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Abstract

A two-cluster microscopic model is used to study the main features of bound and resonance

states in the lightest p-shell nuclei. The model correctly treats the Pauli principle and makes use of

the full set of oscillator functions to expand the wave function of a two-cluster system. Interaction

between clusters is determined by the superposition of semi-realistic nucleon-nucleon potentials.

We present the inter-cluster wave functions in oscillator, coordinate and momentum spaces. It

helps us to reveal some interesting features of the two-cluster dynamics in bound and resonance

states. Phase shifts and elastic scattering cross sections are investigated in detail.

This monograph is dedicated to a deeper study of the nucleus properties and the interaction of

nuclear clusters and is intended for the use of students of master and PhD courses.
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I. INTRODUCTION

The analysis of astrophysical data on the abundance of light atomic nuclei in the Universe

stimulates new and more detailed experimental and theoretical studies of the properties of

light nuclei and reactions involving them [1–8]. Astrophysical applications of nuclear data

require a more detailed and accurate determination of the cross sections of nuclear reactions

in the low-energy region [9–16].

Although nuclear physics is one of the most rapidly developing fields of science in terms

of theoretical and experimental research, many important and interesting issues remain still

unclear in this area. Indeed, nuclear reactions involving light nuclei are largely predetermined

and show the diversity of the micro and macro world, the formation and evolution of the

Universe, the birth of stars and everything associated with it [9, 17, 18].

Except for the simple nucleus of a hydrogen atom, the nuclei are complex objects con-

sisting of several interacting nucleons. Every nucleus gains the unique properties owing to

peculiarities of the nuclear forces and quantum states of nucleon systems. However, the

exact and detailed definition of nuclear forces associated with the properties of quark-gluon

matter is still a very complicated issue. To understand the characteristic properties of ev-

ery nucleus, we are compelled to use model representations of nuclei and effective nuclear

interactions, relying on a number of obvious structural elements and preferential states for

the corresponding nuclei. These models (see, for instance, Refs. [19–28]) can contain quasi-

stationary or virtual states of nuclei, as well as their excited states located on the complex

energy plane close to the real physical region of existence of the nuclei. Such models, aimed

at the description of a large variety of nuclear structures and reactions, can also contain

possibility of a nucleus to split or decay on two and more fragments (clusters). We recall

that in nuclear physics a cluster stands for the name of sufficiently long-lived group that con-

sist of few nucleons. Determination of a cluster-cluster interaction is important for proper

interpretation of physical phenomena in nuclei [1, 29, 30].

The models proposed for the particular nucleus (and for similar mirror-nucleus) usu-

ally take into account only some of its main characteristics. Because the cluster formation

strongly depends on the correlations between nucleons and properties of few-nucleon sub-

systems, the features of nuclear interactions are very specific and important in studies of

nuclear cluster phenomena. The efficiency and reliability of cluster models have been con-
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firmed by a large number of experimental data, the phenomenon of cluster radioactivity

of nuclei [19, 31, 32], the compactness of α-clusters, and the formation of quasi-molecular

states in nuclei and their isotopes [33–35].

At the same time, the use of cluster models greatly facilitates the theoretical calculations

by reducing a many-particle problem to the effective two-body problem, provided one deals

with a two-cluster system. Each cluster is considered as a stable group consisting of few

nucleons interacting with other objects as a whole. The first and most rigorous formulation

of a cluster model was made by J. A. Wheeler in Refs. [36, 37]. He introduced the notion

“resonating group” and deduced the dynamical equations for a wave function describing the

relative motion of clusters. The substantial contribution to the understanding of nuclear

structures was given by Wildermuth and Tang [38]. They considered and developed the

method that takes into account the cluster approximation and the Pauli principle for clus-

ters. Several microscopic methods for solving the stationary Schrödinger equation, based on

cluster model, were developed [30, 39–43], and the antisymmetrization operator was intro-

duced to realize the Pauli principle. The main complexity of this approach was caused by

calculations under the antisymmetriztion between nucleons. The development of the clus-

ter model was brought by the microscopic methods to simplify the calculation taking into

account the Pauli principle. One of these methods is the algebraic version of the resonating

group method [44, 45], proposed by G. F. Filippov. The main ideas of the algebraic version

[45–48] were incorporated in the calculation program ”2cl SpectrPhases.exe”, which is used

in the present work.

For example, we obtain that a cluster structure of a nucleus is displayed in reactions with

neutrons even at low energies and with protons at energies higher than Coulomb barrier.

Note that in the reactions of neutron scattering on nuclei, the low-energy region is easily

achieved using available experimental setups. However, in the scattering of protons on

light nuclei, the Coulomb repulsive forces obscure the effects of nuclear interactions at low

energies. In such cases, the determination of the nuclear scattering cross sections based

on the experimental data becomes difficult. A similar situation occurs in the reactions

of the nucleous-nucleous scattering in the low-energy region. In given cases, theoretical

research methods and calculations become important tools for estimating the cross sections

of reactions and determining their features.

Theoretical analyses show that nuclei are not static formations that rigidly scatter neu-
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FIG. 1: Experimental energy of ground states of nuclei considered. Energy is measured with

respect to the lowest two-cluster decay threshold.

trons and protons, but they are flexible structural configurations that respond to incident

particles. Light nuclei are loosely bound, and they can also change their configurations (i.e.

size and shape) when they interact with nucleons or other nuclei at relatively small distances

between interacting nuclei. This phenomenon is called polarization of clusters [49–55].

The structure of the majority of such nuclei within the framework of the interacting

clusters model gives the possibility to investigate the properties of these nuclei and their

configurations [30, 38, 40]. More specifically, a nucleus as a group of dynamically interacting

clusters has its own unique internal cluster structure that differs from other nuclei.

Some energy levels of light nuclei, observed in reactions experimentally, could not be

occasionally explained within the simple models, such as the conventional shell model or

collective models of nuclei. That is the reason why a combination of different models is

often used. Among them, cluster models are important, in which it is believed that nucleons

most of the time combine into various almost stable structures called clusters that interact
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FIG. 2: Position of the second binary channel with respect to the first one. Experimental data are

from Refs. [56, 57].

with each other.

The physics of clusters is historically connected with the nucleus of helium atom (α-

particle) and in this choice the properties of the α particles themselves played a special role.

The cluster representation of on atomic nucleus makes the calculations much simpler, by

reducing the solutions to the interaction of several clusters, and neglecting their internal

structure.

II. CLUSTER MODEL OF LIGHT NUCLEI

The main motivation for the model of a nucleus containing α-clusters as structural ele-

ments of nuclei is the phenomenon of the α-radioactivity and α-decay. The theory of the
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α-decay of nuclei proposed by Gamow [58] implies that α-particles, i.e. α-clusters, could be

formed inside the atomic nucleus before they are emitted and tunnelled through a potential

barrier formed by the Coulomb and nuclear interaction potentials between an alpha particle

and a residual (or daughter) nucleus.

The cluster approximation, in a number of cases, can lead to a ”quasi-molecular state”

in the nuclei. Such an idea comes from the fact that some nuclei with cluster structure can

behave like molecules [7, 33, 34, 59]. We note that the cluster structure of light nuclei is

more pronounced, although the clustering of nuclei is traced up medium-heavy nuclei, for

instance, nuclei created by 16O+40Ca [60, 61] and 40Ca+40Ca [62, 63] interactions. It is clear

that there are significant differences between the free α-particles and α-clusters inside the

nucleus. The latter are influenced by the field created by the surrounding nucleons.

This leads to a change in the properties of the α-clusters in particular the arise polarizabil-

ity, which distinguishes the α-cluster from a free α-particle not affected by the intranuclear

nucleon field.

Clusters in the nucleus can exchange nucleons, break down and reassemble from the other

protons and neutrons. Therefore, it is important to take into account the effective time

during which an α-cluster retains its structure. If the time at which α-cluster is destroyed

or transformed is significantly longer than its lifetime, then the α-cluster representation is

unacceptable.

In this book, we use the resonating groups method as the most consistent cluster model

for the study of the properties of 5He, 5Li, 6Li, 7Li, 7Be and 8Be light atomic nuclei. These

nuclei are considered as a two-cluster system, where one of the clusters is an α particle,

excluding the 8Be nucleus consisted of two alpha-clusters. From now on we will mark a

nucleus in terms of its atomic notation. In explicit form the nuclei of interest represent the

following two-cluster configurations:

5He = α+ n, 5Li = α+ p, 6Li = α+ d, 7Li = α+ t, 7Be = α+3 He 8Be = α+ α.

Such cluster partitioning of the investigated atomic nuclei allows us to take into account

the dominant binary channel of nuclear decay into two fragments (two clusters). This channel

has a minimum threshold energy among all binary channels and is responsible for most part

of the observed bound and resonance states [56, 57].

