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Doubly-Periodic Photonic Crystals: Spectral Problems Analysis

Seil Sautbekov1, Yuriy Sirenko1, 2, and Hanna Sliusarenko2, *

Abstract—The present work is devoted to the clarification of the conditions necessary for step-by-step
justification of the possibility of reduction of the homogeneous system of linear algebraic equations
for the spectral problems of 2-D photonic crystals by the plane waves method. The issues related to
the algorithms and the numerical solutions of these spectral problems are analyzed. The possibility
of analytical regularization is investigated, and the ways to improve the convergence of the obtained
results are identified.

1. INTRODUCTION

The problem discussed in this paper appeared long time ago in the theory of 2-D and 3-D photonic
crystals [1, 2]. It is associated with the misconvergence or instability of computational schemes which are
often observed while implementing the standard algorithms for the spectra calculation of free oscillations
of the electromagnetic field in such periodic structures and the spectra of their eigenwaves [2, 3]. This
refers to the grid technique algorithms in the frequency domain and to the so-called ‘the plane waves
method’. The algorithms of the time-domain methods are without such drawbacks, and they permit
one to calculate accurately all spectral characteristics of particularly any opened and closed resonant
structures (complex eigenfrequencies, configuration and the Q-factor of free oscillations of the field)
related to the selected finite frequency band [4–7].

A reason causing the mentioned breakdowns can be the lack of smoothness of the function describing
the material parameters of the crystals, and this phenomenon may be eliminated by increasing the
smoothness artificially. Sometimes it is possible to recover the stability and convergence of the scheme
in this way [3]. However, there is an open question: do the data, to which the convergence is
observed, provide the exact solution of the problem? The point is that the implemented algorithms
are conceptually reduced to the substitution of some ‘exact’ infinite homogeneous system of linear
algebraic equations A(k)x = 0 (A(k) is the finite matrix-function of the complex spectral parameter k)
by their finite dimensional analogue AN (k)xN = 0 as well as to the solution of the dispersion equation
detAN (k) = 0, i.e., to the the definition of such values k = k̄N , for which the system AN (k)xN = 0
has a nontrivial solution. However, one can guarantee the convergence xN → x, k̄N → k̄, N → ∞ (x
is the nontrivial solution of the problem A(k)x = 0 for the value k = k̄) as well as the existence of
the sequences {xN}N and {k̄N}N converging to all the exact values x and k̄ only if the matrix-function
A(k) has the number of specific properties for such mathematical objects [8, 9].

We show with a simple example that the corresponding conditions cannot be performed using
the standard approach to the solution of spectral problems for the 2-D photonic crystals. This means
that the standard computational schemes are not correct enough and should be regularized. One of
the possible methods of analytical regularization previously used in the theory of the non-self-adjoint
operators [9] is discussed in Section 4.
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Figure 1. The cross section of one cells of the 2-D photonic crystal by two parallel planes x = const.

2. PROBLEM STATEMENT

A dielectric structure which is infinite and homogeneous in x direction but periodic in y and z ones [1, 2]
is usually named 2-D photonic crystal (see, for example, Fig. 1: �y and �z are the lengths of the periods
of the structure in axes y and z; Σε,σ = Σε,σ

x × (|x| ≤ ∞) is a sufficiently smooth surface, where the
material parameters of the wave propagation medium are discontinuous). The electromagnetic waves
generated in the structure by the quasi-periodic current sources

F (g, k) =
∞∑

m,n=−∞
fm,n (k) μm,n (g) ; g = {y, z} ∈ R,

μm,n (g) = (�y�z)
−1/2 exp [i (αmy + βnz)] ,

αm = 2π (Φy + m) /�y and βn = 2π (Φz + n) /�z

(1)

and propagating harmonics in perpendicular directions to x are given by problem (see [5, 7])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂y2
+

∂2

∂z2
+ k2ε̃ (g)

]
U (g, k,Φy ,Φz) = F (g, k) ; g ∈ G = {g : 0 < y < �y, 0 < z < �z}

�Etg (q, k) , q = {x, y, z} and �Htg (q, k) are continuous when crossing Σε,σ,

U

{
∂U

∂y

}
(�y, z, k,Φy ,Φz) = e2πiΦyU

{
∂U

∂y

}
(0, z, k,Φy ,Φz) ,

Ũ

{
∂Ũ

∂z

}
(�z, z, k,Φy ,Φz) = e2πiΦz Ũ

{
∂Ũ

∂z

}
(y, 0, k,Φy ,Φz) .

