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Abstract

A setA is nontrivial for the linear-exponential-time class E = DTIME(2lin)
if for any k ≥ 1 there is a set Bk ∈ E such that Bk is (p-m-)reducible to A
and Bk 6∈ DTIME(2k·n). I.e., intuitively, A is nontrivial for E if there are
arbitrarily complex sets in E which can be reduced to A. Similarly, a set A
is nontrivial for the polynomial-exponential-time class EXP = DTIME(2poly)
if for any k ≥ 1 there is a set B̂k ∈ EXP such that B̂k is reducible to A and

B̂k 6∈ DTIME(2n
k

). We show that these notions are independent, namely,
there are sets A1 and A2 in E such that A1 is nontrivial for E but trivial for
EXP and A2 is nontrivial for EXP but trivial for E. In fact, the latter can
be strengthened to show that there is a set A ∈ E which is weakly EXP-hard
in the sense of Lutz [12] but E-trivial.

1 Introduction

The standard way for proving a problem to be intractable is to show that the
problem is hard or complete for the linear-exponential-time class E = DTIME(2lin)
under polynomial-time-bounded many-one reducibility (p-m-reducibility for short).
While the classical approach for extending this method is to allow more general
polynomial-time reducibilities in the definition of hardness, Lutz [12] proposed
an alternative generalization of this approach by relaxing hardness in a different
direction. While a set A is hard for a class C if all problems in C can be reduced to
A and complete if it is hard and a member of C, Lutz proposed to call a set A weakly
hard if a nonnegligible part of C can be reduced to A and to call A weakly complete if
in addition A ∈ C. For the exponential-time classes E and EXP = DTIME(2poly),
Lutz formalized these ideas by introducing resource-bounded measures on these
classes and by saying that a subclass of E is negligible if it has measure 0 in E (and
similarly for EXP).

A certain drawback of Lutz’s weak hardness notion, called measure-hardness in
the following, is that it is based on the somewhat technical concept of resource-
bounded measure. So in [2] the authors suggested some alternative weak hardness
notion, called nontriviality, which is conceptually much simpler and is solely based
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on the basic concepts of computational complexity theory. Here a subclass of E
is considered to be negligible if it is contained in a finite level Ek = DTIME(2kn)
of the hierarchy E and, similarly, a subclass of EXP is considered to be negligible

if it is contained in a finite level EXPk = DTIME(2n
k

) of the hierarchy EXP.
So nontrival sets for E and EXP have arbitrarily complex sets from E and EXP,
respectively, among their predecessors.

As argued in [2], E-nontriviality may be viewed as the weakest weak hardness
notion for E which is still reflecting the structure of E (and similarly for EXP).
In particular, Lutz’s measure hardness implies nontriviality. In [2] another weak
hardness notion for E and EXP, called strong nontriviality, is introduced to fill
the gap between measure-hardness and nontriviality, where strong nontriviality
is obtained from nontriviality by replacing infinitely-often complexity by almost-
everywhere complexity.

While, by a simple padding argument, hardness for E and EXP coincide, Juedes
and Lutz [10] have shown that measure hardness for E implies measure hardness
for EXP but that the converse is not true. Here we analyze the relations between
the nontriviality notions for E and EXP. We show that nontriviality for E and
nontriviality for EXP are independent: There are sets A1 and A2 in E such that
A1 is nontrivial for E but trivial for EXP and A2 is nontrivial for EXP but trivial for
E. In fact, we improve the latter by showing that there is an EXP-measure hard set
A2 ∈ E which is E-trivial. Moreover, we show that for strong nontriviality - just as
in case of measure hardness - strong nontriviality for E implies strong nontriviality
for EXP, thereby completely specifying the relations among all of the weak hardness
notions considered here for E and EXP.

