Int. Journal of Math. Analysis, Vol. 5, 2011, no. 46, 2285-2294

On Properties of Systems of Root Functions of Well-Posed Boundary Value Problems for the Second Order Differential Operator

B. E. Kanguzhin and D. B. Nurakhmetov
Department of Fundamental Mathematics
Faculty of Mechanics and Mathematics
Al-Farabi Kazakh National University
Al-Farabi 71, 050012 Almaty, Kazakhstan
kanbalta@mail.ru, dauletkaznu@gmail.com

Abstract

In this paper, we consider the second order differential operator of L_{σ} with nonlocal boundary conditions in the functional space $\mathbf{L}_{2}(0,1)$. We construct an explicit system of root functions of L_{σ}. We study the biorthogonal of properties the systems of root functions of L_{σ}. We develop a method for constructing biorthogonal systems of root functions of well-posed boundary value problems for the second order differential operator with nonlocal boundary conditions.

Mathematics Subject Classification: 34A05, 34A25, 34L10, 34K10
Keywords: Biorthogonal systems, system of root functions, well-posed boundary value problems, nonlocal boundary conditions, resolvent

1 Introduction

Let $\sigma(\cdot)$ be arbitrary function from the functional space $\mathbf{L}_{2}(0,1)$. We introduce the entire function with respect to λ

$$
\begin{equation*}
\Delta(\lambda)=1-\lambda \int_{0}^{1} \cos \sqrt{\lambda} x \overline{\sigma(x)} d x \tag{1.1}
\end{equation*}
$$

Denote by $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ sequence of zeros of entire function $\Delta(\lambda)$. Each zero of λ_{n} the function $\Delta(\lambda)$ has a some multiplicity m_{n}. In this paper, for
clarity all results are illustrated of $m_{n}=2$. In this case $\Delta\left(\lambda_{n}\right)=0, \Delta^{\prime}\left(\lambda_{n}\right)=0$, $\Delta^{(2)}\left(\lambda_{n}\right) \neq 0$. We introduce the chain of functions

$$
E_{n}=\left\{\cos \sqrt{\lambda_{n}} x,-\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}\right\}
$$

The system of functions

$$
E=\left\{E_{n}: \lambda_{n} \text { are zeros of the function } \Delta(\lambda)\right\}
$$

called the union of all such chains.
Main purpose: Constructively to build an adjoint system of functions to the system of functions E in the functional space $\mathbf{L}_{2}(0.1)$ (Theorem 4.1). Note that the system of function E is a system of root functions of second order differential operator, where the function $\sigma(\cdot)$ is a boundary function. Details are described in the section 2 below. In the case of the differentiation operator as the system of root functions there arises a system of exponentials that studied in detail in [4].

2 Boundary value problems and auxiliary notation

In [2] proved the following statement
Theorem (M. Otelbaev) a) For any choice of functions $\sigma_{\nu}(x), \nu=1,2$ from the space $L_{2}(0,1)$ to the nonlocal boundary value problem

$$
\begin{gather*}
-y^{\prime \prime}(x)=f(x), 0<x<1 \tag{2.1}\\
y^{(\nu-1)}(0)-\int_{0}^{1}\left(-y^{\prime \prime}(x)\right) \overline{\sigma_{\nu}(x)} d x=0, \nu=1,2 . \tag{2.2}
\end{gather*}
$$

corresponds to the operator L in the functional space $\mathbf{L}_{2}(0,1)$, where L has completely continuous inverse of L^{-1}.
b) Assume that the nonhomogeneous equation (2.1) with some additional conditions for any right side $f(x) \in \mathbf{L}_{2}(0,1)$ has a unique solution $y(x)$ in the functional space $\mathbf{W}_{2}^{2}[0,1]$, where $y(x)$ has the a priori estimate

$$
\|y\|_{L_{2}(0,1)} \leq c\|f\|_{L_{2}(0,1)}
$$

Then there exists a unique set of functions $\left\{\sigma_{\nu}(x)\right\}, \nu=1,2$ from the functional space $\mathbf{L}_{2}(0,1)$ that the additional conditions are equivalent to (2.2).