(2)

Here, U(g, k) = Ex(g, k) in the case of E -polarization (TE -waves: ∂/∂x ≡ 0, Hx = Ey = Ez = 0,
ikHy = η−1

0 ∂U/∂z, −ikHz = η−1
0 ∂U/∂y) and U(g, k) = Hx(g, k) in the case of H -polarization (TM -

waves: ∂/∂x ≡ 0, Ex = Hy = Hz = 0, −ikεη0Ey+σEy+jy = ∂U/∂z, −ikεη−1
0 Ez+σEz+jz = −∂U/∂y);

�Etg, �Htg, Ex, Hx, etc. are the components of the intensity vectors of the electric (�E(g, k)) and the
magnetic ( �H(g, k)) field; k = 2π/λ is the wave number; λ is the electromagnetic wavelength in free
space; ε̃(g) = ε(g)+ iσ(g)η0/k is a piecewise continuous (in E -polarization case) or a piecewise constant
(in H -polarization case) function of coordinates; functions σ(g) ≥ 0 and ε(g) ≥ 1 are the specific
conductivity and relative permittivity of the dielectric elements; η0 = (μ0/ε0)1/2 is the impedance of free
space; ε0 and μ0 are the electric and magnetic vacuum constants; R is the plane y0z; Im Φy = Im Φz = 0
è |Φy| ≤ 0.5, |Φz| ≤ 0.5. The time-dependence of the processes under consideration is determined by
multiplier exp(−ikt). All physical parameters are measured in the SI system. But time t is measured
in meters: it is the product of the natural time and the velocity of light in vacuum.
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The orthonormal system of the functions {μm,n(g)}∞m,n=−∞ is complete in L2(G) [10]. This makes
it possible to represent the solution U(g, k,Φy ,Φz) ∈ L2(G) of problem (2) by infinite series

U (g, k,Φy ,Φz) =
∞∑

m,n=−∞
um,n (k) μm,n (g) . (3)

Function (3) satisfies the quasi-periodicity conditions (the last two rows of problem (2)). The unknown
complex amplitudes um,n(k) should be chosen in such a way as to satisfy the differential equation of
the problem and the boundary conditions (on Σε,σ) imposed on the tangential components of the field
that are uniquely determined by the function U(g, k,Φy ,Φz).

Spectral problems of the 2-D photonic crystals theory can be obtained from Eq. (2) assuming
F (g, k) ≡ 0. When the real values Φy and Φz are fixed, one arrives at the problem of the
complex eigenfrequencies k̄(Φy,Φz) and the corresponding free oscillations of the field inside the crystal
Ū(g, k̄,Φy,Φz). When the value of real k is fixed, we have the problem of the complex propagation
constants Φ̄y and Φ̄z of the eigenwaves in the crystal Ū(g, k, Φ̄y , Φ̄z). In practice, as a rule, one
usually addresses the first of these problems when calculating the isofrequencies of periodic structure
for the chosen bandwidth in coordinates related with the wave vectors of eigenwaves or dispersion
dependencies calculation for the finite number of such waves (usually along the boundary segments of
the nonconducting part of the Brillouin zone). This problem in the E-polarization case is considered
below.

3. ALGORITHMIZATION OF PROBLEMS AND THEIR ANALYSIS

Let us construct the canonical Green function of the 2-D photonic crystal — the solution of problem (2)
for F (g, k) = δ(g, p), p = {yp, zp} ∈ G (δ(g, p) is the Dirac delta function) and ε̃(g) ≡ 1. Function (3)
is the solution of problem (2) only if(

k2 − α2
m − β2

n

)
um,n = fm,n; −∞ ≤ m,n ≤ ∞. (4)

From Eqs. (3), (2) and (1) we derive

U (k, g,Φy ,Φz) =
∞∑

m,n=−∞

fm,n

k2 − α2
m − β2

n

μm,n (g) =
∞∑

m,n=−∞

μm,n (g)
k2 − α2

m − β2
n

∫
G

F (p, k) μ∗
m,n (p) dp

=
∫

G

[ ∞∑
m,n=−∞

μm,n (g) μ∗
m,n (p)

k2 − α2
m − β2

n

]
F (p, k) dp =

∫
G

G0 (g, p, k,Φy,Φz) F (p, k) dp

(symbol ‘∗’ stands for the complex conjugation). A simple analysis [11, 12] shows that the function

G0 (g, p, k,Φy ,Φz) =
∞∑

n,m=−∞

μm,n (g) μ∗
m,n (p)

k2 − α2
m − β2

n

; p = {yp, zp} ∈ G (5)

has all the properties of the sought Green function for the real k and preserves these properties in the
analytic extension to the complex values of the frequency parameter. The natural boundaries of such a
continuation determine the complex plane C as the variation range of the complex eigenfrequencies of
the 2-D photonic crystals.

