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Spectrum of Volterra integral operator of the second kind
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Ramazanov†

∗Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan
†Buketov Karaganda Stated University, 100028, Karaganda, Kazakhstan

Abstract. The article addresses the singular Volterra integral equation of the second kind, which has the ’incompressible’
kernel. It is shown that the corresponding homogeneous equation on |λ | ≥ exp{|argλ |}, argλ ∈ [−π,π] has a contin-
uous spectrum, and the multiplicity of the characteristic numbers grows with increasing |λ |. We use the Carleman-Vekua
regularization method. We introduce the characteristic integral equation. We prove that the initial integral equation has eigen-
functions, the multiplicity of which depends on the value of the spectral parameter λ . We prove the solvability theorem of the
nonhomogeneous equation in a case when the right-hand side of the equation belongs to a certain class.
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INTRODUCTION

In this paper we consider the singular Volterra integral equation with spectral parameter λ ∈ C of form

φ(t)−λ
t∫

0

K(t, τ) φ(τ)dτ = f (t), t > 0, (1)

where

K(t, τ) = K(1)(t, τ)+K(2)(t, τ), (2)

K(1)(t, τ) =
1

2a
√

π
tω + τω

(t − τ)
3
2

exp

(
− (tω + τω)2

4a2(t − τ)

)
, (3)

K(2)(t, τ) =
1

2a
√

π
tω − τω

(t − τ)
3
2

exp
(
− (tω − τω)2

4a2(t − τ)

)
, ω > 1/2. (4)

We call such equations as the Volterra integral equations with ’incompressible’ kernel [1]. It is shown that the cor-
responding homogeneous equation on |λ | ≥ exp{|argλ |}, argλ ∈ [−π,π] has a continuous spectrum, and the mul-
tiplicity of the characteristic numbers grows with increasing |λ |. We use the Carleman-Vekua regularization method.
We introduce the characteristic integral equation. We prove that the initial integral equation has eigenfunctions, the
multiplicity of which depends on the value of the spectral parameter λ . We prove the solvability theorem of the non-
homogeneous equation (1)–(4) in a case when the right-hand side of the equation belongs to a certain class.

PROPERTIES OF THE KERNEL K(t, τ) (2)–(4)

The kernel K(t, τ) (2)–(4) has the following properties:
1) K(t, τ)≥ 0 and is continuous on 0 < τ ≤ t < ∞;

2) lim
t→t0

t∫
t0

K(t, τ)dτ = 0, t0 ≥ ε > 0;

3) lim
t→0

t∫
0

K(t, τ)dτ = 1, lim
t→+∞

t∫
0

K(t, τ)dτ = 1.
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The feature of equation (1) in question consists in property 3) of the kernel K(t, τ) and is expressed in the fact
that the corresponding nonhomogeneous equation can not be solved by the successive approximations method for
|λ | ≥ exp{|argλ |}, argλ ∈ [−π,π]. Obviously, if |λ | < exp{|argλ |}, argλ ∈ [−π,π] then equation (1) has a
unique solution, that can be found by the successive approximations method. The case when λ ∈ C and ω = 1 was
considered in [1]. In this paper we assume that |λ | ≥ exp{|argλ |}, argλ ∈ [−π,π] and ω > 1/2.

The property 3) of kernel K(t, τ) (2)–(4) follows from the next lemmas.

Lemma 1 If ω > 1
2 , then lim

t→0

t∫
0

K(1)(t,τ)dτ = 1.

Lemma 2 If ω > 1
2 , then lim

t→0

t∫
0

K(2)(t,τ)dτ = 0.

Lemma 3 If ω > 1
2 , then t3/2−ω

t∫
0

K(1)(t,τ)
τ3/2−ω dτ <C, 0 < t < ∞.

Lemma 4 If ω > 1
2 , then t3/2−ω

t∫
0

K(2)(t,τ)
τ3/2−ω dτ <C(ω), 0 < t < ∞.

THE CHARACTERISTIC INTEGRAL EQUATION

According to the Carleman-Vekua regularization method we prove that for equation (1) the next integral equation

φ(t)−λ
t∫

0

K0(t,τ)φ(τ)d τ = F(t) (5)

is characteristic, where

K0(t,τ) =
1

2a
√

π
(2ω −1)3/2 t4ω−3

(t2ω−1 − τ2ω−1)3/2 exp

[
−2ω −1

4a2

(
t2ω−1 + τ2ω−1

)2

t2ω−1 − τ2ω−1

]
, ω > 1/2, (6)

F(t) = f (t)−λ
t∫

0

[
K1(t,τ)+K(2)(t,τ)

]
φ(τ)d τ, (7)

K1(t,τ) = K0(t,τ)−K(1)(t,τ). (8)

This follows from the assertions of Lemmas 6–8.
First, we note that kernel K0(t,τ) (6) also has the property, similar properties 3) of kernel K(t,τ) (2)–(4). This

property follows from Lemma 5.

Lemma 5 If ω > 1/2, then lim
t→0

t∫
0

K0(t,τ)dτ = 1.

Further, if we introduce a following notations

P(1)(t,τ) =
tω + τω

2a
√

π(t − τ)3/2 , P0(t,τ) =
2a
√

π(2ω −1)3/2t4ω−3

(t2ω−1 − τ2ω−1)3/2 ,

Q(1)(t,τ) =
(tω + τω)2

4a2(t − τ)
, Q0(t,τ) =

2ω −1
4a2

(t2ω−1 + τ2ω−1)2

t2ω−1 − τ2ω−1 ,

then
K0(t,τ) = P0(t,τ)e−Q0(t,τ); K(1)(t,τ) = P(1)(t,τ)e−Q(1)(t,τ).
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Lemma 6 If ω > 1/2, then lim
t→0

t∫
0

K1(t,τ)d τ = 0. In addition, we have the following estimate

|K1(t,τ)| ≤C(ω)
tω−1
√

t − τ
e−Q̃(t,τ) (C(ω) = const),

where
Q̃(t,τ) = min{Q0(t,τ);

1
2

Q(1)(t,τ)}.