Note that the 7Li and 7Be nuclei, consisting of seven nucleons, have a well-established two-
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FIG. 3: Wave functions of 6Li, 7Li and 7Be ground states as a function of the inter-cluster distance

r.

cluster configuration: 4He + 3H and 4He + 3He [56, 57]. The 8Li and 8B nuclei are of much

interest, because their two-cluster structures give a qualitative and quantitative explanation

of the impossibility of existence of a stable nuclei with such atomic number. The cluster

polarization gives the main contribution to the cross section of various reactions with 7Li

and 7Be nuclei. Thus, the effects of cluster polarization were studied in the interaction of

protons with 7Li nuclei and neutrons with 7Be nuclei [53, 64].

Indeed, the calculations show that two alpha particles cannot be bound as a long-living

stable nucleus, and the alpha particle is the most compact cluster. Nevertheless, their mutual

interaction turns out to be weak in the presence of strong Coulomb repulsion between the

clusters [48, 57, 65]. However, the interaction of three alpha clusters gives a stable structure
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- the nucleus of the carbon atom [66–70]. Thus, in the system of three clusters, the forces

of nuclear attraction are stronger than Coulomb repulsive forces.

FIG. 4: Wave functions of 6Li, 7Li and 7Be ground states as a function of the inter-cluster distance

r.

The cluster structure of light nuclei is a unique dynamic construction, and cluster models

describe the variety of these configurations. Note that the cluster polarization plays an

important role in the formation of bound and resonance states of light, medium, and even

heavy nuclei.

The present work is aimed at the investigation of a two-cluster structure the nuclei 5He,

5Li, 6Li, 7Li, 7Be and 8Be. We are going to study the nuclei through consideration of

the interaction of alpha particles with neutrons, protons, deuterons, tritons, 3He nuclei

and alpha-particles. These investigations are performed within the well-known Resonating
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Group Method (RGM) [38, 71], which is a self-consistent cluster model and a powerful tool

for description of two- and three-cluster systems. Many interesting details of the RGM and

numerous fundamental results obtained with this method are presented in a series of reviews

in Refs. [59, 72, 73].

We make use of the so-called the algebraic version of the RGM (AV RGM), which was

formulated in Refs. [44, 45]. The algebraic version involves a full set of oscillator functions to

describe the wave functions of the inter-cluster motion. It is one of the numerous discretiza-

tion schemes which are used for the numerical solution of many-cluster and many-body

problems.

FIG. 5: Wave functions of bound state in 7Li and 7Be in the coordinate space.

To justify the two-cluster model, let us consider the experimental information about

nuclei under consideration. Figure 1 demonstrates the importance of two body partition or
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clusterization of selected nuclei. In this figure we display the experimental energy of the

ground state (from Refs. [56, 57]) measured from the lowest two-cluster threshold. Nuclei

6Li, 7Li, 7Be are presented by the bound states, while nuclei 5He, 5Li and 8Be are presented

by the lowest resonance states which are usually treated as their ground states [56, 57]. As

we see, nuclei 6Li, 7Li, 7Be can be easily split into two fragments (clusters) as their binding

energy is less than 2.5 MeV, and other nuclei 5He, 5Li and 8Be as resonance states in the

two-cluster continuum. These facts unambiguously indicate the importance of a two-cluster

fragmentation in the considered nuclei.

Relative position of the main two-cluster decay thresholds is displayed in Figure 2. As in

the previous Figure, the energy of the second two-cluster threshold is reckoned from the first

dominant threshold. Figure 2 demonstrates that for nuclei 5He, 5Li, 6Li and 8Be, the second

binary channel lies far away from the first one (more than 14 MeV), and it is natural to

assume that influence of the second binary channel on low energy spectrum will be negligible

small. This Figure justifies the usage of a single-channel approximation for 5He, 5Li, 6Li and

8Be.

Somewhat different situation is observed in 7Li and 7Be, where the second binary channel

is separated only by 4.78 and 4.02 MeV, respectively, from the first binary channel. In this

case, we can rely on bound and continuous spectrum states below the energy of the second

binary channel, where it has, as we believe, small influence on the results obtained.

Despite the long history of different versions of cluster model and the Resonating Group

Method and many efforts applied, considered nuclei are still a subject for numerous theoret-

ical investigations through different theoretical methods. These Methods include the tradi-

tional Resonating Group Method and its modifications such as the Antisymmetric Molecular

Dynamics [74] or Fermionic Molecular Dynamics [75, 76], and novel methods such as ab ini-

tio No-Core Shell Model [67, 77–79] or Effective Field Theory [65, 69]. There are many

interesting features of these nuclei, which have to be thoroughly considered and systemized,

especially in their continuous spectrum. It is well-known that with simple models one can

easily obtain results of general character, or establish some interesting relationships between

different physical quantities, which are valid in more complicated and advanced models.
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FIG. 6: Wave functions of the 6Li, 7Li and 7Be ground states in the momentum space.

III. MODEL FORMULATION

In this section, we briefly present some important details of the Algebraic or Matrix

version of the Resonating Group Method. A Hamiltonian and the form of a wave function

of a many-particle system are two main ingredients of any microscopic model. Thus, we

start formulation of our model with a microscopic Hamiltonian.

Hamiltonian for a nucleus consisting of A nucleons is represented by two terms the kinetic

energy and potential energy:

Ĥ = T̂ + V̂ , (1)

10



FIG. 7: Wave functions of the ground states in 6Li, 7Li and 7Be as a function of the relative

momentum p.

where the kinetic energy is determined in the center of mass system coordinates

T̂ = − ~2

2m

A∑
i=1

∆i +
~2

2m
∆R. (2)

Within our model, the potential energy V̂ is determined by a semi-realistic nucleon-nucleon

interaction. We split the operator V̂ on three components

V̂ =
A∑

j>i=1

V̂ (cn)(ij) +
A∑

j>i=1

V̂ (so)(ij) +
A∑

j>i=1

V̂ (C)(ij). (3)

They represent the central nucleon-nucleon interaction: V̂ (cn)(ij), the spin-orbital interac-

tion: V̂ (so)(ij) and the Coulomb forces: V̂ (C)(ij). The central nucleon-nucleon interaction
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is

V̂ (cn)(ij) =
∑
S=0,1

∑
T=0,1

V
(cn)
2S+1,2T+1(ij)P̂S(ij)P̂T (ij), (4)

where S and T are the spin and isospin of a two-nucleon system, respectively. The operators

P̂S(ij) and P̂T (ij) project a two-nucleon state onto the state with definite values of spin S

(S = 0, 1) and isospin T (T = 0, 1).

An alternative form of a nucleon-nucleon interaction also involves four components:

Wigner, Majorana, Bartlett and Heisenberg interactions. The spin-orbital interaction

V̂ (so)(ij) takes place only with the two-nucleon spin S = 1 and thus consists of two terms:

V̂ (so)(ij) =
∑
T=0,1

V
(so)
S,2T+1(ij)P̂S=1(ij)P̂T (ij)(l̂ij ŝij), (5)

where l̂ij is the orbital momentum operator and ŝij is two-nucleon spin operator. The

Coulomb interaction is

V̂ (C)(ij) = e2/rij,

where rij = |ri − rj| is a distance between interacting nucleons.

Radial part of nucleon-nucleon potentials, which we are going to use, is expressed as a

combination of Gaussians

V
(ν)
2S+1,2T+1(j) =

NG∑
i=1

V
(ν,i)
2S+1,2T+1 exp

{
−(rij/a

ν,i
2S+1,2T+1)

2
}
, (6)

where constants V
(ν,i)
2S+1,2T+1 and aν,i2S+1,2T+1 determine the intensity and radius of the ν com-

ponent of a nucleon-nucleon interaction (ν = cn or ν = so), respectively.

The second ingredient of our model (a wave function) indicates which part of the total

Hilbert space is taken into account and is represented in the form

ΨEJ = Â
{

[Φ1(A1, s1)Φ2(A2, s2)]S ψ
J
ELS(q)YL(q̂)

}
J
, (7)

where Â is the antisymmetrization operator, Φ1(A1, s1) and Φ2(A2, s2) are the translationary

invariant and antisymmetric functions describing internal structure of the first and second

clusters, respectively; s1 and s2 are spins of clusters. A wave function ψJELS(q) represents

radial motion two clusters, while the spherical harmonic YL(q̂) represents rotating motion
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of clusters. The Jacobi vector q = q · q̂ (q̂ is a unit vector) is proportional to the distance r

between interacting clusters

q = r

√
A1 · A2

A1 + A2

=

√
A1 · A2

A1 + A2

[
1

A1

∑
i∈A1

ri −
1

A2

∑
j∈A2

rj

]
, (8)

where r1, r2, . . . , rA are positions of individual nucleons in the coordinate space.

