEgpr((v,L),T) = AEgu((v,L),T) + AEgyn((v,L),T)
+ AEdyn,elec((va)v T) (31)

We first discuss the dynamic rovibrational contribution to the
BBR shift,

AEayn v ((v,L),T)

l o0
- f 50t aymen (0, L), ) Enpr (T do,
0

which we have computed for levels up to vp,x = 10, Liax = 5,
extending the results of Ref. [17], which considered levels with
Vmax = 7, Lmax = 1.

In this computation, it is important to use the most accurate
transition dipoles values available, in order to reach a sufficient
absolute accuracy in the polarizability and BBR shift, since
partial cancellations occur in Eq. (30). For v < 6,L < 6 we
use the precise transition dipoles of Tian et al. [35], based
on variational wave functions. Their fractional inaccuracy
is stated as smaller than 1 x 107 and is less than that of
our previously published values in Ref. [14]. As a check,
we have recomputed the transition dipole moment of (v =
0,L =0) — (v =0,L" = 1) with a larger basis set, and the
value 0.342 833 4 a.u. in agreement with Tian et al. to better
than 3 x 1077 in fractional terms. We have computed the
transition dipole moments between L =5 and L’ = 6 levels
having v,v" < 6 in order to extend the results of Tian et al.
They are listed in Table IX. For larger v,v’ > 6 we use
the Born-Oppenheimer transition dipole elements given in
Ref. [25]. These agree, in the v,L range computed by Tian
et al., within one to two parts in 10* with their results. As
energy differences E,  — E, 1/ we use the precise energies
including QED corrections [36,37] when v < 5,L < 5, and
otherwise the values of Moss [38].
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TABLE IX. Selected reduced transition dipole matrix elements,
d = (v'L'||d||vL), for transitions between rovibrational states of
HD*for the case L =5 — L’ = 6 (in atomic units). The notation
[x] means x 10*.

v—> v d v—>v d
0—0)  0.85382285 (3 0)  0.22598012[—02]
O—1 0.64170498[—01] B—=1 0.19539417[—01]
0—2) 0.97751608[—02] B3—2) 0.20027036
0—3) 0.23604947[—02] (3—13) 1.00176877
0— 4) 0.74298137[—03] (3 — 4 0.12862769
(0—5) 0.27963915[—03] B3—5) 0.30336340[—01]
1—0) 0.11178434 “4— 0 0.63859280[—03]
1—=1 0.90139089 4—1 0.45000014[—02]
1—2) 0.90803829[—01] 4—-2) 0.27891731[—01]
11— 3) 0.16798347[—01] 4 —3) 0.23541895
(1— 4 0.46309897[—02] 4 — 4 1.05507688
(1—5) 0.16105915[—02] 4—5) 0.14394208
2—0) 0.11198057[—01] 5—0 0.22302649[—03]
2—=1 0.16073279 (G} 0.14049130[—02]
2—=2) 0.95063090 5—-2) 0.71058396[—02]
2—=3) 0.11129675 5—3) 0.36420347[—01]
2— 4 0.23608027[—01] (5— 4 0.26815005
25  072022001[—02] (5—5)  1.11088687

Table X (a) presents the relative value of the dynamic
rovibrational contribution. We see that for the L = 0 levels a
strong cancellation between the (particularly large) contribu-
tions A Ega((v,L = 0),T) and A Egyn v ((v,L = 0),T) occurs,
which results in a small BBR shift. In absolute terms, the BBR
shift value is seen to grow with v and with L; see part (b) of
the table. The absolute values are in the range of 1 mHz to
several tens of mHz, for v =0, ...,6 and moderate L.

For v<6 we estimate the inaccuracy of
AEgynn((v,L),300 K) to be less than 10~7 Hz, since
the individual contributions to the sum are less than 0.1 Hz
in absolute value. The values of A Eq,((v,L),300 K) are
smaller than 0.1 Hz in absolute value, and their inaccuracy
is determined by the inaccuracy of our o((v,L),w = 0)
values. The inaccuracy is thus less than 107® Hz.
However, the nonrelativistic approximation implies that
both a;((v,L),0 = 0) and the transition dipoles are only
accurate to the 1 x 10~ fractional level. Then, the theoretical
inaccuracy of the BBR shift, assuming the last term in
Eq. (31) is negligible, may be stated conservatively as less
than 3 x 10~ Hz for the levels v < 6, since the shift and its
uncertainty is mostly determined by three contributions, each
with approximate uncertainty of 1 x 10™> Hz. For v > 6,
taking into account that the transition dipoles values are
calculated in Born—Oppenheimer approximation, the overall
inaccuracy is estimated at 6 x 107> Hz.

