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Abstract

In this paper, we consider the second order differential operator of
Lσ with nonlocal boundary conditions in the functional space L2(0, 1).
We construct an explicit system of root functions of Lσ. We study the
biorthogonal of properties the systems of root functions of Lσ. We de-
velop a method for constructing biorthogonal systems of root functions
of well-posed boundary value problems for the second order differential
operator with nonlocal boundary conditions.
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1 Introduction

Let σ(·) be arbitrary function from the functional space L2(0, 1). We introduce
the entire function with respect to λ

Δ(λ) = 1 − λ
∫ 1

0
cos

√
λx σ(x) dx (1.1)

Denote by Λ = {λ1, λ2, · · ·} sequence of zeros of entire function Δ(λ). Each
zero of λn the function Δ(λ) has a some multiplicity mn. In this paper, for
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clarity all results are illustrated of mn = 2. In this case Δ(λn) = 0, Δ′(λn) = 0,
Δ(2)(λn) �= 0. We introduce the chain of functions

En = {cos
√

λn x ,−x sin
√

λn x

2
√

λn

}

The system of functions

E = {En : λn are zeros of the function Δ(λ)}

called the union of all such chains.
Main purpose: Constructively to build an adjoint system of functions

to the system of functions E in the functional space L2 (0.1) (Theorem 4.1).
Note that the system of function E is a system of root functions of second
order differential operator, where the function σ (·) is a boundary function.
Details are described in the section 2 below. In the case of the differentiation
operator as the system of root functions there arises a system of exponentials
that studied in detail in [4].

2 Boundary value problems and auxiliary no-

tation

In [2] proved the following statement

Theorem (M. Otelbaev) a) For any choice of functions σν(x), ν = 1, 2
from the space L2(0, 1) to the nonlocal boundary value problem

−y′′(x) = f(x), 0 < x < 1, (2.1)

y(ν−1)(0) −
∫ 1

0
(−y′′(x))σν(x)dx = 0, ν = 1, 2. (2.2)

corresponds to the operator L in the functional space L2(0, 1), where L has
completely continuous inverse of L−1.

b) Assume that the nonhomogeneous equation (2.1) with some additional
conditions for any right side f(x) ∈ L2(0, 1) has a unique solution y(x) in the
functional space W2

2[0, 1], where y(x) has the a priori estimate

‖ y ‖L2(0,1)≤ c ‖ f ‖L2(0,1)

Then there exists a unique set of functions {σν(x)}, ν = 1, 2 from the functional
space L2(0, 1) that the additional conditions are equivalent to (2.2).

It follows from Theorem (M.Otelbaev) that the nonlocal boundary condi-
tions (2.2) for all possible {σν(x)}, ν = 1, 2 from the functional space L2(0, 1)
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describe everything well-posed solvable boundary value problems correspond-
ing to expression of �(·).

Without loss of generality in can be assumed that in the problem (2.1), (2.2)
the function σ2(·) = 0. Thus, we consider the operator Lσ in the functional
space L2 (0, 1) corresponding to the following nonlocal boundary value problem

−y′′(x) = f(x), 0 < x < 1, (2.1)

y(0)−
∫ 1

0
(−y′′(x))σ(x) dx = 0, (2.3)

y′(0) = 0, (2.4)

where σ(x) ∈ L2(0, 1).

3 Resolvent of the operator Lσ

In this section we compute an explicit solution of the nonlocal boundary value
problem

−y′′(x) = λy(x) + f(x), 0 < x < 1, (3.1)

y(0)−
∫ 1

0
(−y′′(x))σ(x) dx = 0, (2.3)

y′(0) = 0. (2.4)

The solution of this nonlocal boundary value problem is called a resolvent of
Lσ. The explicit form of the resolvent has a significant meaning for the study
properties of biorthogonal systems of root functions of Lσ.

Theorem 3.1 A resolvent of the operator Lσ is determined by the formula

y(x) = (Lσ−λI)−1f(x) =
< f(t), Mλ(t) >

Δ(λ)
cos

√
λx+

∫ x

0

sin
√

λ (t − x)√
λ

f(t) dt,

(3.2)
where

Mλ(t) = σ(t) + λ
∫ 1

t

sin
√

λ (t − x)√
λ

σ(x) dx, (3.3)

and the entire function Δ(λ) is defined by formula (1.1).