As one can see from Eq. (7), two-cluster systems will be investigated in the LS coupling

scheme. In this scheme the total spin S of a system is a vector sum of individual spins of

clusters S = s1 + s2, and the total angular momentum J is a vector sum of the total orbital

momentum L and total spin S: J = L + S. As we deals with two s-clusters, then the

total orbital momentum L coincides with the orbital momentum of the relative motion of

clusters. Moreover, within the present model both total orbital momentum L and total spin

S are good quantum numbers.

The main assumption of the RGM is that wave functions Φ1(A1; s1) and Φ2(A2; s2) are

known and fixed, while the inter-cluster function ψJELS(q) has to be obtained by solving

the dynamic equations. In the standard version of the RGM, one has to solve the integro-

differential equation. The integral or nonlocal part of the equation appears due to the

antisymmetrization operator or, in other words, due to the Pauli principle. In the algebraic

version of RGM, the dynamic equations transforms in to a set of linear algebraic equations.

This is achieved by using a full set of the radial part of oscillator functions ΦnL(q, b). By

expanding the inter-cluster function ψJELS(q) over oscillator functions

ψJELS(q) =
∞∑
n=0

CnL;SJ ΦnL(q, b) (9)

or the total two-cluster function ΨEJ over cluster oscillator functions |nL;SJ〉

ΨEJ =
∞∑
n=0

CnL;SJ |nL;SJ〉 , (10)

we arrive to a system of linear algebraic equations

∞∑
ñ=0

{〈
nL|Ĥ|ñL

〉
− E 〈nL|ñL〉

}
CñL;SJ = 0, (11)

where
〈
nL|Ĥ|ñL

〉
is a matrix elements of a microscopic hamiltonian between oscillator

functions, and 〈nL|ñL〉 is a matrix element of the antisymmetrization operator or norm
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kernel. For two cluster systems under consideration, matrix elements 〈nL|ñL〉 have a very

simple form

〈nL|ñL〉 = λnδn,ñ. (12)

The cluster oscillator function |nL;SJ〉 is determined as

|nL;SJ〉 = Â {[Φ1(A1, s1)Φ2(A2, s2)]S ΦnL(q, b)YL(q̂)}J , (13)

and here is the explicit form of the oscillator functions (ρ = q/b)

ΦnL(q, b) = (−1)nNnLb
−3/2ρL exp{−ρ2/2}LL+1/2

n (ρ2). (14)

As we interested in the inter-cluster wave function in the momentum space ψJELS(p), we

present also oscillator functions in momentum space (ρ = pb)

ΦnL(p, b) = NnLb
3/2ρL exp{−ρ2/2}LL+1/2

n (ρ2), (15)

where

NnL =

√
2Γ(n+ 1)

Γ(n+ L+ 3/2)
, (16)

and Lαn(z) is the generalized Laguerre polynomial [80].

The system of equations (11) is totally equivalent to the Schrödinger equation(
Ĥ − E

)
ΨEL = 0

for the wave function (7). By solving the set of equations (11), one obtains the energy

and a wave function of bound states, or a wave function and the scattering S-matrix for

continuous spectrum states. If in Eq. (11) we restrict ourselves with a finite number (we

denote it N) of oscillator function (n = 0, 1, . . . , N − 1), we encounter the generalized

eigenvalue problem for N × N matrices. By solving this problem, we obtain energy and

wave functions of bound and pseudo-bound states. The physical meaning of the pseudo-

bound state is thorough discussed in Ref. [81]. To solve the system of equations (7) for

a scattering state, one has to incorporate in these equations proper boundary conditions.

We will not dwell on adopting of equations (7) to the continuous spectrum states as this

matter has been numerously discussed in literature (see, for instance, [44, 45, 82, 83], [47]).
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We will not also dwell on calculating of matrix elements of the kinetic and potential energy

operators, as their explicitly form and reliable methods of their calculations can be found in

[47].

It is important to note that wave function ΨEL for bound and pseudo-bound states is

traditionally normalized to unit

〈ΨEL|ΨEL〉 =
∞∑
n=0

|CJ
nLS|2 = 1, (17)

that corresponding inter-cluster function is normalized as
〈
ψJELS|ψJELS

〉
= SLJ . In oscillator

representation SLJ can be represented as

SLJ =
∞∑
n=0

|CJ
nLS|2/λn. (18)

The quantity SLJ proportional to the spectroscopic factor SFLJ (see definition, for in-

stance, in Refs. [84], [85] and [86], Chapter 9)), which play an important role in the theory

of nuclear reactions when the Pauli principle is treated approximately [85]. The factor SFLJ

is used to determine amount of a certain (definite) clusterization in a wave function of the

compound system. It is obvious from the definition of the spectroscopic factor (17) and

(18), that it can be determined for bound state only, when norms of wave functions ΨEL

and ψJELS are finite. A more detailed description of the calculation technique can be found

in the Appendix.

IV. INPUT PARAMETERS OF CALCULATIONS

To perform all necessary calculations, we have to select the only one free parameter of

the model - the oscillator length b. We chose the oscillator length to minimize energy of the

two-cluster threshold. Such a choice provides an optimal description of internal structure of

alpha particle in nuclei 5He, 5Li and 8Be. For nuclei 6Li, 7Li and 7Be the optimal value of the

oscillator length allows us to describe in average the internal structure of pair of clusters: α

and d, α and t, α and 3He, respectively. Calculations of discrete and continuous spectrum of

two-cluster systems are carried out with the modified Hasegawa-Nagata potential (MHNP)

[87, 88], which contains central and spin-orbital components, and Coulomb forces between

protons are also involved. The MHNP was specially constructed for investigating cluster
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FIG. 8: Spectrum of bound and resonance states in 7Li obtained with (right-hand side) and without

(left-hand side) the spin-orbital interaction.

structure of light nuclei. It has been very often used to study nuclear structure and nuclear

reactions within different variants of the Resonating Group Method.

To be more consistent with the experimental situation, we slightly change the Majorana

parameter m of the Hasegawa-Nagata potential to reproduce position of the ground states

of nuclei 6Li, 7Li and 7Be and lowest resonance states in 5He, 5Li and 8Be with respect to

the dominant two-cluster threshold. The optimal values of input parameters (the oscillator

length b and the Majorana parameter m) are listed in Table I.

Actually, we indicate modification of the Majorana parameter m with respect to original

value m0 = 0.4057. It is done in order to demonstrate that modifications are rather small.

It is turn out that the spin-orbital components of the MHNP are too strong which leads to

unphysical results, such as too strongly bound states or to appearance of new bound states,
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FIG. 9: Effects of the spin-orbital interaction on the spectrum of bound and resonance states in

6Li.

which are not observed experimentally. To avoid such problems we introduce a common

factor fLS for the spin-orbital forces and used it as a variational parameter.

One can see in Table I, that strong modification of the intensity of the spin-orbital forces

is need to place the 3/2− resonance state in 5He and 5Li, and also to place the very narrow

3+ resonance state in 6Li. Resonance structure of all nuclei will be considered in details in

the following sections. To see more explicitly effects of the Coulomb forces on spectrum of

bound and resonance states, we use the same input parameters for mirror nuclei 5He and

5Li, 7Li and 7Be.

In Table II we collect the main parameters of the bound states in 6Li, 7Li and 7Be. We

display energy of the bound states E, root-mean-square (rms) radii proton (Rp), neutron

(Rn) and mass (Rm), quadrupole moment Q and spectroscopic factor SFLJ . Theoretical
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TABLE I: Input parameters of the present calculations.

Nucleus b, fm ∆m fLS

5He, 5Li 1.317 0.000 0.50

6Li 1.357 -0.0009 0.348

7Li, 7Be 1.362 0.0002 1.000

8Be 1.317 -0.0078 -

TABLE II: Properties of bound states in 6Li, 7Li and 7Be, determined within the two-cluster model

and with MHNP.

Nucleus Jπ E, MeV Rp, fm Rn, fm Rm, fm Q e·fm2 SFLJ

6Li 0+ -1.473 2.36 2.36 2.36 - 0.93

7Li 3/2− -2.467 2.23 2.33 2.29 -3.04 0.863

7Li 1/2− -1.093 2.46 2.57 2.52 - 0.879

7Be 3/2− -1.588 2.38 2.27 2.33 -5.14 0.865

7Be 1/2− -0.310 2.68 2.57 2.64 - 0.885

results, obtained within our two-cluster model, are compared with the available experimental

data in Table III. Experimental data are taken from Refs. [56, 57]. It is deduced from Table

III that our model provides a satisfactory description of ground state properties of 6Li, 7Li

and 7Be.