Let us consider problem (2), when function F (g, k) is restricted in G, and ε̃(g) is continuous in
G and has the continuous partial derivatives of y and z. We assume that F (g, k) as the function of
parameter k does not have any singularities in C. It is not difficult to show, as follows from [12], that
function U(g, k,Φy ,Φz) holomorphic in some region C0 ∈ C is defined by the equation

U (g, k,Φy ,Φz) =
∫

G
G0 (g, p, k,Φy ,Φz)

[
(1 − ε̃ (p)) k2U (p, k,Φy,Φz) + F (p, k)

]
dp; g ∈ G, (6)

and extends from the region C0 ∈ C to the whole plane C as the meromorphic function of variable k.
In the part of C, where the function U(g, k) remains holomorphic, it is the solution of problem (2).
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In fact, the solution U(g, k,Φy ,Φz) of Eq. (6) (in case it exists and is unique) is the solution of
problem (2), as it follows from the properties of the canonical Green function (5). Furthermore, all the
eigenfrequencies of the crystal are located on the real axis when σ(g) ≡ 0, but all the eigenfrequencies
k̄ of the crystal are in the lower half-plane C in case the specific conductivity σ(g) is nontrivial, as it is
evident from the complex power theorem in the integral form formulated for the nontrivial solution of
homogeneous (spectral) problem (2). It means that there are points k, where the solution of problem (2)
exists, and it is unique for any values σ(g) on the plane C. The compactness of the finitely meromorphic
operator-function

A (k) [U ] = k2

∫
G

G0 (g, p, k,Φy ,Φz) [1 − ε̃ (p)] U (p, k,Φy,Φz) dp; L2 (G) → L2 (G) , k ∈ C (7)

permits one to take the advantage of the meromorphic Fredholm theorem [12–15] in order to justify the
conclusion formulated in the previous paragraph.

This conclusion can be generalized to the case of the functions ε̃(g) discontinuous along the curve
consisting of the finite number of the differentiable arcs [11]: the function U(g, k,Φy ,Φz) and its first
partial derivatives remain continuous along this curve, and, consequently, the continuity condition for
the tangential components of the electromagnetic field on the surface Σε,σ holds.

Formally, by simplifying the situation, we assume that the poles k̄ of the function U(g, k,Φy ,Φz)
are simple. This assumption does not restrict us fundamentally. In addition, we can justify it rigorously
of all real values k̄ [12]. The poles k̄ form the spectrum Ωk of the eigenfrequencies of the photonic
crystal, which is nothing more than a countable set of points k̄ ∈ C that are not accumulated anywhere
in the finite part of plane C, and residues Res

k=k̄
U(g, k,Φy ,Φz) =

∑J
j=1 BjŪj(g, k̄,Φy,Φz) determine

linearly independent free oscillations Ūj(g, k̄,Φy,Φz) of the field corresponding to these frequencies.
The last mentioned statement follows from Keldysh theorem on the representation of the principal part
of the resolvent [E − A(k)]−1 of the operator equation (6) [7, 13]. Here, E is the unit operator, and
A(k)[U ] is operator-function [7] with the values from space 	∞ of the completely continuous (compact)
operators [9]. The number J of the free oscillations corresponding to each eigenfrequency k̄ is finite.
The coefficients Bj are determined by the function F (g, k) as well as by the choice of the canonical
system Ūj(g, k̄,Φy,Φz) of the eigen elements of the operator-function E − A(k) [7, 13].

We determine all the eigenfrequencies k̄ and the fields Ūj(g, k̄,Φy,Φz) of the free oscillations which
are connected to these frequencies by solving the operator equation [E − A(k)][U ] = 0 equivalent to
homogeneous (spectral) problem (2). The plane waves method allows one to pass to the matrix form
[Ẽ − Ã(k)][Ũ ] = 0 of this equation, namely, to perform the following changes

[E − A (k)] [U ] = 0 ⇒
∞∑

s=1

[δs
r − ar,s (k)] us = 0; r = 1, 2, 3, . . . ,

E ⇒ Ẽ = {δs
r}∞r,s=1 , A (k) ⇒ Ã (k) = {ar,s (k)}∞r,s=1 , U ⇒ Ũ = {us}∞s=1 ∈ �2.