It follows from Theorem (M. Otelbaev) that the nonlocal boundary conditions (2.2) for all possible $\left\{\sigma_{\nu}(x)\right\}, \nu=1,2$ from the functional space $\mathbf{L}_{2}(0,1)$
describe everything well-posed solvable boundary value problems corresponding to expression of $\ell(\cdot)$.

Without loss of generality in can be assumed that in the problem (2.1), (2.2) the function $\sigma_{2}(\cdot)=0$. Thus, we consider the operator L_{σ} in the functional space $\mathbf{L}_{2}(0,1)$ corresponding to the following nonlocal boundary value problem

$$
\begin{gather*}
-y^{\prime \prime}(x)=f(x), 0<x<1, \tag{2.1}\\
y(0)-\int_{0}^{1}\left(-y^{\prime \prime}(x)\right) \overline{\sigma(x)} d x=0, \tag{2.3}\\
y^{\prime}(0)=0, \tag{2.4}
\end{gather*}
$$

where $\sigma(x) \in \mathbf{L}_{2}(0,1)$.

3 Resolvent of the operator L_{σ}

In this section we compute an explicit solution of the nonlocal boundary value problem

$$
\begin{gather*}
-y^{\prime \prime}(x)=\lambda y(x)+f(x), 0<x<1, \tag{3.1}\\
y(0)-\int_{0}^{1}\left(-y^{\prime \prime}(x)\right) \overline{\sigma(x)} d x=0, \tag{2.3}\\
y^{\prime}(0)=0 . \tag{2.4}
\end{gather*}
$$

The solution of this nonlocal boundary value problem is called a resolvent of L_{σ}. The explicit form of the resolvent has a significant meaning for the study properties of biorthogonal systems of root functions of L_{σ}.

Theorem 3.1 A resolvent of the operator L_{σ} is determined by the formula

$$
\begin{equation*}
y(x)=\left(L_{\sigma}-\lambda I\right)^{-1} f(x)=\frac{<f(t), M_{\bar{\lambda}}(t)>}{\Delta(\lambda)} \cos \sqrt{\lambda} x+\int_{0}^{x} \frac{\sin \sqrt{\lambda}(t-x)}{\sqrt{\lambda}} f(t) d t, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\bar{\lambda}}(t)=\sigma(t)+\bar{\lambda} \int_{t}^{1} \frac{\sin \sqrt{\bar{\lambda}}(t-x)}{\sqrt{\bar{\lambda}}} \sigma(x) d x \tag{3.3}
\end{equation*}
$$

and the entire function $\Delta(\lambda)$ is defined by formula (1.1).

Proof General solution of differential equations (3.1) is a function of

$$
\begin{equation*}
y(x)=c_{1} \cos \sqrt{\lambda} x+c_{2} \frac{\sin \sqrt{\lambda} x}{\sqrt{\lambda}}+\int_{0}^{x} \frac{\sin \sqrt{\lambda}(t-x)}{\sqrt{\lambda}} f(t) d t \tag{3.4}
\end{equation*}
$$

where $\left\{\cos \sqrt{\lambda} x, \frac{\sin \sqrt{\lambda} x}{\sqrt{\lambda}}\right\}$ is a fundamental system of solutions for the homogeneous differential equation (3.1).

We substitute equation (3.4) also its first and second order derivatives on the boundary conditions (2.3) (2.4). Consequently, we have $c_{1}=\frac{\left\langle f(t), M_{\bar{\lambda}}(t)\right\rangle}{\Delta(\lambda)}$, $c_{2}=0$. Using the values of c_{1}, c_{2} in equation (3.4), we obtain (3.2).

The proof is complete.
The entire function $\Delta(\lambda)$ is called the characteristic function of L_{σ}. We formulate as a lemma some basic properties of functions $\Delta(\lambda)$.

Lemma 3.1 For any eigenvalues of λ_{n} of multiplicity $m_{n}=2$ of the operator L_{σ} following properties hold:

$$
\text { 1) } \int_{0}^{1} \cos \sqrt{\lambda_{n}} x \overline{\sigma(x)} d x=\frac{1}{\lambda_{n}} ; \text { 2) } \int_{0}^{1} \frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}} \overline{\sigma(x)} d x=\frac{2}{\lambda_{n}^{2}} \text {. }
$$

These relations are obtained directly from (1.1) for $\Delta(\lambda)$ taking account of multiplicity of eigenvalues.