TABLE III: Experimental data for bound states in 6Li, 7Li and 7Be.

Nucleus Jπ E, MeV Rp, fm Rm, fm Q e·fm2

6Li 0+ -1.473 2.57± 0.10 - -

7Li 3/2− -2.467 2.43± 0.02 2.78± 0.03 -3.83± 0.03

7Be 3/2− -1.588 2.53± 0.03 - -

In Table IV we compare our results for bound states with results of more advanced cluster

models (namely, the microscopic three-cluster models). In this Table, we display the energy

of bound states (in MeV), the proton (Rp), neutron (Rn) and mass (Rm) root-mean-square
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radii (in fm) and also the quadrupole moment (in e·fm2). In Refs. [50, 52, 89] a three-cluster

model (which is referred to as the AM GOB) was used to study bound states properties of 7Li

and 7Be, and different nuclear reactions as well. We also included results of T.Kajino et al,

which were obtained within the other version of the Resonating Group Method [90, 91], and

results of K. Varga et al [92], who applied the Stochastic Variational Method. Calculations

of 6Li were performed within the Generator Coordinate Method (GCM) by Cst and Lovas

[93] and within a microscopic three-cluster model by Arai et al [94].

TABLE IV: Properties of bound states in 6Li,7Li, 7Be determined within different models.

Method Nucleus Jπ E, MeV Rp Rn Rm Q SFLJ

AV RGM 6Li 1− -1.473 2.36 2.36 2.36 - 0.93

Arai [94] 1− -1.441 2.44 2.44 2.44

GCM [93] -1.534 2.763 2.643 0.93

AV RGM 7Li 3/2− -2.467 2.23 2.33 2.29 -3.04 0.863

1/2− -1.093 2.46 2.57 2.52 - 0.879

AM GOB 3/2− -2.640 2.23 2.34 2.41 -4.05 0.994

Kajino

[90, 91]

3/2− -2.473 2.55 2.57 -4.41 0.879

Varga [92] 3/2− 2.28 2.38 2.34

AM RGM 7Be 3/2− -1.588 2.38 2.27 2.33 -5.14 0.865

1/2− -0.310 2.69 2.57 2.64 - 0.885

AM GOB 3/2− -1.702 2.46 2.26 2.38 -6.25 0.986

Kajino

[90, 91]

3/2− -1.548 2.74 2.50 -7.35

Varga [92] 3/2− 2.41 2.31 2.36 -6.11

Results presented in Table IV, show that the simple two-cluster model, which is used in

the present paper, quite correctly reproduces main properties of the bound states in 6Li, 7Li

and 7Be, and is comparable and consistent with more advanced microscopic models. It means

that the present model takes into account main properties of the nuclei considered and it also

indicates that two-cluster channels selected plays a very important role in formation of bound
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states and, as we will see later, of continuous spectrum states as well. The spectroscopic

factors SFLJ , as was mentioned early, reveals effects of the Pauli principle on wave functions

of inter-cluster motion. Deviation of the spectroscopic factor from unity indicates how strong

is effect of the Pauli principle. The most strong effect is observed for the ground state of

7Li nucleus, where SFLJ = 0.863 and most weak effect is observed in the ground state of

6Li: SFLJ = 0.930. Note that approximately such a value of the spectroscopic factor was

obtained in other microscopical calculations, see Ref. [95] and citations in it.

Let us consider wave functions of bound states. In Figures 3, 4 and 5 we display wave

functions of the ground states in 6Li, 7Li and 7Be and wave functions of bound states in

7Li and 7Be. As we can see in Figure 3, the wave function of ground states of two-cluster

systems has a node at small inter-cluster distances.

Usually in a simple quantum two-body systems, wave function of the ground state has

no nodes. However, there are one or more nodes in two-cluster systems. They appear due

to the Pauli principle. This property of two- and many-cluster wave functions allowed S.

Saito to suggest a more simple version of the RGM, which is now called the Orthogonality

Condition Model (OCM) and which takes into account the Pauli principle approximately

[96, 97].

Figures 4 and 5 are presented in logarithmic scale in order to observe main differences

in behavior of the wave functions. We can see that the deeper is a bound state, the faster

decrease its wave function. Figures 4 and 5 demonstrate very important feature of the present

calculations. Wave functions of bound states have an exponential tale, as one should expect,

despite we use oscillator functions, which have Gaussian tale. Thus, our model (namely, the

algebraic version of the RGM) correctly describes the energies of bound states and their

wave functions as well.

To get more information about bound states in 6Li, 7Li and 7Be, we present their wave

functions in the momentum space in Figure 6 and 7. As we can see wave functions of the

7Li and 7Be ground states are almost indistinguishable especially in logarithmic scale.

Wave functions of the bound states are decreasing faster in momentum space than in

coordinate space. It is important to recall that wave functions of bound states have very

definite asymptotic form in the coordinate space, while wave functions of these states in the

momentum space have no definite asymptotic form.

The spin-orbital components of NN -interaction take part in formation of bound and
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FIG. 10: The energy of the ground states in 6Li, 7Li and 7Be as a function of a number n of

oscillator functions.

resonance states in odd and odd-odd nuclei. In our case, spectrum of 5He, 5Li, 6Li, 7Li,

7Be nuclei is obtained with the spin-orbital forces. Figure 8 demonstrates effects of the

spin-orbital forces on energy of bound and resonance states in 7Li. In left-hand side of the

Figure 8, we show the spectrum of 7Li calculated without the spin-orbital forces, while the

right-hand side of Figure 8 display the 7Li spectrum obtained with the spin-orbital forces.

When the spin-orbital forces are disregarded, the total orbital momentum L become the

integral of motion. One can see that, the spin-orbital forces play an important role in

formation of bound and resonance state in 7Li. Effects of the spin-orbital interaction on

spectrum of 6Li are shown in Figure 9. Similar picture was also observed in nuclei 5He, 5Li

and 7Be.
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FIG. 11: Convergence of energy of the 1/2− excited states in 7Li and 7Be.

V. CONVERGENCE

As it was pointed above, we make use the oscillator basis functions to expand wave

functions of bound and continuous spectrum states of two-cluster systems. The first question,

which may appear in this respect, whether our basis is large enough to obtain stable and

reliable results. To answer this question we present Figure 10 where we display how energy

of the ground state in 6Li, 7Li and 7Be depends on number n of oscillator functions involved

in calculations. Note that nucleus 7Li is more deeply bound than the other nuclei comparing

to 6Li and 7Be. As one can see, five oscillator functions are necessary to bound these nuclei.

To obtain the convergent energy, we need to use n = 30 − 35 functions. With such a

number of functions, we obtain energy of the ground states with very high precision.
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There are excited 1/2− states in 7Li and 7Be. They are loosely bound states. However,

as we can see in Figure 11, to provide convergent results we also need not very huge set of

oscillator functions. Indeed, in our calculations, energy of the 1/2− excited state of 7Be is

small E = −0.31 MeV, but it can be obtained with less than 60 functions.

Later we will discuss convergence for continuous spectrum states. Now we consider one

of the interesting features of oscillator basis.

FIG. 12: Spectrum of the 7/2− states in 7Li as a function of the number of oscillator functions.

By investigating how spectrum of energies of two-cluster system depends on the number

of oscillator functions, taking part in calculations, we can predict position (i.e. the energy)

of narrow resonance state. For this aim, we consider the 7/2− states in 7Li and 7Be. It is

well known [56] that these nuclei have narrow resonances in the 7/2− state. In Figures 12

and 13 we show spectrum the 7/2− states in 7Li and 7Be, respectively, obtained with the
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different number of oscillator functions.

Main feature of these figures, that there are plateaus, i.e. energy of some excited states

is not changed when we increase the number of oscillator functions. These plateaus un-

ambiguously indicate the position of resonance states. Such phenomenon was used in the

Stabilization Method [98]. Many interesting examples of the realization of the stabilization

method in light nuclei can be found in Ref. [47]. Note that it is very difficult to locate wide

resonance states with such technique, as they exhibit themselves as some irregularities in

a rather wide energy range in behavior of the energy as a function of n. The pictures 12

and 13 predict resonance state in 7Li at energy approximately 0.75 MeV and in 7Be at the

energy about 1.75 MeV. To locate these resonance states we need less than 100 oscillator

functions. One notices, that the plateau in 7Li is more stable than the plateau in 7Be.

We will see later, by considering phase shifts of 4He + 3H and 4He + 3He scattering, that

such difference indicates that the 7/2− resonance state in 7Li is more narrow than the one

in 7Be.

VI. CONTINUOUS SPECTRUM STATES

In this section we consider states of the continuous spectrum. We will present phase

shifts, partial and total cross sections of elastic scattering of clusters. Special attention will

be paid to parameters of resonance states and to the structure of resonance wave functions.