Note that the results on E- and EXP-nontriviality give some limitations on the
padding technique. Recall that, by the Padding Lemma, for any set A ∈ EXP
there is a set Â ∈ E1 which is p-m-equivalent (hence p-m-reducible) to A. (Namely,

for A ∈ EXPk, it suffices to let Â = {0|x|kx : x ∈ A}.) So any set in EXP is
p-m-equivalent to a set in the lowest level of the linear-exponential-time hierarchy.
By a straightforward modification of this argument, one can show that any set
A ∈ Ek+1\Ek from the (k+1)th level of E is p-m-equivalent to sets at all lower levels
of E (namely, for any j ≤ k there is a set Aj ∈ Ej+1 \ Ej which is p-m-equivalent
to A) (see [2]). This easily implies that a set A is E-nontrivial if and only if A is
p-m-equivalent to sets at all levels Ej+1\Ej of E and, similarly, A is EXP-nontrivial
if and only if A is p-m-equivalent to sets at all levels EXPj+1 \ EXPj of EXP. On
the other hand, by the existence of E-trivial sets A at all levels Ek+1 \Ek of E (see
[2]), there are sets in arbitrarily high levels of E which are not p-m-equivalent to
any sets in any higher levels (and, similarly, for EXP). Now our new results on the
independence of nontriviality for E and nontriviality for EXP show that, for a set
A ∈ E, being equivalent to sets at all levels of the E-hierarchy (EXP-hierarchy) will
not imply that A has predecessors at all levels of the EXP-hierarchy (E-hierarchy).

Our notation is standard (see e.g. the monographs of Balcázar et al. [6] and [7]).
Moreover, we assume familiarity with the basic notions and results of computational
complexity theory.
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2 Weak Hardness Notions For E and EXP

In this section we introduce the weak hardness notions for E and EXP we will deal
with. We start with some notation and simple facts on the exponential time classes.
Let

Ek = DTIME(2kn) and EXPk = DTIME(2k
n

).

Then
E =

⋃
k≥1

Ek and EXP =
⋃
k≥1

EXPk.

Obviously, E1 = EXP1 and E ⊆ EXP2. Moreover, by the Time-Hierarchy Theorem,
Ek ⊂ Ek+1 and EXPk ⊂ EXPk+1 whence, in particular, for any k ≥ 1, E \ Ek and
EXP \ EXPk are nonempty. So E and EXP may be viewed as hierarchies, the
linear-exponential-time hierarchy and the polynomial-exponential-time hierarchy,
respectively. By the Padding Lemma, for any set A ∈ EXP there is a set Â in E1

such that Â is p-m-equivalent to A. So hardness for E and EXP coincide, and a
set A ∈ E is E-complete if and only if it is EXP-complete. Moreover, since EXP is
downward closed under p-m-reducibility, it follows that

Pm(E1) = Pm(E) = Pm(EXP) = EXP

(where Pm(C) = {B : ∃ A ∈ C (B ≤pm A)} denotes the downward closure of the
class C under p-m-reducibility).

Definition 2.1 (Ambos-Spies and Bakibayev [2]) A set A is E-nontrivial if,
for any number k ≥ 1, there is a set Bk ∈ E \ Ek such that Bk ≤pm A; and A is
E-trivial otherwise.

A set A is EXP-nontrivial if, for any number k ≥ 1, there is a set Bk ∈
EXP \ EXPk such that Bk ≤pm A; and A is EXP-trivial otherwise.

So, intuitively, a set A is E-nontrivial if there are arbitrarily complex linear-
exponential-time sets which can be reduced to A, i.e., if for each k there is a
linear-exponential-time set Bk p-m-reducible to A such that the run time of any
algorithm computing Bk exceeds 2k|x| on infinitely many strings x (and similarly
for EXP). In the following definition nontriviality is strengthened by replacing
infinitely-often complexity by almost-everywhere complexity. Here we use the co-
incidence of almost-everywhere complexity and bi-immunity (see e.g. Chapter 6 of
Balcázar et al. [7]).

Definition 2.2 (Ambos-Spies and Bakibayev [2]) A set A is strongly E-non-
trivial if, for any number k ≥ 1, there is an Ek-bi-immune set Bk ∈ E such that
Bk ≤pm A; and A is weakly E-trivial otherwise.

A set A is strongly EXP-nontrivial if, for any number k ≥ 1, there is an
EXPk-bi-immune set Bk ∈ EXP such that Bk ≤pm A; and A is weakly EXP-trivial
otherwise.

