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Abstract

This article discusses the development and study of mathematical
model of complex power systems for the global asymptotic stability
problems. The conditions have been obtained for the global asymp-
totic stability of nonlinear control systems. Control actions that ensure
stabilization of complex electric power systems have been found. The
software package of dynamic study of complex electric power systems
has been developed in Visual Studio using the programming language
C-Sharp.

1 Introduction

The industrial development of modern society leads to a constant increase in electricity consumption. Complex
electric power systems are created to meet these growing needs.
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Under current conditions of Kazakhstan’s power generating industry development is at a high level
of wearing out and insufficiently high rates of equipment modernization, this question is even more
acute [Jacobson & Ycesan, 2008]. Besides Kazakhstan’s power industry modernization necessity, it is required
to estimate effectiveness of modern equipment use and conditions of its normal operation.

By their normal functioning electric power systems (EPS) provide operation of industry, transport, popu-
lation household - the entire life of the country. Development of power systems is moving along the path of
creating large energy associations, in some cases covering entire continents, such systems include large num-
ber of generators, the emerging tendency of transferring generators to the reactive power consumption mode
in order to normalize voltage levels in the network has complicated the problem of ensuring the EPS stabil-
ity [Gelig et al., 1978]-[Kalman, 1963]. All these negative factors caused frequent violations of the vibrational
stability of EPS, emphasizing the relevance and practical importance of solving this problem. These circum-
stances required the improvement of research methods and in-depth study of EPS’s dynamic properties. At this
stage, the development of highly efficient methods for numerical solution of global asymptotic stability problems,
T-controllability, optimality, and carrying out wide-ranging computational studies were of great importance.

The importance of the problem ensuring stable operation of electric power systems is confirmed by a large
number of developments, both domestic and foreign scientists. We can note the works of such scientists as
P. Kalman, P. Anderson, A. Fouad [Anderson & Fouad, 2002], L.E. Jones, J. Klir, S. Arimota , etc., and also
scientists from near abroad L.Y. Anapolsky, A.A. Yanko-Tryniski, I.I. Blekhman, A.H. Gelig [Gelig et al., 1978]
etc. and from Kazakhstan S.A. Aisagaliyev [Aisagaliev & Kalimoldayev, 2013], S.A. Aipanov, M.N. Kalimol-
dayev [Kalimoldayev et al., 2014], M.T. Jenaliev, G.A. Leonov, V.M. Matrosov, V.A. Yakubovich, K. Tokty-
bakiev, V.A. Korotkov, L. Kopbosyn, etc.

2 Formulation of the Problem

The system of nonlinear differential equations:

dx

dt
= A (t)x+D (t)u+ f (t, u, x) , t ∈ [t0, t1] , x (t0) = x0

A =

 0 Si 0∗ni

0 −Ki c∗i
0ni bi Ai

 , D =

 0
0
qi



x =

 δi
Si
xi

 , f (x) =
 0

−fi (δi)− ψi(δ)
0ni


Consider the general mathematical model for electric power systems:

dδi
dt

=Si,

dSi
dt

=(Wi−KiSi−fi (δi))−ψi (δi∗) , wi=C
∗
i xi, (1)

dxi
dt

=Aixi+qiSi+biui+Ri (Si, xi) , i=1,l, (2)

where function

ψi (δi∗)=

l∑
k= 1
k ̸= i

Pik (δik) , δik=δi−δk (3)

where δi – the angular coordinate; Si – angular velocity; xi, ni – the state vector of the regulator; wi - the
control action of the regulator; Ki > 0 - damping factor; ci, qi, bi – constant ni – dimensional vectors; Ai –
constant (ni×ni) matrix; ui – control of the feedback type. The symbol (*) denotes transposition. Second order
differential equations (1) describe the processes in the object of control, and the vector differential equation (2)
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determines the state of the regulator of the i-th isolated subsystem, in which the phase trajectories tend to the
particular stable equilibrium position.