A. Phase shifts

Phase shifts of the elastic scattering of neutrons from an alpha particle are shown in Figure

14. Phases shifts for Jπ = 3/2− and Jπ = 1/2−, generated by the total orbital momentum

L = 1, exhibit the resonance behavior. Phase shifts for the elastic α + d scattering for

different values of the total orbital momentum L, the total angular momentum J and parity

π are presented in Figure 15. One notices that phase shifts for negative parity states are

very small. Calculated phase shifts indicated that there are three resonance states in 6Li

created by the Coulomb and centrifugal barriers. These resonance states are associated with

the following channels: Jπ = 3+, Jπ = 2+ and Jπ = 1+.

In Figure 16 we display phase shifts of the elastic α+3He scattering. Due to the Coulomb
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FIG. 13: Spectrum of the 7/2− states in 7Be as a function of number of oscillator functions.

interaction, phase shifts are very small at a rather large energy range 0 < E < 0.5 MeV.

Phase shifts for the negative parity state and for the total angular momentum J = 7/2 and

J = 5/2 exhibit a resonance behavior. We can see that the 7/2− resonance state is much

narrow than the 5/2− resonance state.

It is important to note the general feature in behavior of phase shifts for 5He,5 Li,6 Li,7Li

and 7Be nuclei. Within our model, these nuclei have both the negative and positive parity

states, while 8Be has only the positive parity states. The normal parity state π = (−1)A

dominates in nuclei 5He, 5Li, 6Li, 7Li and 7Be. It means that phase shifts of the normal

parity state have large values and they usually exhibit resonance states.

Phase shifts of the abnormal parity states π = (−1)A+1 are close to zero in the considered
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FIG. 14: The elastic phase shifts for the n+ α scattering.

energy range. There is one exception from this rule. The s-wave phase shift (L = 0) in odd

nuclei noticeable decreases with increasing of energy of scattering state. Figures 17 and 18,

where we show obtained phase shifts and available experimental ones, demonstrate that our

model describes fairly good the phase shifts in 5Li and 8Be, respectively.

Experimental data for α + p system is taken from Refs. [99], [100], [101], [102] and the

experimental phase shifts for α + α scattering are from Refs. [103] and [104].

B. Cross Sections

Let us start with 7Li nucleus. The partial and total cross sections of elastic α+t scattering

are display in Figure 19. One can see a huge and narrow peak created by the 7/2− resonance
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FIG. 15: The elastic phase shifts for the d+ α scattering.

state. Meanwhile, contribution of the 5/2− resonance state to the partial and total cross

sections is not so prominent. Having calculated phase shifts δLJ(E), it is easy now to

calculate partial cross sections σLJ(E) and the total cross section σ(E) which is determined

as

σ(E) =
∑
L,J

σLJ(E), (19)

while a partial cross section σLJ(E) is connected to the corresponding phase shift by the

relation
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FIG. 16: Phase shifts of the elastic α+3He scattering.

σLJ(E) =
4π

k2
sin2 δL,J(E), (20)

where

k =
√

2mµE/~, µ =
A1A2

A1 + A2

. (21)

It is interesting to compare cross sections for the α+ t scattering (Figure 19) with those

for the α+3He scattering (Figure 20). The 7/2− resonance state in 7Be has also great impact

on the partial and total cross sections of the elastic α+3He scattering. However, contribution

of the 7/2− channel to the total cross section is very small outside the small region of the

resonance state 7/2−. And this is observed for the α+3He and α + t scattering. In both

cases, the L=0 channel with quantum numbers Jπ = 1/2+ dominates at the low energy

region 0 ≥ E ≥ 3 MeV. This channel describes the head-on collision of two-clusters, i.e.

interaction of two clusters with the zero value of the total orbital momentum L = 0.

At the low energy range (0 ≤ E ≤ 0.4 MeV for 7Li and 0 ≤ E ≤ 0.8 MeV for 7Be), the

total cross sections of the α+3He and α + t scatterings are very small due to the Coulomb
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FIG. 17: Theoretical and experimental phase shifts for the elastic α+ p scattering.

interaction.

C. Resonance States

Resonance states are very interesting phenomena in two- and many-cluster continuum.

Present model allows us to study so-called the shape resonance states, it means resonance

states created by the Coulomb or/and centrifugal barriers. These resonances lie close to the

two-cluster decay threshold. Some of these resonances are members of rotational spectra.

In this section we are going to study in detail parameters of resonance states and analyze

their wave functions.

As we consider two pairs of mirror nuclei, namely 5He and 5Li, 7Li and 7Be, we will
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FIG. 18: Phase shifts of the elastic α + α scattering, calculated within the present two-cluster

model and compared with the corresponding experimental data.

investigate effects of the Coulomb interaction on energy and width of resonance states in

these nuclei. In Table V we collect parameters of the narrow resonance states. In fact this

Table includes three very narrow resonance states with the total width Γ from 1 to 17 keV,

two rather wide resonance states. The later represent the ground state of 5He and 5Li, nuclei

that have no bound states.

Let us consider wave functions of the selected resonance states. In Figure 21 we display

wave functions of narrow resonance states 5He, 5Li, 6Li, 7Li and 7Be, with quantum numbers

indicated in Table V. Wave functions are represented in coordinate space and thus they

depend on distance between clusters r. Main feature of these resonances is that their wave

functions are concentrated at small distances, where interaction between cluster is very
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TABLE V: Parameters of the most narrow resonance states in light nuclei.

Nucleus Jπ E, MeV Γ, MeV E, MeV Γ, MeV

5He 3/2− 0.782 0.679 - -

5Li 3/2− 1.598 1.316 2.78± 0.03 -3.83± 0.03

6Li 3− 0.716 0.017 - -

7Li 7/2− 0.741 0.001 2.78± 0.03 -3.83± 0.03

7Be 7/2− 1.716 0.012 - -

8Be 0+ 0.0932 12.98 · 10−6 0.0918 (5.57±0.25) ·10−6

TABLE VI: Parameters of broad resonance states in 5He,5 Li,6 Li,7 Li,7Be, 8Be.

Nucleus Jπ E, MeV Γ, MeV E, MeV Γ, MeV

5He 1/2− 2.117 5.957 2.068 5.57

5Li 1/2− 2.996 7.297 3.18 6.60

6Li 2+ 3.019 0.999 2.838±0.022 1.30±0.10

1+ 4.056 2.331 4.176±0.050 1.5±0.20

7Li 5/2− 5.417 2.118 4.137 0.918

7Be 5/2− 6.398 2.025 5.143±0.10 1.2

8Be 2+ 2.831 1.194 3.122±0.01 1.513±0.015

4+ 10.73 1.925 11.442±0.15 3.50

strong.

We assume that the range of distance where wave function has a large amplitude is

restricted by barrier, generated by centrifugal or Coulomb forces. Under and after barrier,

resonance wave functions oscillate with small amplitude. This is a canonical behavior of

resonance wave functions.

In Table VI we show parameters of the broad resonance states. The width of such

resonance states varies from 1 to 7.3 MeV. In 5He and 5Li, width of the 1/2− resonance

states is substantially larger than their energy. It is important to stress, that parameters of

resonance states in nuclei 5He, 5Li, 6Li, 7Li and 7Be are strongly depends on intensity of the
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spin-orbital forces.

Results, shown in Table VI, indicates that the combination of the centrifugal and Coulomb

barriers creates a powerful barrier, which generates resonance states with energy up to 11

MeV.

FIG. 19: Partial and total cross sections for the α+ t elastic scattering.

To demonstrate how parameters of resonance states depends on the shape of a nucleon-

nucleon potential, we select nucleus 8Be and we made additional calculations by involving

the Minnesota potential (MP) [105] and the Volkov potential N2 (VP) [106]. As for the

MHNP, we select the oscillator length b to minimize the energy of an alpha particle, the

exchange parameter u of the MP and the Majorana parameter m of the VP is chosen to

reproduce energy of the 0+ resonance state in 8Be. The optimal parameters for the MP are

b = 1.285 fm, u = 0.9276, and for the VP they equal b = 1.376 fm, m = 0.6011. Results
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of these calculations are presented in Table VII. Energy of resonance states is determined

with respect to the α + α threshold energy. In Table VII we also compare results of our

calculations with the available experimental data [57].

FIG. 20: The total and partial cross sections for the α + 3He elastic scattering.

As one can see energy and width of the 2+ and 4+ resonance states, calculated with

different nucleon-nucleon potentials, are rather different. Thus parameters of resonance

states depend substantially on the shape of nucleon-nucleon interactions.