From an experimental point of view, the temperature
derivative of the BBR shift is an important quantity, since
the temperature of the BBR field in an ion trap has a
relatively large uncertainty, due to the difficulty in determining
it experimentally. For H,™ this derivative can be trivially
obtained from Eq. (28), while the results for HD™ are given
in Tables X(c) and X(d). We find a strong variation between
levels. Only for levels having larger v and L the normalized
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TABLE X. (a) Values of the dynamic vibrational contribution
to the BBR shift of a level (v,L) of HD" normalized to the static
contribution A Egynr((v,L),T)/AEg((v,L),T) at T = 300 K. (b)
Approximate total BBR shift AE.((v,L),T) + AEgynn((v,L),T)
in Hz. (c) Temperature derivatives of the approximate total BBR
shift d[AEq((v,L),T) + AEgynr((v,L),T)]/dT at 300 K and in
mHz/K. (d) Normalized temperature derivative of the total BBR shift
(T/4)(AEslal + AEdlynA,rv)ild(AEslal + AEdlyn,rv)/dT at 300 K. These
results are nonrelativistic and do not include the frequency-dependent
contributions A Egynciec from excited electronic states, which are
given in Table XI.

L
v 0 1 2 3 4 5
(a)
0 —1.0025 —1.1333 —09720 —0.7993 —0.6340 —0.4865
1 —1.0014 —1.0468 —0.9087 —0.7593 —0.6148 —0.4844
2 —1.0004 —0.9606 —0.8436 —0.7154 —0.5902 —0.4761
3 —09994 —0.8754 —0.7769 —0.6682 —0.5609 —0.4621
4 —09983 —0.7917 —0.7098 —0.6186 —0.5277 —0.4432
5  —09973 —0.7104 —0.6431 —0.5674 —0.4913 —0.4199
6 —0.9959 —0.6322 —05769 —05153 —04532 —0.3925
7 —0.9948 —0.5567 —0.5132 —0.4636 —04120 —0.3645
8  —09935 —04864 —04520 —04121 —0.3713 —0.3330
9  —0.9921 —0.4200 —0.3941 —0.3635 —03312 —0.2996
10 —0.9905 —0.3596 —0.3385 —0.3173 —0.2918 —0.2672
(b)
0 0.0084 0.0046  —0.0010 —0.0070 —0.0129 —0.0183
1 0.0057 0.0019 —0.0037 —0.0099 —0.0160 —0.0216
2 0.0019 —0.0019 —0.0075 —0.0138 —0.0201 —0.0261
3 —0.0034 —0.0071 —0.0128 —0.0192 —0.0257 —0.0319
4 —0.0106 —0.0143 —0.0200 —0.0265 —0.0332 —0.0397
5  —0.0203 —0.024 —0.0297 —0.0364 —0.0433 —0.0502
6 —0.0353 —0.0372 —0.0431 —0.0498 —0.0570 —0.0644
7  —0.0531 —0.0554 —0.0612 —0.0682 —0.0758 —0.0834
8  —0.0780 —0.0802 —0.0863 —0.0937 —0.1017 —0.1100
9  —0.1123 —0.1151 —0.1213 —0.1290 —0.1379 —0.1475
10 —0.1609 —0.1645 —0.1715 —0.1795 —0.1897 —0.2009
©
0 —0.12 —0.13 —0.15 —0.17 —0.19 —022
1 —0.18 —0.18 —0.20 -0.22 —0.25 —0.28
2 —024 —0.25 —0.27 —0.29 —0.31 —0.35
3 —033 —0.34 —0.35 —0.38 —04 —0.44
4 —044 —0.45 —0.47 —0.49 —0.52 —0.55
5  —0.59 —0.60 —0.62 —0.64 —0.67 —0.71
6 —08l1 —0.79 —0.81 —0.84 —0.87 -0.92
7 =107 —1.05 —1.08 —1.11 —1.15 -1.19
8 —142 —1.41 —1.43 —1.47 —1.52 —1.57
9 —1.89 —1.89 -1.92 -1.97 —2.02 —2.10
10 —2.56 —2.58 —2.62 —2.67 —2.74 —2.84
(d
0 —1.11 —2.14 11.27 1.79 1.12 0.91
1 —232 —7.23 3.99 1.66 1.15 0.95
2 —96l1 9.94 2.64 1.56 1.17 0.99
3 7.39 3.55 2.07 1.47 1.18 1.02
4 3.16 2.37 1.75 1.39 1.17 1.05
5 2.18 1.87 1.55 1.32 1.16 1.06
6 1.72 1.60 1.42 1.26 1.15 1.07
7 1.50 1.43 1.32 1.22 1.13 1.07
8 1.36 1.32 1.24 1.18 1.12 1.07
9 1.27 1.23 1.19 1.14 1.10 1.07
10 1.20 1.18 1.15 1.11 1.09 1.06
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FIG. 1. (Color online) The scalar polarizability of HD* in the
level (v=1,L = 1), computed using variational wave functions.
Atomic units are used.