4 System of root functions of L_{σ} and the corresponding adjoint system

In [3, p. 445] give a decomposition theorem. It follows from that for some $\delta>0$ the projector $P_{n}: \mathbf{L}_{2}(0,1) \rightarrow \operatorname{Ker}\left(L_{\sigma}-\lambda\right)^{m_{n}}$ is a residue of the resolvent at the singular point λ_{n}

$$
\left(P_{n} f\right)(x)=-\frac{1}{2 \pi i} \oint_{\left|\lambda-\lambda_{n}\right|=\delta}\left(L_{\sigma}-\lambda I\right)^{-1} f(x) d \lambda .
$$

Recalling of representation (3.2) for resolvent from Theorem 3.1 and basis properties of residue form of the projector P_{n} can be refined

$$
\begin{align*}
& \left(P_{n} f\right)(x)=<f(t),-\lim _{\bar{\lambda} \rightarrow \overline{\lambda_{n}}} \frac{d}{d \bar{\lambda}} \frac{\left(\bar{\lambda}-\overline{\lambda_{n}}\right)^{2} M_{\bar{\lambda}}(t)}{\overline{\Delta(\lambda)}}>\cos \sqrt{\lambda_{n}} x+ \\
& \quad+<f(t),-\lim _{\bar{\lambda} \rightarrow \overline{\lambda_{n}}} \frac{\left(\bar{\lambda}-\overline{\lambda_{n}}\right)^{2} M_{\bar{\lambda}}(t)}{\overline{\Delta(\lambda)}}>\left(-\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}\right) \tag{4.1}
\end{align*}
$$

Let us remark that $\int_{0}^{x} \frac{\sin \sqrt{\lambda}(t-x)}{\sqrt{\lambda}} f(t) d t$ is an entire function in λ. We give certain properties of systems of functions E as a lemma.

Lemma 4.1 The elements of the chain E_{n} satisfy the differential equations

$$
\begin{gather*}
-y_{n, 1}^{\prime \prime}(x)=\lambda_{n} y_{n, 1}(x)+y_{n, 0}(x) \tag{4.2}\\
-y_{n, 0}^{\prime \prime}(x)=\lambda_{n} y_{n, 0}(x) \tag{4.3}
\end{gather*}
$$

and nonlocal boundary conditions (2.3), (2.4).

Proof We check that the functions $y_{n, 0}(x), y_{n, 1}(x)$ satisfy the conditions of the lemma. To do we find the first order and second order of derivatives of these functions. We have

$$
\begin{gathered}
y_{n, 0}^{\prime}(x)=-\sqrt{\lambda_{n}} \sin \sqrt{\lambda_{n}} x, \quad y_{n, 0}^{\prime \prime}(x)=-\lambda_{n} \cos \sqrt{\lambda_{n}} x, \\
y_{n, 1}^{\prime}(x)=-\frac{\sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}-\frac{x \cos \sqrt{\lambda_{n}} x}{2}, \quad y_{n, 1}^{\prime \prime}(x)=-\cos \sqrt{\lambda_{n}} x+\frac{\sqrt{\lambda_{n}} x \sin \sqrt{\lambda_{n}} x}{2} .
\end{gathered}
$$

We calculate the linear combination $\lambda_{n} y_{n, 1}(x)+y_{n, 0}(x)=-\frac{\lambda_{n} x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}+$ $+\cos \sqrt{\lambda_{n}} x=-y_{n, 1}^{\prime \prime}(x)$. Directly, $-y_{n, 0}^{\prime \prime}(x)=-\lambda_{n} \cos \sqrt{\lambda_{n}} x=\lambda_{n} y_{n, 0}(x)$.