The third type of weak hardness we consider here, the original weak hardness
notion of Lutz [12], is technically more involved by being based on the resource-
bounded measure theory developed in Lutz [11]. So, in order to explain Lutz’s weak
hardness notion, which we call measure hardness here, we have to introduce the
basic concepts of resource-bounded measure theory first. For simplicity, we take the

3



characterization of measure hardness in terms of time-bounded randomness given
in [5] as definition here. Though this characterization is less intuitive, it is more
simple and more convenient for applications.

For the motivation underlying measure hardness we refer to Lutz [12]. More
background information on resource-bounded measure theory can be found in the
surveys on resource-bounded measure by Lutz [13] and Ambos-Spies and Mayor-
domo [4] where the latter also explains the relations between resource-bounded
measure and randomness. The definitions and facts needed here are taken from [4].

In the following definition we summarize the concepts from resource-bounded
measure theory we will need.

Definition 2.3 (a) A martingale is a real valued function d : {0, 1}∗ → [0,∞)
such that d(λ) > 0 and, for every x ∈ {0, 1}∗, the following equality (called fairness
condition) holds.

d(x0) + d(x1)

2
= d(x) (1)

d(λ) is called the norm of d. d is normed if d(λ) = 1.
(b) A martingale d succeeds on a set A if

lim sup
n≥0

d(A � n) =∞

(where A � n = A(0), . . . , A(n− 1) is the initial segment of length n of the charac-
teristic sequence of A). A martingale d succeeds on a class C if it succeeds on all
sets A ∈ C.

(c) The (betting) strategy sd underlying the martingale d is the function

sd(x) =

{
d(x0)
2d(x) if d(x) 6= 0

0 otherwise.

(d) A t(n)-martingale d is a rational valued martingale d : {0, 1}∗ → Q∩ [0,∞)
such that, for the underlying strategy sd, sd ∈ DTIME(t(n)).

(e) A class C has t(n)-measure 0 if there is a t(n)-martingale which succeeds
on C.

(f) A set A is t(n)-random if no t(n)-martingale succeeds on A (i.e., if the
singleton {A} does not have t(n)-measure 0).

In addition to these concepts, below we will use the following observations on
the complexity of time-bounded martingales and on universal martingales which
are special cases of more general results on time-bounded martingales in [4].

Lemma 2.4 For any nk-martingale d, d ∈ DTIME(nk+2) (k ≥ 1).

Lemma 2.5 For k ≥ 1 there is an nk+4-martingale d which succeeds on all nk-
measure-0 classes (i.e., which succeeds on all sets on which any nk-martingale
succeeds).

Having introduced the basic concepts of resource-bounded randomness, we can
now define Lutz’s weak hardness notions for E and EXP.
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Definition 2.6 (Lutz [12]) A set A is E-measure hard if, for any number k ≥ 1,
there is an nk-random set Bk ∈ E such that Bk ≤pm A. And A is E-measure
complete if A ∈ E and A is E-measure hard.

A set A is EXP-measure hard if, for any number k ≥ 1, there is a 2(logn)
k

-
random set Bk ∈ EXP such that Bk ≤pm A. And A is EXP-measure complete if
A ∈ EXP and A is EXP-measure hard.

By some simple observation on random sets, Ambos-Spies, Terwijn and Zheng
[5] have given a very useful and simple characterization of measure hardness for E
and EXP. Moreover, by some similar observation on bi-immune sets, Ambos-Spies
and Bakibayev [2] have given a corresponding characterization of strong nontrivi-
ality for E and EXP.

Lemma 2.7 (Ambos-Spies, Terwijn and Zheng [5]) Let A be an n2-random
set, and, for k ≥ 1, let

Ak = {x : 0k·|x|x ∈ A} and A′k = {x : 0|x|
k+1

x ∈ A}. (2)

Then Ak ≤pm A, A′k ≤pm A, Ak is nk-random, and A′k is 2(log n)
k

-random. More-
over, if A ∈ E then Ak ∈ E too.