Here, δs
r is the Kronecker delta; ar,s(k) = (Aμs, μr); us = (U,μs); (·, ·) is the scalar product in L2(G);

�2 = {a = {as} :
∑

s |as|2 < ∞} is the space of infinite sequences; μs = μm(s),n(s), and it makes no
difference whether one of the possible rules of recalculation of the index s or r by the values n or m is
realized here.

The algorithm of solving the spectral problem is usually designed using the inversion of the reduced
system of the linear algebraic equations to order N

∞∑
s=1

[δs
r − ar,s (k)] us = 0; r = 1, 2, 3, . . . , (8)

and as the approximate value k̄ one choose the solution k = k̄N of the following scalar equation

ΔN (k) = det {δs
r − ar,s (k)}N

r,s=1 = 0 (9)

when the value N is sufficiently large.
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Let us consider the reliable enough basis for justifying the steps described above. First, we note the
results of [8] that permit one to do the following conclusions. If (i) Ã(k) = {ar,s(k)}∞r,s=1 is holomorphic
in some region C0 ∈ C matrix-function with the values from 	∞; (ii) the sequence of the reduced
matrices ẼN − ÃN (k) = {δs

r − ar,s(k)}N
r,s=1, when N → ∞ converges properly [8] to infinite matrix

Ẽ − Ã(k) = {δs
r − ar,s(k)}∞r,s=1 for all k ∈ C0; and (iii) if k̄ ∈ C0, then there is a sequence {k̄N}N ,

k̄N ∈ C0, that k̄N → k̄ when N → ∞. On the other hand, if the conditions (i), (ii) are fulfilled and in
(iii) the sequence {k̄N}N , k̄N ∈ C0 converges to a point k = k̄ ∈ C0 when N → ∞, then this point is
k̄ ∈ Ωk.

If the operator-function A(k) : L2(G) → L2(G) generates the kernel matrix-function Ã(k)
(A(k) ∈ 	1) or Koch matrix Ẽ − Ã(k) [9] in the domain C0 ∈ C, where it is holomorphic, then
there exists holomorphic function-determinant Δ(k) = det[E − A(k)] in C0, which has the following
properties [9, 14, 15] that allow one to justify the usage of Eq. (9) for the derivation of the approximate
solutions of spectral problem (8). The order J of the eigenvalue k̄ of the operator-function coincides with
the multiplicity of zero of the scalar function Δ(k), when k = k̄. Function ΔN (k) = det{δs

r−ar,s(k)}N
r,s=1

when N → ∞ converges uniformly to Δ(k) for all k ∈ C0. For all k ∈ C0

|Δ (k) − ΔN (k)| ≤
∥∥∥A (k) − ÃN (k)

∥∥∥
�1

exp
(
‖A (k)‖�1

+
∥∥∥ÃN (k)

∥∥∥
�1

+ 1
)

. (10)

From Eq. (10) and relation

∣∣k̄N − k̄
∣∣J = J !

∣∣∣∣∣Δ (
k̄N

) [
dJ

dkJ
Δ (k)

∣∣∣∣
k=k̄

]−1
∣∣∣∣∣ + O

[(
k̄N − k̄

)J+1
]
;

dj

dki
Δ (k)

∣∣∣∣
k=k̄

= 0 for j = 0, 1, . . . , J − 1,

obtained by the expansion of the function Δ(k) into the Taylor series in the vicinity of the point k = k̄,
it follows the estimation of the real convergence rate when k̄N → k̄ for the sufficiently large N :

∣∣k̄N − k̄
∣∣J ≤ const

∥∥∥A
(
k̄N

) − ÃN

(
k̄N

)∥∥∥
�1

= const

∞∑
r=N+1

∣∣ar,r

(
k̄N

)∣∣ . (11)

Now we analyse the results from the mentioned above which are reliable enough while solving the
spectral problem [E − A(k)][U ] = 0. The operator A(k), k ∈ C0 is a completely continuous operator,
but requirement (ii) of the proper convergance of the reduced matrices ẼN − ÃN (k) to an infinite
matrix Ẽ − Ã(k) whose strict checking seems to us quite problematic and substantially complicates the
application of the results in [8] that, in general, satisfy our demands.