Consider the global asymptotic stability of the coupled system with many angular coordinates in the case
when

Ri (Si, xi) = eiϕi (σi) , σi = g∗i xi + γiSi, i = 1, l, (4)

where giei- constants, ni- vectors, γi- scalar constant. (4) change shows the Euclidean space and consist of x
and S. The system (1)-(3) takes the form:

dδi
dt

= Si,
dSi
dt

= wi −KiSi − fi (δi)− ψi (δi∗) , wi = C∗
i xi, (5)

dxi
dt

= Aixi + qiSi + biui + eiϕi (σi) , i = 1, l (6)

or in vector-matrix form

dδ

dt
= S,

dS

dt
= w −KS − f (δ)− ψ (δ∗) , w = C∗x, (7)

dx

dt
= Ax+ qS + bu+ eϕ (σ) , σ = g∗x+ γS, (8)

where e = colon (e1, . . . , el) , γ = colon (γ1, . . . , γl) , g = diag {g1, . . . , gl}.
Characteristics of nonlinear elements ϕii (σi) are continuous functions satisfying the conditions

0 ≤ ϕii (σi)σi ≤ ρiσ
2
i , ϕi (0) = 0, i = 1, l

(
∀σi ∈ (0,+∞) , ∀σi ∈ R1

i

)
(9)

If there are inequalities for the function ϕii (σi):

ρ1iσ
2
i ≤ ϕii (σi)σi ≤ ρ2iσ

2
i ,(

ρ1iσ
2
i , ρ2iσ

2
i ∈ (−∞,+∞) ,∀σi ∈ R1

i

)
,

after substitution ϕi = ϕi − ρ1iσi it leads to considered case; where ρi = ρ2i − ρ1i. The differential equation (6)
will be rewritten in the form

dxi
dt

= Aixi + qiSi + biui + eiϕi (σi) , i = 1, l,

where Ai = Ai + ρiieig
∗
i , qi = qi + ρ1iγi, and nonlinearity ϕi (σi) satisfies the condition

0 ≤ ϕi (σi)σi ≤ (ρ2i − ρ1i)σ
2
i ,(

ρ2i − ρ1i = ρi ∈ (0,+∞) , ∀σi ∈ R1
i

)
.

Constraint (9) is equivalent to the inequality

ϕi (σi)
(
σi − ρ−1

i ϕi (σi)
)
≥ 0, (10)(

ρi ∈ (0,+∞) , ∀σi ∈ R1
i

)
, i = 1, l.

The function

ψi (σi) =

∫ σi

0

ϕi (λ) dλ, i = 1, l (11)

is positive semi-definite function.

Theorem 1. Let there exist scalars Di, τi > 0 such that is globally asymptotically stable
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1. The phase system of the second order (1) is globally asymptotically stable (i.e. Di > (Di)kp).

2. A should be Hurwitz matrix Ãi

3. (Ãi, Gi) – completely observable pair.

4. (Ãi, Qi) – completely controllable pair .

Γi > 0, det
[
2Γi − χ∗

i h
∗
i D̃

−1
i hiχi

]
̸= 0

(
i = 1, l

)
.

5. Γi +Re Wi (jω) ≥ 0 (∀ω ∈ (−∞,+∞)) , Li ≥ 0, D̃i > 0.

Then control

ui = a∗i xi + θiSi + εi?i (δi) +
Siψi(δi∗ )
x∗
iHibi

at zi ∈
∑
i

ui ̸= −(b∗iHibi)
−1

(b∗iHiAixi + b∗iHiqiSi + b∗iHieiϕi(σi)) at zi /∈
∑
i, i = 1, l

(12)

ensures global asymptotic stability of the system (8), (9).

3 Numerical Example

We will consider motion stabilization of electric power system when x(t1) = x1 (two synchronous generators).
The equations (5) and (6) describe the operation of the system, and the equations (7) and (8) describe the state
of the controller

dδ1
dt = S1,
dS1

dt = c1x1 −K1S1 − f1 (δ1)− P12,
(13)

dδ2
dt = S2,
dS2

dt = c2x2 −K2S2 − f2 (δ2)− P12,
(14)

dx1
dt

= A1x1 + u1, (15)

dx2
dt

= A2x2 + u2, (16)

where x1, x2 – phase variables; c1, c2 – scalars; u1, u2 – controls initial conditions:

δ10 = 1.34; δ20 = 0.84

S10 = 0.0; S20 = 0.0;

x10 = 0.001; x20 = 0.001;

All conditions of the theorem 1 have been checked.

dδ

dt
= S,

dS

dt
= w −KS − f (δ)− ψ (δ∗) , w = C∗x, (17)

dx

dt
= Ax+ qS + bu+ eϕ (σ) , σ = g∗x+ γS, (18)

We use the 4-th order Euler and Runge-Kutta methods to obtain the numerical solutions of equation systems
(13)-(16).