Theorem 2.8 (Characterization Theorem for Measure Hardness, [5]) A
set A is E-measure hard if and only if there is an n2-random set B ∈ E such that
B ≤pm A. And a set A is EXP-measure hard if and only if there is an n2-random
set B ∈ EXP such that B ≤pm A.

Lemma 2.9 (Ambos-Spies and Bakibayev [2]) Let A be an E1-bi-immune set.
Then, for k ≥ 1 and for Ak and A′k as in (2), Ak ≤pm A, A′k ≤pm A, Ak is Ek-bi-
immune, and A′k is EXPk-bi-immune. Moreover, if A ∈ E then Ak ∈ E too.

Theorem 2.10 (Characterization Theorem for Strong Nontriviality, [2])
A set A is strongly E-nontrivial if and only if there is an E1-bi-immune set B ∈ E
such that B ≤pm A. And a set A is strongly EXP-nontrivial if and only if there is
an E1-bi-immune set B ∈ EXP such that B ≤pm A.

3 Some Relations Among the Weak Hardness No-
tions

We now summarize the relations among the weak hardness notions for E and EXP
which can be found in the literature.

Since, for any k ≥ 1, there is an nk-random set in E, since any nk+1-random set
is Ek-bi-immune and since no Ek-bi-immune set is in Ek, we obtain the following
relations among the weak hardness notions for E (and, similarly, for EXP).

Lemma 3.1 ([12], [2]) For any set A and for C ∈ {E,EXP},

A C-hard
⇓

A C-measure hard
⇓

A strongly C-nontrivial
⇓

A C-nontrivial

(3)
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In fact, the implications in (3) are strict as the following shows.

Theorem 3.2 (a) There is an E1-bi-immune (hence P-bi-immune) set A ∈ E
which is E-measure hard and EXP-measure hard (Ambos-Spies, Terwijn, Zheng
[5]) whereas no E-hard set is P-bi-immune (Berman [8]).

(b) There is a tally set A in E which is strongly E-nontrivial and strongly EXP-
nontrivial (Ambos-Spies and Bakibayev [2]) whereas any E-measure hard or EXP-
measure hard set is exponentially dense (Lutz and Mayordomo [14]).

(c) There is an exptally set A in E which is E-nontrivial and EXP-nontrivial
whereas no strongly E-nontrivial or strongly EXP-nontrivial set is exptally (Ambos-
Spies and Bakibayev [2]).

Here a set A is tally if it is a subset of {0}∗, and A is exptally if A ⊆ {0δ(n) :
n ≥ 0} where δ : N→ N is the iterated exponential function inductively defined by
δ(0) = 0 and δ(n+ 1) = 2δ(n).

Having established the hierarchy of weak hardness notions, we now turn to
the relations between weak hardness for E and weak hardness for EXP for the
individual weak hardness notions. While, as pointed out above, E-hardness and
EXP-hardness coincide by the Padding Lemma, Juedes and Lutz have shown that
measure hardness for E implies measure hardness for EXP but that the converse
in general fails.

Theorem 3.3 (Juedes and Lutz [10]) Every E-measure hard set is EXP-mea-
sure hard. But there is an EXP-measure hard set A ∈ E which is not E-measure
hard.

Note that the positive implication in Theorem 3.3 is immediate by the Char-
acterization Theorem for Measure Hardness (Theorem 2.8). Similarly, the Char-
acterization Theorem for Strong Nontriviality (Theorem 2.10) immediately implies
that any strongly E-nontrivial set is strongly EXP-nontrivial.

Lemma 3.4 (Ambos-Spies and Bakibayev [2]) Every strongly E-nontrivial
set is strongly EXP-nontrivial.

In the following two sections we answer the questions about the relations between
weak hardness for E and EXP left open by the above results.

4 An EXP-Trivial E-Nontrivial Set

In contrast to the weak hardness notions of measure hardness and strong non-
triviality where weak hardness for E implies weak hardness for EXP, there are
E-nontrivial sets which are not EXP-nontrivial.

Theorem 4.1 There is a set A ∈ E such that A is E-nontrivial and EXP-trivial.