Matrix Ã(k) generated by the operator-function A(k) : L2(G) → L2(G), k ∈ C0 is not the
kernel. The necessary and sufficient condition (the series

∑∞
r=1 ar,r(k) is convergent) related with the

finiteness of the operator A(k) is not fulfilled. The matrix Ã(k) cannot be referred to Koch matrices
(
∑∞

r=1 |ar,r(k)| < ∞ and
∑∞

r,s=1 |ar,s(k)|2 < ∞ [9] are the sufficient conditions). To such a conclusion
we arrive by presenting the operator A(k) in the form A(k) = B(k)C(k), where

B (k) [U ] = k2

∫
G

G0 (g, p, k,Φy ,Φz)U (p, k,Φy,Φz) dp

and
C (k) [U ] =

∫
G

δ (g, p) [1 − ε̃ (p)]U (p, k,Φy,Φz) dp,

or in matrix form

B̃ (k) = {br,s (k)}∞r,s=1 ; br,s (k) =
k2δs

r

k2 − α2
m(s) − β2

n(s)

and

C̃ (k) = {cr,s (k)}∞r,s=1 ; cr,s (k) = εr−s, εr =
∫

G
[1 − ε̃ (g)] μ∗

r (g) dg.

(12)
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From Eq. (12), one obtains ar,s(k) = k2εr−s(k2 − α2
m(r) − β2

n(r)), and as the series
∑

m,n(m2 + n2) is
divergent [11], the series

∑∞
r=1 ar,r(k),

∑∞
r=1 |ar,r(k)| is divergent as well.

4. SPECTRAL PROBLEMS REGULARIZATION

Eventually, we have not succeeded in providing the strict justification of the stability and convergence
of the computation scheme based on the solution of the infinite system of linear algebraic equations (8)
reduced to the order N . But obviously

∑∞
r,s=1 |ar,s(k)|2 < ∞ and, consequently, A(k) is the Hilbert-

Schmidt operator [9] (A(k) ∈ 	2 ⊂ 	∞). This allows us, following [9], to pass on the problem
∞∑

s=1

[δs
r − dr,s (k)] vs = 0; r = 1, 2, 3, . . . , (13)

equivalent to problem (8). Here, δs
r − dr,s(k) = [δs

r − ar,s(k)] exp[as,s(k)], vs = exp[−as,s(k)]us and
dr,r(k) = 1 − [1 − ar,r(k)] exp(ar,r(k)) = O(a2

r,r(k)) as follows from the expansion exp[ar,r(k)] into the
series over powers of ar,r(k). The last equality allows one to state that the operator D(k) corresponding
to the matrix D̃(k) = {dr,s(k)}∞r,s=1 is the kernel operator and generates the Koch matrix Ẽ − D̃(k).

Now we have the necessary background in order to reduce system in Eq. (13) properly and calculate
the approximate values of the eigenfrequencies k̄ of the 2-D photonic crystal by solving the characteristic
equation det{δs

r −dr,s(k)}N
r,s=1 = 0. It should be emphasized that the repetition of the above procedure,

according to inequality in Eq. (11), leads to the sequences {k̄N}N whose convergence rates to the exact
values k̄ increases greatly at each step.

Let us complete the analysis with an elementary but rather illustrative example. Let the elements
ar,s(k) of the matrix operator Ã(k) = {ar,s(k)}∞r,s=1 for the sufficiently large r and s behave as
O[(r + s)−1] in system (8). It means that the operator Ã(k) : �2 → �2 is the Hilbert-type operator [16].
It is bounded but not totally continuous. There is no reason to expect that by the reduction of system (8)
and by solving dispersion equation (9) we obtain the result that is expected. After the regularization
of the problem (when moving to problem (13)), we obtain dr,r(k) = O(a2

r,r(k)) = O(r−2), and from the
estimation as Eq. (11), we get |k̄N − k̄|J ≤ const(N + 1)−1. The convergence of the reduction method
(the method based on the replacement of an infinite system of linear algebraic equations by a finite one)
is provided. By repeating the procedure of the regularization, we derive |k̄N − k̄|J ≤ const(N + 1)−3,
i.e., the convergence rate of the sought quantities to their exact value increases by two orders.

The accurate and complete enough numerical analysis of the real efficiencies of the algorithms
for solving spectral problems for the 2-D photonic crystals (both standard and regularized) can be
performed with a number of special techniques developed for such research (see, for example, [17]). In
this paper, in view of the natural restrictions on the volume of the published material, we do not have
the possibilities to give due consideration to this question. We hope to discuss it in detail in the next
paper.

5. CONCLUSION

In this paper, the questions related to the algorithmization and to the numerical solution of the spectral
problems of the electromagnetic theory of the 2-D photonic crystals are analysed. The actuality of
the research area is obvious — the quality of the important results both for the theory and practice
which are obtained on the corresponding background mostly depends on how accurate the dispersion
characteristics of the considered structures are calculated. For the indicated problems, the conditions
whose fulfilment is necessary for stable and convergent numerical schemes construction are formulated.
The potentiality of the analytical regularization is demonstrated, and the techniques to improve the
convergence rate of the obtained results are indicated.
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