We check the boundary conditions (2.3) (2.4). It is obvious that $y_{n, 0}^{\prime}(0)=0$, $y_{n, 1}^{\prime}(0)=0$. Respectively,
$y_{n, 0}(0)-\int_{0}^{1}\left(-y_{n, 0}^{\prime \prime}(x)\right) \overline{\sigma(x)} d x=1-\lambda_{n} \int_{0}^{1} \cos \sqrt{\lambda_{n}} x \overline{\sigma(x)} d x=0$ since is true the first property of Lemma 3.1. Also it follows from Lemma 3.1 that $y_{n, 1}(0)-$
$-\int_{0}^{1}\left(-y_{n, 1}^{\prime \prime}(x)\right) \overline{\sigma(x)} d x=-\int_{0}^{1} \cos \sqrt{\lambda_{n}} x \overline{\sigma(x)} d x+\frac{\lambda_{n}}{2} \int_{0}^{1} \frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}} \overline{\sigma(x)} d x=0$.
The proof is complete.
It follows from Lemma 4.1 that the system of function E is the system of root functions of L_{σ}.

We shall investigate biorthogonal of properties the systems of functions E. In a study of this question we need the following lemma.

Lemma 4.2 For arbitrary complex numbers λ, μ the rightly identity:

$$
\begin{equation*}
<\cos \sqrt{\lambda} x, M_{\bar{\mu}}(x)>\equiv-\frac{\Delta(\lambda)-\Delta(\mu)}{\lambda-\mu} \tag{4.4}
\end{equation*}
$$

Proof We can write for arbitrary λ, μ the scalar product of $\lambda<\cos \sqrt{\lambda} x, M_{\bar{\mu}}(x)>$ taking into account relations (3.3), (4.3) in the following form

$$
\begin{gathered}
\lambda<\cos \sqrt{\lambda} x, M_{\bar{\mu}}(x)>= \\
=\lambda<\cos \sqrt{\lambda} x, \sigma(x)>-\mu \int_{0}^{1} \frac{d^{2}}{d x^{2}} \cos \sqrt{\lambda} x\left(\int_{x}^{1} \frac{\sin \sqrt{\mu}(x-t)}{\sqrt{\mu}} \overline{\sigma(t)} d t\right) d x
\end{gathered}
$$

We use formula for integration by parts to the second term of the last relation.

$$
\begin{aligned}
& \lambda<\cos \sqrt{\lambda} x, M_{\bar{\mu}}(x)>=\lambda<\cos \sqrt{\lambda} x, \sigma(x)>- \\
& -\mu \int_{0}^{1} \frac{d}{d x} \cos \sqrt{\lambda} x\left(\int_{x}^{1} \cos \sqrt{\mu}(x-t) \overline{\sigma(t)} d t\right) d x
\end{aligned}
$$

Once again, we use the formula for integration by parts to the second term of the last relation. Also, given the first property of Lemma 3.1, we have

$$
\lambda<\cos \sqrt{\lambda} x, M_{\bar{\mu}}(x)>=-\Delta(\lambda)+\Delta(\mu)+\mu<\cos \sqrt{\lambda} x, M_{\bar{\mu}}(x)>
$$

From the obtained equation it follows the desired relation (4.4).
The proof is complete.
Analysis of (4.1) leads to the following notation:

$$
E_{n}^{\prime}=\left\{h_{n, 0}(x), h_{n, 1}(x)\right\}
$$

where

$$
h_{n, 0}(x)=-\lim _{\bar{\lambda} \rightarrow \overline{\lambda_{n}}} \frac{d}{d \bar{\lambda}} \frac{\left(\bar{\lambda}-\overline{\lambda_{n}}\right)^{2} M_{\bar{\lambda}}(x)}{\overline{\Delta(\lambda)}} ; h_{n, 1}(x)=-\lim _{\bar{\lambda} \rightarrow \overline{\lambda_{n}}} \frac{\left(\bar{\lambda}-\overline{\lambda_{n}}\right)^{2} M_{\bar{\lambda}}(x)}{\overline{\Delta(\lambda)}}
$$

We introduce the following family of functions

$$
E^{\prime}=\left\{E_{n}^{\prime}: \lambda_{n} \text { is arbitrary eigenvalue of the operator } L_{\sigma}\right\}
$$