Proof. We construct a set A ∈ E with the required properties. In order to make
A E-nontrivial and EXP-trivial we satisfy the conditions

∀ k ≥ 1 ({0k|x|x : x ∈ Σ∗} ∩A 6∈ E1) (4)
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and
∀ f ∈ P ∀∞x (|f(x)| ≥ |x|2 ⇒ f(x) 6∈ A), (5)

respectively.

Note that, for Ak = {0k|x|x : x ∈ A}, (4) implies that Ak 6∈ Ek. Since (as one
can easily check or by Lemma 2.7) Ak ≤pm A and, assuming A ∈ E, Ak ∈ E, it
follows that any set A ∈ E satisfying (4) is E-nontrivial. In order to show that,
for A ∈ E, (5) implies that A is EXP-trivial, it suffices to show that, for any set
B ≤pm A, B ∈ EXP4. Fix f such that B ≤pm A via f . Then, given a string x, B(x)

can be computed in O(2|x|
4

) steps by using the identity B(x) = A(f(x)). Namely,
if |f(x)| ≥ |x|2 then, by (5), B(x) = A(f(x)) = 0 while in case of |f(x)| < |x|2,

it follows from A ∈ E ⊆ EXP2 that A(f(x)) can be computed in O(2|f(x)|
2

) ≤
O(2(|x|

2)2) = O(2|x|
4

) steps.

For satisfying (4) and (5) we break up these conditions into infinitely many
requirements. Fix computable enumerations {E1

n : n ≥ 0} and {fn : n ≥ 0} of E1

and the class of the polynomial-time computable functions, respectively, such that,
for x with |x| ≥ n, E1

n(x) and fn(x) can be uniformly computed in 23|x| and 2|x|

steps, respectively. Moreover, let 〈k,m〉 be a standard polynomial-time computable
pairing function satisfying k,m ≤ 〈k,m〉. Then, in order to satisfy (4) and (5), it
suffices to meet the requirements

P〈k,m〉 : ∃x (A(0k|x|x) 6= E1
m(0k|x|x))

Ne : ∀x∞ (|fe(x)| ≥ |x|2 ⇒ fe(x) 6∈ A)

for all numbers k ≥ 1 and m, e ≥ 0.

Now the basic strategies for meeting these requirements are as follows. The P-
requirements are met by diagonalization. We will pick strings x0 < x1 < x2 < . . .
such that, for the corresponding strings yn defined by

y〈k,m〉 = 0k|x〈k,m〉|x〈k,m〉,

y0 < y1 < y2 < . . . , and we will let

A = {y〈k,m〉 : k ≥ 1 & m ≥ 0 & y〈k,m〉 6∈ E1
m}. (6)

So string x〈k,m〉 will witness that requirement P〈k,m〉 is met.
In order to meet requirement Ne it suffices to ensure that at most finitely many

e-forbidden strings y are put into A where a string y is e-forbidden if

∃x < y (|x|2 < |y| & fe(x) = y).

This is achieved by ensuring that, for n > e, the string xn is chosen so that the
corresponding string yn is not e-forbidden whence, by (6), the only e-forbidden
strings which may enter A are the strings y0, . . . , ye.

So, in order to complete the proof, it only remains to choose the strings xn in
such a way that the corresponding strings yn are not e-forbidden for e < n and
such that, for the corresponding set A defined by (6), A ∈ E.
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We first inductively define the length ln of string yn. Let l0 = 0 (i.e., y0 = x0 =
λ). For n > 0 fix k,m such that n = 〈k,m〉, and let ln be the least number l > ln−1
such that l = (k + 1)2 · r2 for some number r > n.

Then, given n > 0, xn is defined as follows. Fix k,m ≤ n and r > n such that
n = 〈k,m〉 and ln = (k + 1)2 · r2. Let Fn be the set of all strings y of length ln
which are e-forbidden for some e < n. Note that |Fn| < n · 2(k+1)r since there
are n numbers e < n and, for any e and for any e-forbidden string y of length
ln = ((k + 1)r)2, the preimage of y under fe has length less than (k + 1)r whence
there are less than 2(k+1)r e-forbidden strings of length ln. Since 1 ≤ n < r it
follows that

|{0, 1}(k+1)r2 | = 2(k+1)r2 > n · 2(k+1)r > |Fn|.