D. Folding potential

Let us evaluate the shape of the Coulomb barrier. Within the Resonating Group Method,

a potential of cluster-cluster interaction is nonlocal, and thus it is difficult to analyze such
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TABLE VII: Spectrum of resonance states in 8Be, calculated with three different nucleon-nucleon

potentials and compared with experimental data.

Potential Jπ E, MeV Γ, MeV Eexp, MeV Γexp, MeV

MHNP 0+ 0.093 12.98 · 10−6 0.092 (5.57±0.25) ·10−6

VP 0+ 0.091 11.07 · 10−6

MP 0+ 0.092 10.72 · 10−6

MHNP 2+ 2.820 1.196 3.122±0.01 1.513±0.015

VP 2+ 2.529 1.496

MP 2+ 2.977 1.773

MHNP 4+ 10.730 1.925 11.442±0.15 3.500

VP 4+ 10.856 6.734

MP 4+ 12.779 5.615

an object. In a two-cluster model, only the folding potential has more simple local form. It

helps us to evaluate width and height of barrier created by the Coulomb forces. In Figure 22

we display folding potentials for all nuclei considered. They consist of the nucleon-nucleon

part and Coulomb contribution. As we see the folding potentials are deep and attractive

especially for nuclei 6Li, 7Li, 7Be and 8Be. There is a small repulsive core in 5He and 5Li.

One can also see that the isobaric nuclei (5He and 5Li, 7Li and 7Be) have a very close folding

potentials.

Lower part of Figure 23 shows the height of the Coulomb barrier. It is less than 1 MeV.

It is interesting that asymptotic tail of folding potentials is the same for isotopes and is

determined by the Coulomb forces.

From Figure 22 one can deduce that internal region is stretched from r = 0 to r ≤ 6fm.

The asymptotic region lies in the region r > 6fm, where the Coulomb interaction between

clusters dominates. Such a definition of the internal and asymptotic regions is consistent

with behavior of wave functions of the narrow resonance states (see Figure 21).
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FIG. 21: Wave functions in the coordinate space of the most narrow resonance states for selected

nuclei.

E. Effects of the Coulomb interaction

As we pointed out above, we selected the same input parameters for the mirror nuclei

5He and 5Li, 7Li and 7Be in order to study explicitly effects of the Coulomb interaction on

the position of bound and resonance states, and on the width of resonance states as well.

With such a choice of the input parameters difference in the position of bound and resonance

states is totally determined by the Coulomb interaction.

In Figure 23 we show how the Coulomb interaction changes the energy of resonance states

in 5Li with respect to 5He.

Figure 24 demonstrate effects of the Coulomb interaction on the spectrum of bound and
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resonance states in 7Li and 7Be. As we can see, that the long-dashed lines in Figures 23 and

24, connecting corresponding states in mirror nuclei, are almost parallel. This indicates on

similar effects of the Coulomb interaction on all bound and resonance states.

VII. CONCLUSIONS

We have investigated bound and resonance states in the lightest nuclei of the p-shell

- 5He, 5Li, 6Li, 7Li, 7Be and 8Be. The Resonating Group Method was used to describe

discrete and continuous spectrum states. These nuclei were considered as two-cluster systems

with the dominant two-cluster configurations. The effective semi-realistic Hasegawa-Nagata

potential was employed as a nucleon-nucleon interaction. The Majorana exchange parameter

was slightly modified to reproduce energy of the ground state. Continuous spectrum of

the negative and positive parity states was calculated with such a value of the Majorana

parameter.

Energy and width of shape resonance states were calculated and compared with available

experimental data. It was shown that our model describes fairly good the resonance structure

of nuclei 5He, 5Li, 6Li, 7Li, 7Be and 8Be.

APPENDIX

1. Algebraic version of the Resonating Group Method

To study the nuclei in the framework of the Resonating Group Method (RGM), the

complete wave function of the nucleus as a two-cluster system A = A1 + A2 is supposed to

be sought in the following form

ΨJ = Â
{

[Φ1(A1)Φ2(A2)]S ψ
J
LS(q)YL(q̂)

}
, (22)

where Â is the antisymmetrization operator; Φ1(A1) is the internal wave function of the A1

nucleons of the first cluster, Φ2(A2) is the internal wave function of the A2 nucleons of the

second cluster, and ψJLS(q) is the wave function of the relative motion of the two clusters,

depending on the Jacobi vector q = q · q̂. This Jacobi vector is proportional to the vector r

q = r

√
A1 · A2

A1 + A2

, (23)
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where r determines the relative distance between the centers of mass of interacting clusters:

r =

[
A−11

∑
i∈A1

ri − A−12

∑
j∈A2

rj

]
, (24)

ri is the coordinate of the i-th nucleon (i = 1,2, . . . , A1) from the first cluster, and rj is the

coordinate of the j-th nucleon (j = A1 + 1, A1 + 2, . . . , A1 +A2) from the second cluster.

In this work, we consider clusters of the s-shell, which means that the number of nucleons

in each cluster A1, A2 should not exceed 4: 1 ≤ A1 ≤ 4, 1 ≤ A2 ≤ 4. The wave functions

Φ1(A1) and Φ2(A2), describing the internal motion of nucleons inside both clusters, are fixed,

they are constructed in the form of the Slater determinants from the oscillator functions

of the translationally invariant shell model. Therefore, the functions Φ1(A1) and Φ2(A2)

depend on the oscillator length b, which we define when performing numerical calculations.

The functions Φ1(A1) and Φ2(A2) are chosen from the well-known multi-particle model of

nuclear shells in the form of wave functions of the lowest, allowed states of the Pauli exclusion

principle.

In the standard version of RGM, in order to find the wave function ψJLS(q) of the rela-

tive motion of clusters, it is necessary to solve the integro-differential equation. However,

considering all the computational difficulties due to the presence of the antisymmetrization

operator in the function, it will be much more convenient, instead of searching the explicit

expression of ψJLS(q), to use the algebraic version of the RGM. The difference between this

method and the classical RGM is that the classical version of the method is based on so-

lutions of the integro-differential equation. Algebraic versions of the RGM circumvent such

cumbersome calculations, simplifying and reducing them to a simple algebraic form, using

the expansion of the inter-cluster function over the complete system of oscillator functions.

A feature of the algebraic method is that the boundary conditions in the coordinate space

for two or more cluster systems are transformed into a discrete oscillator space and are taken

into account in dynamic equations. Thus, the algebraic form of the RGM is an exact realiza-

tion of the matrix quantum theory possessing correct boundary conditions for descriptions

of states of both continuous and discrete spectra.

The algebraic form of the RGM was proposed by Filippov [44], [45] and is effectively used

to study the structure of nuclei. Using the algebraic version of the RGM, we decompose

the wave function ψJLS(q) of the relative motion of clusters into a series of the complete

set ψn(q, b) of normalized radial oscillator functions in the coordinate space (radial wave
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functions of a three-dimensional harmonic oscillator) [107–109]:

ΨJ
LS(q) =

∞∑
n=0

CnL;SJ ψnL(q, b), (25)

where q is the modulus of the vector q and

ψnL(q, b) = (−1)nNnb
−3/2ρL exp{−ρ2/2}LL+1/2

n (ρ2), (26)

ρ = q/b, Nn =

√
2Γ(n+ 1)

Γ(n+ L+ 3/2)
, (27)

where n is the number of oscillator quanta (or nodes), b is the oscillator radius, Γ(x) is the

known gamma function [80], L
L+1/2
n (z) is the generalized Laguerre polynomial, and CnL;SJ

are the expansion or Fourier coefficients.

Similarly, from the topic itself, using the coefficients CnL;SJ , we can expand the wave

function ψJLS(p) in momentum space

ψJLS(p) =
∞∑
n=0

CnL;SJ ψnL(p, b). (28)

by employing oscillator functions in momentum space

ψnL(p, b) = Nnb
3/2ρL exp{−ρ2/2}LL+1/2

n (ρ), ρ = p · b, (29)

After that, the recording of formula (29) of the complete wave function of two cluster systems

in the algebraic version of the RGM takes the form of a generalized Fourier series [45–48].

Then we can write

ΨJ =
∞∑

n=n0

CnL;SJ ΨnL, (30)

where

ΨnL = Â {[Φ1(A1)Φ2(A2)]S ψnL(q, b)YL(q̂)} . (31)

ΨnL is the basis of many-particle oscillator functions, which is used to describe this cluster

system of light nuclei, and the index is determined from the relation:

n0 = 0 if (L ≥ A− 3);

n0 = (A− L− 4)/2 in the case of (L ≤ A− 4) and ((−1)L = (−1)A);

n0 = (A− L− 3)/2 for (L ≤ A− 3) and ((−1)L = (−1)A+1.
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The states with the minimal value of number n of oscillator quanta included in this basis

correspond to those configurations of the nuclear shell model [110, 111], which are compared

to the ground states of light nuclei. Consequently, the expansion according to the formula

(30) takes into account not only the cluster, but also the shell configurations, which allows

us to consider cluster systems without going beyond the limits adopted in the translationally

invariant shell model [110, 111].