We formulate main result.
Theorem 4.1 The system of function E^{\prime} is biorthogonal to the system of functions E, i.e.

$$
<y_{n, j}(x), h_{n, k}(x)>= \begin{cases}1, & \text { if }(n, j)=(n, k) \\ 0, & \text { if }(n, j) \neq(n, k), \text { where } j, k=0,1\end{cases}
$$

Proof Let $j=0, k=0$. Then

$$
<y_{n, 0}(x), h_{n, 0}(x)>=-\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\cos \sqrt{\lambda_{n}} x, M_{\bar{\lambda}}(x)>
$$

Considering of relation (4.4), we have

$$
<y_{n, 0}(x), h_{n, 0}(x)>=\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)} \frac{\Delta\left(\lambda_{n}\right)-\Delta(\lambda)}{\lambda_{n}-\lambda}
$$

Since $\Delta\left(\lambda_{n}\right)=0$ then the last relation takes the form

$$
\begin{equation*}
<y_{n, 0}(x), h_{n, 0}(x)>=\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda}\left(\lambda-\lambda_{n}\right)=1 . \tag{4.5}
\end{equation*}
$$

Let $j=0, k=1$. Then

$$
<y_{n, 0}(x), h_{n, 1}(x)>=-\lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\cos \sqrt{\lambda_{n}} x, M_{\bar{\lambda}}(x)>
$$

Considering of relation (4.4), we have

$$
<y_{n, 0}(x), h_{n, 1}(x)>=\lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)} \frac{\Delta\left(\lambda_{n}\right)-\Delta(\lambda)}{\lambda_{n}-\lambda}
$$

Since $\Delta\left(\lambda_{n}\right)=0$ then the last relation takes the form

$$
\begin{equation*}
<y_{n, 0}(x), h_{n, 1}(x)>=\lim _{\lambda \rightarrow \lambda_{n}}\left(\lambda-\lambda_{n}\right)=0 . \tag{4.6}
\end{equation*}
$$

Let $j=1, k=0$. Then

$$
\begin{equation*}
<y_{n, 1}(x), h_{n, 0}(x)>=\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}, M_{\bar{\lambda}}(x)> \tag{4.7}
\end{equation*}
$$

Using formula (3.3), we calculate relation (4.7).

$$
\begin{gathered}
I=\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}, M_{\bar{\lambda}}(x)>= \\
\\
=\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}, \sigma(x)>+ \\
+\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}, \bar{\lambda} \int_{x}^{1} \frac{\sin \sqrt{\bar{\lambda}}(x-t)}{\sqrt{\bar{\lambda}}} \sigma(t) d t>
\end{gathered}
$$

Given the second property in Lemma 3.1, we calculate the first term of the last relation:

$$
I_{1}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}, \sigma(x)>=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}
$$

We introduce the notation $B(\lambda)=\left(\lambda-\lambda_{n}\right)^{2}$. Then

$$
I_{1}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{B(\lambda)}{\Delta(\lambda)}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{B^{\prime}(\lambda) \Delta(\lambda)-\Delta^{\prime}(\lambda) B(\lambda)}{\Delta^{2}(\lambda)}=\left[\frac{0}{0}=?\right]
$$

We apply L'Hôpital's rule to the last limit relation thrice. Also, given that $B^{\prime}\left(\lambda_{n}\right)=0, B^{(2)}\left(\lambda_{n}\right)=2$, we have

$$
\begin{equation*}
I_{1}=-\frac{2 \Delta^{(3)}\left(\lambda_{n}\right)}{3\left(\lambda_{n} \Delta^{(2)}\left(\lambda_{n}\right)\right)^{2}} \tag{4.8}
\end{equation*}
$$

Now we compute the second term of I.

$$
\begin{aligned}
& I_{2}=\lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{2 \sqrt{\lambda_{n}}}, \bar{\lambda} \int_{x}^{1} \frac{\sin \sqrt{\bar{\lambda}}(x-t)}{\sqrt{\bar{\lambda}}} \sigma(t) d t>= \\
& =\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)} \lambda \int_{0}^{1} \frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}\left(\int_{x}^{1} \frac{\sin \sqrt{\lambda}(x-t)}{\sqrt{\lambda}} \overline{\sigma(t)} d t\right) d x
\end{aligned}
$$