So there is a string x of length (k + 1)r2 such that 0k|x|x 6∈ Fn and we may let xn
be the least such string x. Obviously, xn has the required properties.

Finally, in order to show that A ∈ E, first observe that, for a given string y, in
O(24|y|) steps we can decide whether y = yn for some n ≥ 1 and if so determine
the corresponding n. Namely, in poly(|y|) steps we can decide whether |y| = ln for
some n = 〈k,m〉 ≥ 1 and, if so, decide whether y = 0k|x|x for some x. Moreover,
for a string y′ of length ln and for e < n we can decide in O(22ln) steps whether
y′ is e-forbidden, hence in O(n · 22ln) ≤ O(23ln) steps whether y′ ∈ Fn. Since yn
is the least string y of length ln such that y = 0k|x|x for some x and such that
y 6∈ Fn, it follows that y = yn can be decided in O(24|y|) steps. Since, for given
y = yn where n = 〈k,m〉 ≤ |y|, E1

m(y) can be computed in time 23|y|, it follows, by
(6), that A ∈ E4.

This completes the proof. 2

5 An E-Trivial EXP-Measure Complete Set

We now come to our main result. We show that there is an EXP-measure hard set
in E which is not E-nontrivial. Since EXP-measure hardness is the strongest weak
hardness notion for EXP while E-nontriviality is the weakest weak hardness notion
for E, this implies that none of the weak hardness notions for EXP implies any of
the weak hardness notions for E.

Theorem 5.1 There is an EXP-measure hard set in E which is E-trivial.

Theorem 5.1 is an easy consequence of the following lemma on the existence of
E-trivial n2-random sets in EXP.

Lemma 5.2 There is an n2-random set A ∈ EXP such that A is E-trivial.

Lemma 5.2 implies Theorem 5.1 as follows. By Lemma 5.2 fix A ∈ EXP such
that A is n2-random and E-trivial. By the former and by Theorem 2.8, A is
EXP-measure hard. Now, by the Padding Lemma, let Â be any set in E1 such
that Â is p-m-equivalent to A. Since, by definition, EXP-measure hardness and
E-nontriviality are invariant under p-m-equivalence, the set Â ∈ E is EXP-measure
hard and E-trivial.

Proof (of Lemma 5.2). By a slow diagonalization we inductively construct a set
A with the desired properties. At stage s of the construction we determine the value
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A(zs) of A on the sth string zs (w.r.t. the length lexicographical ordering) and, at
the same time, we satisfy the highest priority requirement <e (to be defined below)
which has not yet been satisfied before and which can be satisfied by appropriately
choosing the value of A(zs).

Before we give the formal construction, we first explain the basic strategies for
achieving the two main goals of the construction, namely to make A n2-random and
E-trivial, point out the conflicts between these strategies, and explain how these
conflicts are resolved.

In order to make A n2-random, we have to ensure that no n2-martingale suc-
ceeds on A. Since, by Lemma 2.5, there is a normed n6-martingale d which succeeds
on all n2-measure-0 classes, it suffices to fix such an n2-universal martingale d and
to guarantee that d does not succeed on A. We will achieve this by ensuring

∀s (d(A � zs) ≤ 1). (7)

In order to meet our second main goal, namely to make A E-trivial, it suffices
to ensure

∀B ∈ E (B ≤pm A⇒ B ∈ DTIME(2n)). (8)

In order to satisfy (8), we will guarantee that any p-m-reduction f of a set B ∈ E
to A sufficiently compresses B so that, by using the identity B(x) = A(f(x)), we
can compute B(x) in O(2|x|) steps. To achieve this, we have to destroy the p-m-
reductions from sets in E to A which are not sufficiently compressing by diago-
nalization. In order to ensure that the time required for these diagonalizations is
compatible with making A exponential-time computable, we will use a somewhat
tricky strategy which is reminiscent of the diagonalization technique in the proof
of Blum’s speed-up theorem.