Proof General solution of differential equations (3.1) is a function of

y(x) = c1cos
√

λx + c2
sin

√
λx√
λ

+
∫ x

0

sin
√

λ (t − x)√
λ

f(t) dt, (3.4)

where {cos√λx, sin
√

λ x√
λ

} is a fundamental system of solutions for the homoge-

neous differential equation (3.1).
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We substitute equation (3.4) also its first and second order derivatives on

the boundary conditions (2.3) (2.4). Consequently, we have c1 =
<f(t),M

λ
(t)>

Δ(λ)
,

c2 = 0. Using the values of c1, c2 in equation (3.4), we obtain (3.2).
The proof is complete.
The entire function Δ(λ) is called the characteristic function of Lσ. We

formulate as a lemma some basic properties of functions Δ(λ).
Lemma 3.1 For any eigenvalues of λn of multiplicity mn = 2 of the oper-

ator Lσ following properties hold:

1)
∫ 1

0
cos

√
λn x σ(x) dx =

1

λn
; 2)

∫ 1

0

x sin
√

λn x√
λn

σ(x) dx =
2

λ2
n

.

These relations are obtained directly from (1.1) for Δ(λ) taking account of
multiplicity of eigenvalues.

4 System of root functions of Lσ and the cor-

responding adjoint system

In [3, p. 445] give a decomposition theorem. It follows from that for some δ > 0
the projector Pn : L2(0, 1) → Ker(Lσ − λ)mn is a residue of the resolvent at
the singular point λn

(Pnf)(x) = − 1

2πi

∮
|λ−λn|=δ

(Lσ − λI)−1f(x)dλ.

Recalling of representation (3.2) for resolvent from Theorem 3.1 and basis
properties of residue form of the projector Pn can be refined

(Pnf)(x) =< f(t),− lim
λ→λn

d

dλ

(λ − λn)2Mλ(t)

Δ(λ)
> cos

√
λn x+

+ < f(t),− lim
λ→λn

(λ − λn)2Mλ(t)

Δ(λ)
>

(
−x sin

√
λn x

2
√

λn

)
(4.1)

Let us remark that
∫ x
0

sin
√

λ (t−x)√
λ

f(t) dt is an entire function in λ. We give
certain properties of systems of functions E as a lemma.

Lemma 4.1 The elements of the chain En satisfy the differential equations

−y′′
n,1(x) = λn yn,1(x) + yn,0(x), (4.2)

−y′′
n,0(x) = λnyn,0(x) (4.3)

and nonlocal boundary conditions (2.3), (2.4).
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Proof We check that the functions yn, 0 (x), yn, 1 (x) satisfy the conditions
of the lemma. To do we find the first order and second order of derivatives of
these functions. We have

y′
n,0(x) = −

√
λn sin

√
λn x, y′′

n,0(x) = −λn cos
√

λn x,

y′
n,1(x) = −sin

√
λnx

2
√

λn

− x cos
√

λnx

2
, y′′

n,1(x) = −cos
√

λn x +

√
λn x sin

√
λn x

2
.

We calculate the linear combination λn yn,1(x) + yn,0(x) = −λn x sin
√

λn x
2
√

λn
+

+ cos
√

λn x = −y′′
n,1(x). Directly, −y′′

n,0(x) = −λn cos
√

λn x = λn yn,0(x).
We check the boundary conditions (2.3) (2.4). It is obvious that y′

n,0(0) = 0,
y′

n,1(0) = 0. Respectively,

yn,0(0)− ∫ 1
0 (−y′′

n,0(x))σ(x)dx = 1−λn

∫ 1
0 cos

√
λn x σ(x)dx = 0 since is true the

first property of Lemma 3.1. Also it follows from Lemma 3.1 that yn,1(0)−
− ∫ 1

0 (−y′′
n,1(x))σ(x)dx = − ∫ 1

0 cos
√

λn x σ(x)dx + λn

2

∫ 1
0

x sin
√

λn x√
λn

σ(x)dx = 0.
The proof is complete.
It follows from Lemma 4.1 that the system of function E is the system of

root functions of Lσ.
We shall investigate biorthogonal of properties the systems of functions E.

In a study of this question we need the following lemma.
Lemma 4.2 For arbitrary complex numbers λ, μ the rightly identity:

< cos
√

λ x,Mμ(x) >≡ −Δ(λ) − Δ(μ)

λ − μ
(4.4)

Proof We can write for arbitrary λ, μ the scalar product of λ < cos
√

λx,Mμ(x) >
taking into account relations (3.3), (4.3) in the following form

λ < cos
√

λx,Mμ(x) >=

= λ < cos
√

λ x, σ(x) > −μ
∫ 1

0

d2

dx2
cos

√
λ x

(∫ 1

x

sin
√

μ (x − t)√
μ

σ(t)dt

)
dx

We use formula for integration by parts to the second term of the last relation.