derivative is close to the value 4/ T corresponding to a purely
static BBR shift [Eq. (28)].

C. Variational results

For several levels of both H,™ and HD' we have computed
the dynamic polarizability o va(w) [and o, var(@)] directly,
using variational wave functions. For one particular level
of HD", the polarizability o, has been computed up to
large frequencies; see Fig. 1. The calculation was performed
using the complex coordinate rotation method [39,40]. This
overview clearly shows the dominating contributions from the
rovibrational levels when w is small whereas for large w the
excited electronic states yield broad dispersive resonances.
The low-frequency tail of these resonances, as w — 0, is
responsible for giving rise t0 A Eqyp elec-

For several other levels, the computation was performed
up to an angular frequency w = 0.1 atomic units, in steps of
107> atomic units. The results are given in the Supplementary
Material [41]. Since the computation was done in the nonrela-
tivistic approximation, the fractional inaccuracy of the values
with respect to the exact values is approximately 1 x 1074,
This is then also the fractional inaccuracy of the BBR shifts
computed from this data.

1. Hy*

For H,™, we can compare our values of the scalar polariz-
ability with the calculation by Pilon, who has communicated
the values at six different frequencies [42]. The values agree,
with deviations of at most 2 x 107% atomic units in the range
w < 0.08.

We show in Fig. 2 the frequency-dependent part of
the polarizability of one level of Hy™, o yarp,+((1,1),0) —
s var,1,+((1,1),0), at low frequencies. For the computation of
the BBR shift at 300 K, frequencies up to approximately @ =
0.013 atomic units are relevant. In this range the polarizability
is quite close to quadratic in w. With increasing vibrational
quantum numbers v, the deviations from quadratic are more
pronounced.

PHYSICAL REVIEW A 89, 052521 (2014)
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FIG. 2. (Color online) Black (dotted line) shows the frequency-
dependent contribution of the scalar polarizability of H,* in the
level (v = 1,L = 1) computed using variational wave functions. Red
(gray, full line) shows difference between the scalar polarizability of
HD", also in the level (v = 1, L = 1), computed variationally and
approximately. Atomic units are used. The difference is noticeable
close to the two rotational transition frequencies (v =1, L = 1) —
wv=1,L=0and(w=1,L=1)— (v=1, L =2).Agapoccurs
inthe red curve at w = 3.5 x 10~* atomic units because the difference
is negative.

The dynamic electronic BBR shift corrections A Egyp elec
computed from the variational data [with an integration
analogous to Eq. (27)] are shown in Table VIII. We see
that the correction is small in relative terms, 1 x 10™* for
v = 0, increasing to 4 x 107 for v = 3. It is very weakly
dependent on L. Nevertheless, these results show that the
dynamic contribution should not be omitted even within the
nonrelativistic approximation. When it is included, the overall
inaccuracy is limited by the nonrelativistic approximation to
approximately 1 x 10~ fractionally. For v < 6, L < 6 the
total BBR shift is smaller than 0.1 Hz. Therefore, the absolute
error is less than 0.01 mHz.

2. HD?*

For HD™, a comparison of the variational dynamic po-
larizability o ,, yp+ (@) with the approximation o pp+(w) =
as(w = 0) + o gyn,rv(w) is depicted in Fig. 2, which shows
their difference. In evaluating the approximation, we have used
both the transition dipoles of Tian er al. [35] and their nonrel-
ativistic energies, since also the variational polarizability was
computed in the nonrelativistic approximation. The agreement
is very good, except for small deviations near the transition
frequencies (whose nominal contribution to the BBR shift is
only of order 1.5 x 1073 mHz), and a frequency-dependent
contribution from the excited electronic states, which is again
closely quadratic in frequency.