Let {fe : e ≥ 0} be a computable enumeration of the class of the polynomial
time computable functions such that, for uniformly given polynomial time bounds
pe for fe (e ≥ 0), pe(n

2) ≤ 2n for all n > e, and let {Ee : e ≥ 0} be a computable
enumeration of the class E such that, for x with |x| > e, Ee(x) can be uniformly
computed in time 2e·|x|. Then (8) is split into the finitary requirements

<e : Ee0 ≤pm A via fe1 ⇒ ∀∞x(|x| > 2−e · |fe1(x)|2)

where e ≥ 0 and e = 〈e0, e1〉. In addition, we ensure

∀α > 0 (A ∈ DTIME(2α·n
2

)) (9)

where α is a real number. (Of course this will a fortiori ensure that A is in EXP2

hence in EXP.)

To show that the above will guarantee that A satisfies (8), fix a set B ∈ E such
that B ≤pm A. It suffices to show that B ∈ DTIME(2n). Fix e0 and e1 such that
B = Ee0 and B ≤pm A via fe1 , and let e = 〈e0, e1〉. Then, by requirement <e, we
may fix n0 such that, for α = 2−e,

∀ x (|x| ≥ n0 ⇒ |x| > α · |fe1(x)|2). (10)

Now, given a string x with |x| ≥ max(e, n0), B(x) can be computed in time O(2n)
(for n = |x|) as follows. Since B(x) = A(fe1(x)), it suffices to compute y = fe1(x)
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and A(y). The former can be done in poly(n), hence in O(2n), steps. The latter
can be done in 2n steps as follows. By (10), α · |y|2 < n. So, by (9), A(y) can be

computed in 2α·|y|
2 ≤ 2n steps.

Having isolated the properties ofA to be guaranteed by the construction, namely
to satisfy condition (7) and to meet the requirements <e (e ≥ 0) and at the same
time ensure the time bounds given in (9), we next look at the strategies for satisfying
(7) and the requirements <e, respectively, and show how these strategies can be
made to be compatible with each other.

The basic strategy for meeting the martingale equation (7) is quite simple. Note
that, by the fairness property of martingales,

d((A � zs)0) + d((A � zs)1)

2
= d(A � zs). (11)

So, for any s ≥ 0, there is an i ≤ 1 such that

d((A � zs)i) ≤ d(A � zs). (12)

Since d is normed, i.e., d(λ) = 1, it follows that (7) can be trivially satisfied by
letting

A(zs) = i for some (say the least) i such that d((A � zs)i) ≤ d(A � zs). (13)

In the following we say that A(zs) is defined according to the basic randomness
strategy if (13) holds.

The basic strategy for meeting a requirement <e (e = 〈e0, e1〉) (in the following
called the basic <e-strategy) is as follows. Wait for a stage s such that there is a
string x with |x| ≤ 2−e|zs|2 and fe1(x) = zs. Then meet the requirement by letting

A(zs) = 1− Ee0(x) (14)

thereby ensuring that the hypothesis Ee0 ≤pm A via fe1 of <e fails.

Of course it may happen that defining A(zs) according to (14) is not compatible
with the basic randomness strategy since

d((A � zs)(1− Ee0(x))) > d(A � zs).

In order to resolve this conflict, we use some idea of Ambos-Spies and Kräling
[3]. First note that we can relax the basic randomness strategy as follows. If <e
wants to act at stage s and wants to define A(zs) according to (14), this does not
do any harm to ensuring (7) as long as

d((A � zs)(1− Ee0(x))) ≤ 1. (15)

So, since there will be infinitely many stages s such that <e can be met at stage s
by letting the basic <e-strategy act as described above (unless <e is trivially met
and no action becomes necessary), it suffices to ensure that, for one of these stages,
(15) will hold. But this can be achieved by the following observation. Whenever
we cannot meet <e at a stage s since (15) fails then, by letting d(A � zs+1) =
d(A � zs)Ee0(x), the value of d is strictly decreased (by the fairness property
of martingales). So, assuming that no other requirement is interfering with the
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definition of d, eventually the value of d(A � zs) will be so small that (15) will hold.
In order to make sure that the decreases in values of the martingale d on the initial
segments of A occurring at stages at which requirement <e is blocked from acting
are not compensated by increases of d caused by actions of some other requirements
thereby blocking <e forever, we endow requirement <e with an account in which the
amounts are accumulated by which d is dropping at stages at which requirement
<e is eligible to act but blocked. Then it is safe to relax the basic randomness
strategy by letting <e act at stage s according to (14) as long as