The oscillator functions ΨnL are completely antisymmetric and constitute a complete set

of basis functions with specific physical properties. The number of these specific properties

include belonging to the Hilbert space describing A1 + A2 clustering of the system of A

nucleons with fixed internal cluster functions Φ(A1) and Φ(A2). In the algebraic version

of the RGM, finding the wave function of the relative motion of clusters ψJLS(q) reduces to

the problem of finding the unknown coefficients of the expansion of CnL;SJ . The Fourier

coefficients CnL;SJ , representing the wave function of the relative motion of two clusters in a

discrete oscillator representation, satisfy the system of linear algebraic equations [45, 47, 48]

∞∑
m=n0

[〈
ΨnL|Ĥ|ΨmL

〉
− E 〈ΨnL|ΨmL〉

]
CmL = 0, (32)

where
〈

ΨnL|Ĥ|ΨmL

〉
are the matrix elements of the Hamiltonian between the cluster os-

cillator functions. The Dirac brackets mean an integration over spatial coordinates and a

summation over the spin and isospin variables of all nucleons. 〈ΨnL|ΨmL〉 = δnmλn is the

normalization kernel or the overlap integral of the oscillator functions [48]. λn are the eigen-

values of the antisymmetrization operator. For λn = 0, the state ΨnL is a forbidden Pauli

state. Such states do not participate in the construction of the wave function (29) and do

not describe the dynamics of the two-cluster system. To do this, only the states allowed by

the Pauli principle are used, for which λn > 0.

The antisymmetrization operator Â influences the normalization of the oscillator func-

tions, and the basis functions and the Fourier coefficients should be renormalized as follows

|n̄L >=
|ΨnL >√

λn
, |m̄L >=

|ΨmL >√
λn

, C̄mL =
CmL√
λn
. (33)

Thus, we arrive at the standard matrix form of the Schrödinger equation with an orthonormal

basis of functions and obtain an infinite system of linear homogeneous algebraic equations
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of the form [45, 47, 48]
∞∑

m=n0

[〈
n̄L|Ĥ|m̄L

〉
− Eδn,m

]
C̄mL = 0, (34)

where Ĥ is a many-particle Hamiltonian of the nucleus, E is the total energy of the nuclear

system,
〈
n̄L|Ĥ|m̄L

〉
are matrix elements of the Hamiltonian between oscillator functions

ΨnL. The indices n and m enumerate only the states allowed by the Pauli principle.

The expansion of the total wave function for the two-cluster system (30) contains an

infinite set of basis functions. However, we need only a limited set of basis functions from

it. For the oscillator representation this situation is analogous to the coordinate form of the

Schrödinger equation, where it is required to find the wave function only up to a certain

finite distance Ra. Outside this point, the well-known form of the asymptotic wave function

is valid. And the value of Ra determines the distance at which the short-range interaction

will be negligibly small and the asymptotic part of the Hamiltonian will be dominant. The

same principle will be true for a discrete representation. Thus, it is necessary to calculate

the wave function up to a finite value n = Na. Starting from this quantum number, the

asymptotic form will be valid for the coefficients of the expansion of the wave function.

Like Ra, the parameter Na sets the boundary between the inner and asymptotic regions.

Thus, in the numerical solution of the Schrödinger equation both in the oscillator and in the

coordinate representation, the parameters Ra and Na are used as variational parameters.

Thus, in order that their further increase does not change the results of the calculations, it

will be necessary to determine their minimum values.

To solve the system of equations (32) and (34), it will be necessary to take into account

the corresponding boundary conditions. The asymptotic form of the wave function of the

bound state in the coordinate space (valid for large values of q >> 1) is [45, 47, 48]:

ψ(q) ≈ exp−kq/q, k =
√

2mE/~. (35)

In the oscillator representation, the asymptotic form of the expansion coefficients CnL for

the bound state for n >> 1 has the form [45–48]

CnL ≈
√
Rn exp (−kbRn)/Rn, Rn =

√
4n+ 2L+ 3. (36)

Similar relations are valid for the wave function of the continuous spectrum (the case of

a single channel) in the coordinate space [45–48]:

ψ(q) ≈ sin (kq + δl + Lπ/2)/q, (37)
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and also in the oscillator representation:

CnL ≈
√
Rn sin (kbRn + δL + Lπ/2)/Rn, (38)

where δL is the scattering phase.

Equations (35) - (38) show the asymptotic form of the wave functions of the relative

motion of clusters. With their help, it is possible to construct a closed system of equations

that includes the correct boundary conditions for states of the discrete and continuous

spectrum. How this is realized, we will show for states of the continuous spectrum. For

simplicity of exposition, suppose that we have neutral clusters or, what is the same thing,

that we ”turned off” the Coulomb interaction between protons. The procedure that we are

going to present is analogous to the procedure used in the coordinate space in quantum

mechanics for two interacting particles. We recall its main stages. When the distance

between the particles is large, we can neglect the interaction (it is negligible small in the

asymptotic region), and the Hamiltonian will be represented only by the kinetic energy

operator. In this case the Schrödinger equation has two linearly independent solutions ψ
(R)
kL

and ψ
(I)
kL , a regular and irregular one correspondingly:

ψ
(R)
kL =

√
2

π
k jL(kq), ψ

(I)
kL =

√
2

π
k nL(kq), (39)

where jL(kq) and nL(kq) are the spherical Bessel and Neumann functions, respectively (see

their definition, for example, in [80]). Consequently, the asymptotic solution ψ
(a)
kL of the

Schrödinger equation for two particles or two clusters with a short-range potential will be a

superposition of these two functions:

ψ
(a)
kL = ψ

(R)
kL − tan(δL) ψ

(I)
kL =

√
2

π
k [jL(kq)− tan(δL) nL(kq)] . (40)

By matching this asymptotic solution with a solution in the internal region at the point Rα,

we obtain the wave function and the scattering phase shift for the state of the continuous

spectrum with the orbital angular momentum L and energy E.

In the oscillator representation, the same idea is used. The expansion coefficients

(C0L, C1L, ..., CNaL) describe the internal part of the wave function, and the coefficients

Ca
νL = C

(R)
νL − tan(δL) C

(I)
νL , ν > Na, (41)

represent its asymptotic part. Analytic expressions and the asymptotic form of the coeffi-

cients of the expansion C
(R)
nL and C

(I)
nL of both regular and irregular solutions are presented,
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for example, in [83], [82],[44], [112]. Note that the asymptotic form of the coefficients Ca
νL

coincides with formula (38).

Taking into account the decomposition of the expansion coefficients into the internal

and asymptotic parts and also taking into account the form for the asymptotic part of the

expansion coefficients, we rewrite the system of equations (32) as follows

Na∑
m=n0

[〈
n̄L|Ĥm̄L

〉
− Eδnm

]
C̄mL − tan δL ·

〈
n̄L|Ĥ|Na + 1, L

〉
CI
Na+1,L = (42)

−
〈
n̄L|Ĥ|Na + 1, L

〉
C

(R)
Na+1,L.

As a result, we obtain an inhomogeneous system of linear algebraic equations, into which the

boundary conditions are explicitly included and whose solutions give us the phase shift of

scattering and the wave function of the continuous spectrum in the oscillator representation.

For the expansion (29), we can write an equivalent formula for the inter-cluster wave

function, using similar sets of expansion coefficients [45–48]

ψJLS(q) =
∞∑
n=0

CnLψnL(q, b). (43)

A similar formula can be used to determine the inter-cluster function ψJLS(p) of momentum

space. The functions ψJLS(q) and ψJLS(p) are connected by the Fourier-Bessel transformation

ψJLS(p) =

√
2

π

∫ ∞
0

q2dqjL(pq)φJLS(q). (44)

Having calculated the scattering phase shifts, we can use them to obtain the parameters of

the resonant states, that is, to determine their energy and width. The energy and width for

the resonance are determined using the relations [113]

d2δ

dE2
|E=Er = 0, Γ = 2(

dδ

dE
)−1|E=Er . (45)

The scattering phases in the vicinity of an isolated resonance can be represented as the

sum of the background and resonant scattering phases. For the resonant scattering phase

shift we use the Breit-Wigner formula [114–117]:

δ(E) = δb(E) + δr(E) = δb(E)− arctan(Γr/2 · (E − Er)). (46)

Here, δb(E) is the background phase shift, δr(E) is the resonant phase shift, Er and Γr are

the energy and width of the resonant state. The first derivative of the scattering phase shift
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δ(E) with respect to energy E is

dδ(E)

dE
=
dδb(E)

dE
+

2Γ

4(E − Er)2 − Γ2

Assuming that the first derivative of the background phase shift with respect to the energy

is much smaller than the first derivative of the resonant scattering phase, we obtain

dδ(E)

dE
≈ 2Γ

4(E − Er)2 + Γ2
.