λ < cos
√

λx,Mμ(x) >= λ < cos
√

λx, σ(x) > −

−μ
∫ 1

0

d

dx
cos

√
λx

(∫ 1

x
cos

√
μ(x − t)σ(t)dt

)
dx

Once again, we use the formula for integration by parts to the second term of
the last relation. Also, given the first property of Lemma 3.1, we have

λ < cos
√

λx,Mμ(x) >= −Δ(λ) + Δ(μ) + μ < cos
√

λx,Mμ(x) >
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From the obtained equation it follows the desired relation (4.4).
The proof is complete.
Analysis of (4.1) leads to the following notation:

E ′
n = {hn,0(x), hn,1(x)},

where

hn,0(x) = − lim
λ→λn

d

dλ

(λ − λn)
2Mλ(x)

Δ(λ)
; hn,1(x) = − lim

λ→λn

(λ − λn)2Mλ(x)

Δ(λ)
.

We introduce the following family of functions

E ′ = {E ′
n : λn is arbitrary eigenvalue of the operator Lσ}

We formulate main result.
Theorem 4.1 The system of function E ′ is biorthogonal to the system of

functions E, i.e.

< yn,j(x), hn,k(x) >=

{
1, if (n, j) = (n, k);
0, if (n, j) �= (n, k), where j, k = 0, 1.

Proof Let j = 0, k = 0. Then

< yn,0(x), hn,0(x) >= − lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)
< cos

√
λn x,Mλ(x) >

Considering of relation (4.4), we have

< yn,0(x), hn,0(x) >= lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)

Δ(λn) − Δ(λ)

λn − λ

Since Δ (λn) = 0 then the last relation takes the form

< yn,0(x), hn,0(x) >= lim
λ→λn

d

dλ
(λ − λn) = 1. (4.5)

Let j = 0, k = 1. Then

< yn,0(x), hn,1(x) >= − lim
λ→λn

(λ − λn)2

Δ(λ)
< cos

√
λn x,Mλ(x) >

Considering of relation (4.4), we have

< yn,0(x), hn,1(x) >= lim
λ→λn

(λ − λn)
2

Δ(λ)

Δ(λn) − Δ(λ)

λn − λ
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Since Δ(λn) = 0 then the last relation takes the form

< yn,0(x), hn,1(x) >= lim
λ→λn

(λ − λn) = 0. (4.6)

Let j = 1, k = 0. Then

< yn,1(x), hn,0(x) >= lim
λ→λn

d

dλ

(λ − λn)
2

Δ(λ)
<

x sin
√

λnx

2
√

λn

, Mλ(x) > (4.7)

Using formula (3.3), we calculate relation (4.7).

I = lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)
<

x sin
√

λn x

2
√

λn

, Mλ(x) >=

= lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)
<

x sin
√

λn x

2
√

λn

, σ(x) > +

+ lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)
<

x sin
√

λn x

2
√

λn

, λ
∫ 1

x

sin
√

λ (x − t)√
λ

σ(t)dt >

Given the second property in Lemma 3.1, we calculate the first term of the
last relation:

I1 =
1

2
lim

λ→λn

d

dλ

(λ − λn)2

Δ(λ)
<

x sin
√

λnx√
λn

, σ(x) >=
1

λ2
n

lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)

We introduce the notation B(λ) = (λ − λn)2. Then

I1 =
1

λ2
n

lim
λ→λn

d

dλ

B(λ)

Δ(λ)
=

1

λ2
n

lim
λ→λn

B′(λ)Δ(λ) − Δ′(λ)B(λ)

Δ2(λ)
=
[
0

0
=?
]

We apply L’Hôpital’s rule to the last limit relation thrice. Also, given that
B′(λn) = 0, B(2)(λn) = 2, we have

I1 = − 2 Δ(3)(λn)

3(λnΔ(2)(λn))2
(4.8)

Now we compute the second term of I.

I2 = lim
λ→λn

d

dλ

(λ − λn)2

Δ(λ)
<

x sin
√

λn x

2
√

λn

, λ
∫ 1

x

sin
√

λ (x − t)√
λ

σ(t)dt >=

=
1

2
lim

λ→λn

d

dλ

(λ − λn)2

Δ(λ)
λ
∫ 1

0

x sin
√

λn x√
λn

(∫ 1

x

sin
√

λ (x − t)√
λ

σ(t)dt

)
dx

In the last integral we do a permutation of the limits:

I2 =
1

2
lim

λ→λn

d

dλ

(λ − λn)2

Δ(λ)
λ
∫ 1

0
σ(t)

(∫ t

0

x sin
√

λn x√
λn

sin
√

λ (x − t)√
λ

dx

)
dt
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We use formula of integration by parts to the inner integral the last relation.