In the last integral we do a permutation of the limits:

$$
I_{2}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)} \lambda \int_{0}^{1} \overline{\sigma(t)}\left(\int_{0}^{t} \frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}} \frac{\sin \sqrt{\lambda}(x-t)}{\sqrt{\lambda}} d x\right) d t
$$

We use formula of integration by parts to the inner integral the last relation.
$I_{2}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)} \lambda \int_{0}^{1} \overline{\sigma(t)}\left(\frac{t}{\lambda_{n}-\lambda} \frac{\sin \sqrt{\lambda_{n}} t}{\sqrt{\lambda_{n}}}+\frac{2 \cos \sqrt{\lambda_{n}} t}{\left(\lambda_{n}-\lambda\right)^{2}}-\frac{2 \cos \sqrt{\lambda} t}{\left(\lambda_{n}-\lambda\right)^{2}}\right) d t$
Taking into account Lemma 3.1 and relation (1.1) we have

$$
I_{2}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda}\left(\frac{2 \lambda \lambda_{n}-\lambda^{2}-\lambda_{n}^{2}+\lambda_{n}^{2} \Delta(\lambda)}{\Delta(\lambda)}\right)
$$

We introduce the notation $F(\lambda)=2 \lambda \lambda_{n}-\lambda^{2}-\lambda_{n}^{2}+\lambda_{n}^{2} \Delta(\lambda)$. Then

$$
I_{2}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{d}{d \lambda} \frac{F(\lambda)}{\Delta(\lambda)}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{F^{\prime}(\lambda) \Delta(\lambda)-\Delta^{\prime}(\lambda) F(\lambda)}{\Delta^{2}(\lambda)}=\left[\frac{0}{0}=?\right]
$$

We use L'Hôpital's rule to the last limit relation thrice. Note that $F^{\prime}\left(\lambda_{n}\right)=0$, $F^{(2)}\left(\lambda_{n}\right)=-2-\lambda_{n}^{2} \Delta^{(2)}\left(\lambda_{n}\right), F^{(3)}\left(\lambda_{n}\right)=-\lambda_{n}^{2} \Delta^{(3)}\left(\lambda_{n}\right)$. A result we have

$$
\begin{equation*}
I_{2}=\frac{2 \Delta^{(3)}\left(\lambda_{n}\right)}{3\left(\lambda_{n} \Delta^{(2)}\left(\lambda_{n}\right)\right)^{2}} \tag{4.9}
\end{equation*}
$$

Taking (4.7), (4.8), and (4.9) we obtain

$$
\begin{equation*}
<y_{n, 1}(x), h_{n, 0}(x)>=0 \tag{4.10}
\end{equation*}
$$

Let $j=1, k=1$. Then

$$
\begin{equation*}
<y_{n, 1}(x), h_{n, 1}(x)>=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}, M_{\bar{\lambda}}(x)> \tag{4.11}
\end{equation*}
$$

Using formula (3.3), we calculate relation (4.11).

$$
\begin{aligned}
C=\frac{1}{2} & \lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}, M_{\bar{\lambda}}(x)>=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}, \sigma(x)>+ \\
& +\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}, \bar{\lambda} \int_{x}^{1} \frac{\sin \sqrt{\bar{\lambda}}(x-t)}{\sqrt{\bar{\lambda}}} \sigma(t) d t>
\end{aligned}
$$

Given the second property in Lemma 3.1, we calculate the first term of the last relation:

$$
C_{1}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}<\frac{x \sin \sqrt{\lambda_{n}} x}{\sqrt{\lambda_{n}}}, \sigma(x)>=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)}=\left[\frac{0}{0}=?\right]
$$

We apply L'Hôpital's rule to the last limit relation twice. We have

$$
\begin{equation*}
C_{1}=\frac{2}{\lambda_{n}^{2} \Delta^{(2)}\left(\lambda_{n}\right)} \tag{4.12}
\end{equation*}
$$

Now we compute the second term of C.