This equation means that dδ(E)/dE as a function of energy has a minimum at E = Er and

this minimum equals to

dδ(E)

dE

∣∣∣∣
E=Er

=
2

Γ
. (47)

To find minimum of the function dδ(E)/dE, one can use the following criterion:

d2δ(E)

dE2

∣∣∣∣
E=Er

= 0. (48)

Eqs. (47) and (48) justify the relations (45).

Using the representation (46) for the total scattering phase, we obtain the following

expression for the elastic scattering cross-section in the vicinity of the resonance

σ(E) =
π

k2
|S(E)− 1|2 = σres(E) + σb(E) + σres,b. (49)

Here, the cross section of resonance scattering is

σres(E) =
π

k2

{
Γ2

(E − Er)2 + Γ2/4

}
, (50)

the background scattering cross-section is

σb(E) = 4
π

k2
sin2(δb(E)), (51)

and the term determines the interference of resonance and background scattering can be

written as:

σres,b = 2Γ
π

k2
Re

[
sin(δb(E))eiδb(E)

E − Er + iΓ/2

]
. (52)
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2. Program description

The program 2cl SpectrPhases.exe is designed to calculate the Hamiltonian of a two-

cluster system, the spectrum and wave functions of bound and pseudo-bound states, as well

as scattering phase shifts.

The calculations are performed as follows:

1. The program calculates the matrix of the kinetic energy operator between the functions

of the oscillator basis, then the matrix of the potential energy operator, which consists

of the central and spin-orbit nucleon-nucleon interactions, and also with the Coulomb

interaction. The spin-orbit interaction does not take part in the process if the total

orbital angular momentum L or the total spin S of the nucleus are equal to zero.

2. Sum of the matrix of the kinetic and potential energy makes the matrix of the Hamil-

tonian.

3. Then the eigenvalues and eigen-functions of the Hamiltonian are calculated. The

negative eigenvalues of the Hamiltonian determine the energy of bound states or a

bound state if such a state exists. The corresponding eigen-functions determine the

wave functions of the bound states of the nucleus in the oscillator representation. The

positive eigenvalues and the corresponding eigenvectors represent the states of the

continuous spectrum of a given nucleus.

4. 4. After that, the program builds the wave functions of the mutual motion of the

clusters in the coordinate and momentum spaces.

5. 5. At the next stage, the program calculates the rms proton, neutron and mass radii,

as well as quadrupole moments. Quadrupole moments are calculated for a state of the

nucleus with the total angular momentum J ≥ 1.

6. At the last stage the program calculates the phase shift of the elastic cluster-cluster

scattering. With the aid of a simple procedure, the energy and width of the resonant

state are determined from the scattering phase shift, provided that the resonance in

the given nucleus and with this total angular momentum exists.

To perform the calculations, one needs to set the following input parameters in the

configuration file ”2cl calc spec.cfg”:
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1. lm is the orbital angular momentum;

2. tot spin - the total spin of the system (the possible values of this parameter are given

in Table VIII);

3. tot mom - total angular momentum of the system;

4. n ob funs - the number of basic functions;

5. r 0 is the oscillator radius;

6. select r0. If select select r0 = ′Opt′, then the program finds the optimal value of r0,

which minimizes the energy of the two-cluster threshold, and calculates with it. If

select select r0 = ′Fix′, then the calculation will be performed with the value of the

oscillator radius r0, which was entered in the previous line.

7. npot - Number of the potential.

8. Majorana parameter is majoran. One can set majoran = 0 and use the original value

of the parameter for all nucleon-nucleon potentials but the Minnesota potential. For

the Minnesota potential one can use the value majoran = 1, which is mostly used

value of the parameter. The Majorana parameter is often selected in such a way as to

reproduce the experimental value of the ground state energy of the compound nucleus.

9. Coulomb Y N specifies: it is necessary (Coulomb Y N =′ Y ′) or it is not necessary

(Coulomb Y N =′ N ′) to take into account the Coulomb. This parameter makes it

possible to study explicitly the role of the Coulomb interaction on the states of the

discrete and continuous spectrum.

10. ls factor is a multiplier that changes the intensity of spin-orbital forces. This param-

eter is also used as an adjustable parameter. With its help, for example, it is possible

to reproduce the experimental difference between the energies of the ground 3/2− and

the first excited 1/2− states in the 7Li and 7Be nuclei.

11. nucleus is name of a nucleus. The possible values of nucleus are: ’5He’, ’5Li’, ’6Li’,

’7Li’, ’7Be’, ’8Be’ (see also Table VIII).

12. na is the number of nucleons in the nucleus (see Table VIII).
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TABLE VIII: Key inpur parameters.

nucleus 5He 5Li 6Li 7Li 7Be 8Be

na 5 5 6 7 7 8

tot spin 0.5 0.5 1.0 0.5 0.5 0.0

Clu name 1 4He 4He 4He 4He 4He 4He

Clu name 2 n p d 3H 3He 4He

TABLE IX: List of nucleon-nucleon potentials.

npot name of potentail sorce

1 modified Hasegawa-Nagata [87, 88]

2 Volkov N1 [106]

3 Volkov N2 [106]

4 Brink-Boeker N1 [118]

5 Brink-Boeker N2 [118]

6 Minnesota [105]

13. Clu name 1 is the name of the first cluster (’4He’) (see also Table VIII).

14. Clu name 2 - the name of the second cluster. (Clu name 2 = ’n’, ’p’, ’d’, ’3H’, ’3He’,

’4He’.) There should be three entries for the cluster name.) (See also Table VIII).

15. E ini, E fin, E step - parameters that determine the energy interval in which the

scattering phase shift will be calculated: initial energy E ini, final energy E fin and

energy step E step.

In Table IX we show a list of nucleon-nucleon potentials which can be used for calculations

of two-cluster systems.

We have to select the only one free parameter of the model - the oscillator length b. We

chose the oscillator length to minimize the energy of the two-cluster threshold. Such a choice

provides an optimal description of the internal structure of alpha-particle in the 5He, 5Li

and 8Be nuclei. For 6Li, 7Li and 7Be nuclei, the optimal value of oscillator length b allows

us to describe in average the internal structure of the cluster pairs: α and d, α and t, α and

3He, respectively.
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To describe the nucleon-nuclear interaction, we will use the modified Hasegawa-Nagata

potential (MHNP), for this purpose in the program npot is set to npot = 1. We take a

Gaussian wave function as a one-particle wave function in the form: f(x) = exp(−x2). This

is the wave function of the ground state of a quantum harmonic oscillator and, therefore,

is appropriate for any system around a potential minimum. In addition, the Gaussian form

of wave functions and NN potential allows one to make all integrations in analytical form,

which simplifies significantly the calculations. The Gaussian we use are real, which also

reduces the number of terms that need to be calculated, since the rectilinear and inverse

matrix elements are almost always the same.

The modified Hasegawa-Nagata potential for a pair nucleon-nucleon interaction repro-

duces fairly the attraction at large distances and the repulsion at short distances. The

coordinate dependence of this potential takes the form of a superposition of a Gaussian. It

is used in many cases, particularly, to describe the scattering of light nuclei over a wide range

of energies. It can be seen in Figure 25, where we display the most strong, even components

of the MHNP.

The Majorana exchange operator produces the exchange of spatial coordinates between

two nucleons. The Bartlett exchange operator, describes the Wigner forces, which produce

an exchange of spin variables between two nucleons. The Heisenberg exchange operator is

an operator of NN forces that produce a simultaneous exchange of spin, isospin, and spatial

coordinates. See more details about the static nucleon-nucleon potentials in Ref. [26].

To be more consistent with the experimental situation, we slightly change the Majorana

parameter m of the Hasegawa-Nagata potential to reproduce position of the ground states

of nuclei 6Li, 7Li and 7Be and lowest resonance states in 5He, 5Li and 8Be with respect to

dominant two-cluster threshold. It is done in order to demonstrate that modifications are

rather small.
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FIG. 22: Folding Potentials as a function of distance between interacting clusters.57



FIG. 23: Spectrum of resonance states in 5He and 5Li.
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FIG. 24: Effects of the Coulomb interaction of bound and resonance states in mirror nuclei 7Li

and 7Be.
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FIG. 25: The even components V31 and V13 of the modified Hasegawa-Nagata potential as a function

of distance between the interacting nucleons.
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