I2 =
1

2
lim

λ→λn

d

dλ

(λ − λn)2

Δ(λ)
λ
∫ 1

0
σ(t)

(
t

λn − λ

sin
√

λn t√
λn

+
2 cos

√
λn t

(λn − λ)2
− 2 cos

√
λ t

(λn − λ)2

)
dt

Taking into account Lemma 3.1 and relation (1.1) we have

I2 =
1

λ2
n

lim
λ→λn

d

dλ

(
2 λ λn − λ2 − λ2

n + λ2
nΔ(λ)

Δ(λ)

)

We introduce the notation F (λ) = 2 λ λn − λ2 − λ2
n + λ2

nΔ(λ). Then

I2 =
1

λ2
n

lim
λ→λn

d

dλ

F (λ)

Δ(λ)
=

1

λ2
n

lim
λ→λn

F ′(λ)Δ(λ) − Δ′(λ)F (λ)

Δ2(λ)
=
[
0

0
=?
]

We use L’Hôpital’s rule to the last limit relation thrice. Note that F ′(λn) = 0,
F (2)(λn) = −2 − λ2

nΔ(2)(λn), F (3)(λn) = −λ2
nΔ(3)(λn). A result we have

I2 =
2Δ(3)(λn)

3(λnΔ(2)(λn))2
(4.9)

Taking (4.7), (4.8), and (4.9) we obtain

< yn,1(x), hn,0(x) >= 0 (4.10)

Let j = 1, k = 1. Then

< yn,1(x), hn,1(x) >=
1

2
lim

λ→λn

(λ − λn)2

Δ(λ)
<

x sin
√

λn x√
λn

, Mλ(x) > (4.11)

Using formula (3.3), we calculate relation (4.11).

C =
1

2
lim

λ→λn

(λ − λn)2

Δ(λ)
<

x sin
√

λn x√
λn

, Mλ(x) >=
1

2
lim

λ→λn

(λ − λn)2

Δ(λ)
<

x sin
√

λn x√
λn

, σ(x) > +

+
1

2
lim

λ→λn

(λ − λn)
2

Δ(λ)
<

x sin
√

λn x√
λn

, λ
∫ 1

x

sin
√

λ (x − t)√
λ

σ(t) dt >

Given the second property in Lemma 3.1, we calculate the first term of the
last relation:

C1 =
1

2
lim

λ→λn

(λ − λn)2

Δ(λ)
<

x sin
√

λn x√
λn

, σ(x) >=
1

λ2
n

lim
λ→λn

(λ − λn)2

Δ(λ)
=
[
0

0
=?
]

We apply L’Hôpital’s rule to the last limit relation twice. We have

C1 =
2

λ2
nΔ(2)(λn)

(4.12)
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Now we compute the second term of C.

C2 =
1

2
lim

λ→λn

λ (λ − λn)2

√
λ λn Δ(λ)

∫ 1

0
x sin

√
λn x

(∫ 1

x
sin

√
λ (x − t) σ(t) dt

)
dx

In the last integral we do a permutation of the limits:

C2 =
1

2
lim

λ→λn

λ (λ − λn)2

√
λ λn Δ(λ)

∫ 1

0
σ(t)

(∫ t

0
x sin

√
λn x sin

√
λ (x − t) dx

)
dt

We use formula of integration by parts to the inner integral the last relation.

C2 =
1

2
lim

λ→λn

λ (λ − λn)2

Δ(λ)

∫ 1

0
σ(t)

(
t

λn − λ

sin
√

λn t√
λn

+
2 cos

√
λn t

(λn − λ)2
− 2 cos

√
λ t

(λn − λ)2

)
dt

Taking into account Lemma 3.1 and relation (1.1) we have

C2 =
1

λ2
n

lim
λ→λn

2λ λn − λ2 − λ2
n + λ2

nΔ(λ)

Δ(λ)

We introduce the notation N(λ) = 2λ λn − λ2 − λ2
n + λ2

nΔ(λ). Then

C2 =
1

λ2
n

lim
λ→λn

N(λ)

Δ(λ)
=
[
0

0
=?
]

We use L’Hôpital’s rule to the last limit relation thrice. Note that N ′(λn) = 0,
N ′′(λn) = −2 + λ2

nΔ
(2)(λn). We obtain

C2 = − 2

λ2
n Δ(2)(λn)

+ 1. (4.13)

Taking (4.11), (4.12), and (4.13) we have

< yn,1(x), hn,1(x) >= 1 (4.15)

It follows from (4.5), (4.6), (4.10) and (4.15) that the main result.
The proof is complete.
It follows from Theorem 4.1 that the system of E ′ is biorthogonal to the

system of E. Consequently, the system of functions E is a minimal system of
functions [1, p. 171].
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