$$
C_{2}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\lambda\left(\lambda-\lambda_{n}\right)^{2}}{\sqrt{\lambda \lambda_{n}} \Delta(\lambda)} \int_{0}^{1} x \sin \sqrt{\lambda_{n}} x\left(\int_{x}^{1} \sin \sqrt{\lambda}(x-t) \overline{\sigma(t)} d t\right) d x
$$

In the last integral we do a permutation of the limits:

$$
C_{2}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\lambda\left(\lambda-\lambda_{n}\right)^{2}}{\sqrt{\lambda \lambda_{n}} \Delta(\lambda)} \int_{0}^{1} \overline{\sigma(t)}\left(\int_{0}^{t} x \sin \sqrt{\lambda_{n}} x \sin \sqrt{\lambda}(x-t) d x\right) d t
$$

We use formula of integration by parts to the inner integral the last relation.
$C_{2}=\frac{1}{2} \lim _{\lambda \rightarrow \lambda_{n}} \frac{\lambda\left(\lambda-\lambda_{n}\right)^{2}}{\Delta(\lambda)} \int_{0}^{1} \overline{\sigma(t)}\left(\frac{t}{\lambda_{n}-\lambda} \frac{\sin \sqrt{\lambda_{n}} t}{\sqrt{\lambda_{n}}}+\frac{2 \cos \sqrt{\lambda_{n}} t}{\left(\lambda_{n}-\lambda\right)^{2}}-\frac{2 \cos \sqrt{\lambda} t}{\left(\lambda_{n}-\lambda\right)^{2}}\right) d t$
Taking into account Lemma 3.1 and relation (1.1) we have

$$
C_{2}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{2 \lambda \lambda_{n}-\lambda^{2}-\lambda_{n}^{2}+\lambda_{n}^{2} \Delta(\lambda)}{\Delta(\lambda)}
$$

We introduce the notation $N(\lambda)=2 \lambda \lambda_{n}-\lambda^{2}-\lambda_{n}^{2}+\lambda_{n}^{2} \Delta(\lambda)$. Then

$$
C_{2}=\frac{1}{\lambda_{n}^{2}} \lim _{\lambda \rightarrow \lambda_{n}} \frac{N(\lambda)}{\Delta(\lambda)}=\left[\frac{0}{0}=?\right]
$$

We use L'Hôpital's rule to the last limit relation thrice. Note that $N^{\prime}\left(\lambda_{n}\right)=0$, $N^{\prime \prime}\left(\lambda_{n}\right)=-2+\lambda_{n}^{2} \Delta^{(2)}\left(\lambda_{n}\right)$. We obtain

$$
\begin{equation*}
C_{2}=-\frac{2}{\lambda_{n}^{2} \Delta^{(2)}\left(\lambda_{n}\right)}+1 \tag{4.13}
\end{equation*}
$$

Taking (4.11), (4.12), and (4.13) we have

$$
\begin{equation*}
<y_{n, 1}(x), h_{n, 1}(x)>=1 \tag{4.15}
\end{equation*}
$$

It follows from (4.5), (4.6), (4.10) and (4.15) that the main result.
The proof is complete.
It follows from Theorem 4.1 that the system of E^{\prime} is biorthogonal to the system of E. Consequently, the system of functions E is a minimal system of functions [1, p. 171].

References

[1] N.K. Nikol'skií, Lektsii ob operatore sdviga. Nauka, Moscow, 1980 [English translation: N.K. Nikol'skií, Treatise on the Shift Operator. Spectral Function Theory, By Springer - Verlag Berlin Heidelberg, Germany, 1986].
[2] M. Otelbaev and A.N. Shynybekov, Well-posed problems of BitsadzeSamarskii type, Dokl. Akad. Nauk SSSR, 265(1982), no.4, 815-919.
[3] F. Riesz and B.Sz.-Nagy, Functional analysis. Mir, Moscow, 1979.
[4] A.M. Sedletskii, Biorthogonal expansions of functions in exponential series on intervals of the real axis, Uspekhi Mat. Nauk (Russian), 37(1982), no.5, 51-95 [English translation: Russian Mathematical Surveys, $\mathbf{3 7}$ (1982), no.5, 57-108].

Received: September, 2011