We fit the difference o yar(w) — o5 up+(w) between vari-
ational and approximate frequency-dependent polarizability
over the frequency range wpmin(v,L) to 0.05 a.u. by a polyno-
mial of the form given in Table XI. Here, wmi,(v, L) is chosen
appropriately so as to allow an accurate fit. These fits represent
an approximation to e, gyn elec((v, L), ) for frequencies from
0 to 0.05 a.u. The contribution of the cubic term is seen
to be small compared to the quadratic one for the range of
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TABLE XI. Fourth column: polynomial approximation to
Oy gynelec(@), the frequency-dependent part of the contribution to the
polarizability ; of HD" stemming from the excited electronic states.
Fifth column: corresponding contribution to the BBR shift at 300 K.
The angular frequencies w and wy,;, are in atomic units.

AEdyn,elec((vs L)7 T)

v L wmn(v,L) Fit [mHz]

0 0 0.0015 16.10 w* + 14.54 @2 —0.0021
0 1 0.0015 1624 @* + 14.62w? —0.0021
0 3 0.002 16.94 * + 15.01 w? —0.0022
0 4 0.003 17.58 w® + 15.32 @? —0.0022
1 1 0.0015 48.34 @ + 24.76 0? —0.0036
1 5 0.019 63.87 @ + 25.86 @” —0.0038
2 4 0.02 148.1 * + 42.73 w? —0.0063
2 5 0.019 166.0 w® + 42.92 w? —0.0064
32 0.04 395.8 @ + 62.68 w” —0.0094

frequencies relevant for the BBR shift at 300 K. Table XI
gives the corresponding contributions to the BBR shift, to be
added to the other two contributions given in Table X. The
error in the values of A Egyy, elec due to this fit treatment is on
the order of 0.001 mHz. We see that this BBR shift contribution
again varies weakly with L, but significantly with v and that
for levels with v = 3 it reaches 1 x 10~> Hz. Therefore, it
needs to be taken into account even within the nonrelativistic
approximation, if no loss of accuracy is desired. When this is
done, the total error of the BBR shift due to the nonrelativistic
approximation is expected to be 1 x 10~* fractionally, or less
than 0.03 mHz for the low-lying levels of HD', v < 6.

VI. CONCLUSION

We computed the nonadiabatic static polarizabilities of
the molecular hydrogen ions HD*, H,*, and D, %, extending
significantly previous results, mostly limited to rovibrational
levels with rotational angular momentum L = 0, 1. For a num-
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ber of rovibrational levels, we also computed the frequency-
dependent nonadiabatic polarizability.

The dependence of the polarizability on the hyperfine state
is derived and discussed in detail. We pointed out the special
case of the pure states, for which a simple analytical result
was derived. This result is actually a very good approximation
for all hyperfine states of Ho*. The hyperfine-state depen-
dence is of crucial importance if a detailed understanding
of the systematic shifts of transition frequencies is to be
performed.

We also computed the shifts induced by the blackbody
radiation field, and their temperature derivatives.

Emphasis has been given here to high numerical accuracy.
The effective relative inaccuracy of our computed values is
about 1 x 10™* due to the neglect of relativistic corrections.
For for H,™ and D, ™ this translates in an absolute inaccuracy
of 0.001 a.u. for all levels with v < 6, L < 5. For HD" in
L = 0,1 levels the inaccuracy is less than 0.1 a.u., and in
L > 2, it is less than 0.003 a.u. An inaccuracy of 0.1 atomic
units is sufficiently small to allow the Stark shift to be evaluated
with a theoretical error corresponding to the 10~!'® fractional-
frequency level, given the typical electric-field values in ion
traps.

In order to obtain accurate values of the blackbody
radiation shift, we used accurate values of the transition
dipoles and analyzed the importance of the contributions from
excited electronic states. We estimate the inaccuracy of the
shifts to be less than 0.03 mHz for levels withv < 6, L < 6, at
300 K, for both HD" and H,*. This corresponds to theoretical
fractional-frequency errors on the order of 1 x 10718,

Using the present results it becomes possible to identify
theoretically transitions having low sensitivity to external
fields [16,26]. This represents an important aspect in the future
spectroscopy of the simplest stable molecules.
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