The results of the numerical solution are shown in figures (1)-(4). We use the 4-th order Adams-Bashford,
Adams-Moulton and Runge-Kutta methods for more accurate results.

Adams-Bashford method:

yn+4 = yn+3 +
h

24
(55f(tn+3, yn+3)− 59f(tn+2, yn+2)+

+37f(tn+1, yn+1)− 9f(tn, yn)) ,
251

720
h5(η).
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Adams–Moulton method:

yn+4 = yn+3 +
h

24
(9f(tn+4, yn+4) + 19f(tn+3, yn+3)−

−5f(tn+2, yn+2) + f(tn+1, yn+1)) , −
19

720
h5(η).

Runge-Kutta method:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) ,

Comparison of the used methods is shown below:

Figure 1: methods of Adams-Bashford (line - - -), Adams–Moulton (line ...) of the 4-th order a) time change of
S ; b) time change of δ.

Figure 2: methods of Adams-Bashford (line- - -), Adams–Moulton (line ...) and Euler (line -) of the 4-th order
a) time change of S ; b) time change of δ

The main purpose of using different methods for solving this problem is to decrease the amplitude over the
same period of time. Since large values can affect the operation of the system and the life of the equipment.
The fourth-order Euler method was used for comparison with other methods. As can be seen in Figure 2, the
methods Adams-Bashford and Adams-Moulton show a smaller amplitude than the Euler method. Figure 1 shows
the methods Adams-Bashford and Adams-Moulton, it follows that the method Adams-Bashford gives a good
result. If compare the time for compilation, then the method Adams-Bashford also shows a better result than
the rest. This is due to the fact that method Adams-Moulton is implicit. Figures 3 shows a comparison of Euler
and Runge-Kutta. Figure 4 shows a comparison of the methods Adams-Bashford and Adams-Moulton with the
Rung-Kutta
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Figure 3: methods of Runge-Kutta (line - - -) and Euler (line -) of the 4-th order a) time change of S ; b) time
change of δ

Figure 4: methods of Adams-Bashford (line - - -), Adams–Moulton (line ...) and Runge-Kutta (line-) of the 4-th
order a) time change of S ; b) time change of δ .

According to the obtained results it is clear that the increase of more than 4 is not necessary, as they equally
converge to zero.

For this task the Adams-Bashford and Runge-Kutta methods converge to zero faster than when using the
method of Adams-Moulton. It allows to reduce time and speed up the process of determining emergency situation.
Since the Adams-Moulton method is implicit and requires the solution of the “historical” values, which takes
computation time.

The software package of dynamic study of complex electric power systems has been developed in Visual
Studio using the programming language C-Sharp. A detailed analysis of the problem with definition and the
identification of input and output information has been conducted.

Two types of testing have been carried out: functional and structural.

In functional testing the programs are verified the compliance behavior of the program to its external specifi-
cation. The logic of the program is verified when a structural test.

The software products were initially created for the individual tasks of complex electrical power systems.
Next, they were merged into a single set of programs. The 4-th order Adams-Bashford, Runge-Kutta and
Adams-Moulton methods have been used when creating a software product. The figures (5-8) have shown the
interface of software package.
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Figure 5:

Figure 6: Main menu.

4 Conclusion

In this paper we solve the problem of global asymptotic stability of phase systems. According to the results
obtained, it is clear that an increase in the order of more than four times is not necessary, since they converge to
zero identically. For this problem, the Adams-Bashford and Runge-Kutte methods converge to zero faster than
using the Adams-Moulton method. This allows you to reduce the time and speed up the process of determining
the emergency situation. The software package of dynamic study of complex electric power systems has been
developed in Visual Studio using the programming language C-Sharp.
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Figure 7: Numeric data entry on the selected method.

Figure 8: Illustration of graphics on the screen.
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