Lemma 7 We have the following estimates:

|P0(t,τ)−P(1)(t,τ)| ≤ C2(ω)
tω−1
√

t − τ
,

P(1)(t,τ)
∣∣∣Q0(t,τ)−Q(1)(t,τ)

∣∣∣exp
{
−Q(1)(t,τ)

}
≤ C3(ω)

t2ω−1
√

t − τ
exp

{
−Q(1)(t,τ)

2

}
.

Lemma 8 If ω > 1/2, then ∣∣∣K(2)(t,τ)
∣∣∣≤C6(ω)

tω−1
√

t − τ
exp
{
−C7(ω)t2(ω−1)(t − τ)

}
,

where functions C6(ω) and C7(ω) are constants continuous depending on the parameter ω > 1/2.

From Lemmas 5-8 it follows directly that for equation (1) equation (5) is characteristic.

SOLVING THE CHARACTERISTIC EQUATION (5)

In equation (5) we make following changes of the independent variables (recall that γ = 2ω −1)

t = [γt1]−1/γ , τ = [γτ1]
−1/γ ,

and introduce notations (0 < τ1 < t1 < ∞):

µ(t1) = t
γ/2−1

γ
1 φ([γt1]−1/γ), F1(t1) = t

γ/2−1
γ

1 F([γt1]−1/γ), (9)

k0(t1 − τ1) =
1

2a
√

π(τ1 − t1)3/2 exp
(
− 1

4a2(τ1 − t1)

)
.

Then equation (5) can be written as

µ(t1)−λ
∞∫

t1

k0(t1 − τ1)µ(τ1)dτ1 = F1(t1), 0 < t1 < τ1 < ∞. (10)

We have studied the equation (10) in work [2-4]. Therefore from the results [4] we have that the solution of
characteristic integral equation (5) is determined as follows (where γ = 2ω −1):

φ(t) = tγ/2−1µ([γtγ ]−1) = tγ/2−1F(t)+λ tγ/2−1
t∫

0

τ−γ−1rλ−([γtγ ]−1 − [γτγ ]−1)F(τ)dτ (11)

+tγ/2−1
N2

∑
k=−N1

ck exp(−izk[γtγ ]−1), t ∈ R+,
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where

rλ−(θ) = 2
−(N1+1)

∑
k=−∞

√
i zk exp(−izkθ)+2

∞

∑
k=N2+1

√
i zk exp(−izkθ)+

1
2
√

π(−θ)3/2

∞

∑
m=1

m
λ m exp

(
m2

4θ

)
,

Re(izk)< 0, |λ |> 1, θ ∈ R−, (12)
the numbers N1, N2, {zk, k ∈ Z} are defined by formulas

N1 =

[
ln |λ |+ argλ

2π

]
, N2 =

[
ln |λ |− argλ

2π

]
, (13)

zk = 2(argλ +2kπ) ln |λ |− i
[
ln2 |λ |− (argλ +2kπ)2] . (14)

Formula (13) follows from the boundedness of the solutions of homogeneous conditions (5), which is equivalent
to the condition Re {izk} ≥ 0 for roots zk defined by formula (14). The number of such roots will always be the end!
Detailed calculations are in [4].

Thus we have proved the following theorem.

Theorem 9 General solution of the characteristic integral equation (5) has representation (11).

Substituting in integral equation (11) the expression for F(t) according to formulas (7)–(8), we obtain an equation:

φ(t) = tγ/2−1 f (t)−λ tγ/2−1
t∫

0

[
K0(t,τ)−K(1)(t,τ)+K(2)(t,τ)

]
φ(τ)d τ

+λ tγ/2−1
t∫

0

τ−γ−1rλ−([γtγ ]−1 − [γτγ ]−1)

 f (τ)−λ
τ∫

0

[
K0(τ,τ1)−K(1)(τ,τ1)

+K(2)(τ,τ1)
]

φ(τ1)d τ1

dτ + tγ/2−1
N2

∑
k=−N1

ck exp(−izk[γtγ ]−1), t ∈ R+,

which can be rewritten as

φ(t)−λ tγ/2−1
t∫

0

K̂(t,τ)φ(τ)dτ = tγ/2−1 f̂ (t)+ tγ/2−1
N2

∑
k=−N1

ck exp(−izk[γtγ ]−1), t ∈ R+, (15)

where

K̂(t,τ) = K̃(t,τ)+λ
t∫

τ

η−γ−1rλ−([γtγ ]−1 − [γηγ ]−1)K̃(η ,τ)dη ,

K̃(t,τ) = −K0(t,τ)+K(1)(t,τ)−K(2)(t,τ),

f̂ (t) = f (t)+λ
t∫

0

τ−γ−1rλ−([γtγ ]−1 − [γτγ ]−1) f (τ)dτ.

Function rλ−(θ) is determined by formula (12).
Note that Lemmas 1–8 justify the Carleman-Vekua regularization method [5] for integral equation (5), i.e., we obtain

a following result.

MAIN RESULT

Theorem 10 Integral equation (15) for any

t3/2−ω f (t) ∈ L∞(0,∞)

has a unique solution
φ(t) = t3/2−ω φ(t) ∈ L∞(0,∞).
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