d((A � zs)(1− Ee0(x))) ≤ d(A � zs) + be(s− 1) (16)

where be(s − 1) is the balance of the account of <e at the end of stage s − 1.
Moreover, as one can easily check, whenever <e is blocked (after the first time) the
balance of <e’s account is doubled. So, eventually, the balance of the account of
<e will be high enough to allow <e to pay the prize for its action.

We conclude our discussion of the basic strategies underlying the construction
of A by explaining the reason why our strategy for meeting the requirements <e
is compatible with satisfying (9). Here it is crucial to note that the bound for the
search of a diagonalization witness is decreasing in e. So, since the requirements
are finitary, we may speed-up the algorithm for computing A given by the actual
construction as follows. Use a finite table summarizing the impact of the first e
requirements on the construction and ignore these requirements in the construction
otherwise. As we will show in the verification part of the proof following the formal
construction, this sped-up versions of the construction will witness (9).

We now turn to the formal construction. Simultaneously with A we define the
balances be(s) of the accounts of the requirements <e. Moreover, we will determine
which requirements <e require attention (if any) and which of these requirements
will be eligible to act and, possibly, become active or satisfied.

Stage 0. Let A(z0) be the least i ≤ 1 such that d(i) ≤ 1. For e ≥ 0, let be(0) = 0.
Moreover, no requirement <e requires attention at stage 0, no requirement is eligible
to act, and no requirement becomes active or satisfied.

Stage s > 0. Let rs be the least i ≤ 1 such that (12) holds, and say that re-
quirement <e requires attention at stage s if e < |zs|, <e has not been satisfied at
any previous stage, and the following holds:

∃x(|x| ≤ 2−e · |zs|2 & fe1(x) = zs). (17)

Now, if no requirement requires attention then let A(zs) = rs and be(s) = be(s− 1)
for all e ≥ 0. Otherwise, fix e minimal such that <e requires attention, declare that
<e is eligible to act at stage s, fix e0, e1 such that e = 〈e0, e1〉, fix the least number
x as in (17), let

i = 1− Ee0(x), (18)

let be′(s) = be′(s− 1) for e′ 6= e, and distinguish the following cases.
If

d((A � zs)i) > d(A � zs) + be(s− 1) (19)

then say that <e is blocked at stage s, and let A(zs) = rs and

be(s) = be(s− 1) + (d(A � zs)− d(A � zs+1)). (20)

11



Otherwise, let A(zs) = i and be(s) = 0, and say that <e is active and satisfied
at stage s.

This completes the construction.

In order to show that the thus defined set A has the required properties, we
prove a series of claims.

Claim 1. For s ≥ 0, be(s) ≥ 0 (for all e ≥ 0) and

d(A � zs+1) +
∑
e≥0

be(s) ≤ 1. (21)

Proof. The proof is by induction on s. For s = 0, be(0) = 0 for all e ≥ 0 and,
by choice of A(z0), d(A � zs+1) = d(A(z0)) ≤ d(λ) = 1. For s > 0, distinguish the
following cases.

If no requirement requires attention then be(s) = be(s − 1) for all e ≥ 0 and
A(zs) is chosen so that d(A � zs+1) ≤ d(A � zs). So the claims are immediate by
inductive hypothesis.

If requirement <e is eligible to act at stage s but blocked, then, by construction,
d(A � zs+1) < d(A � zs) and (by (20))

d(A � zs+1) + be(s) = d(A � zs) + be(s− 1)

while be′(s) = be′(s− 1) for e′ 6= e. So, in particular, be(s) > be(s− 1) and

d(A � zs+1) +
∑
e≥0

be(s) = d(A � zs) +
∑
e≥0

be(s− 1)

whence the claims follow by inductive hypothesis.
Finally, if requirement <e becomes active at stage s then, by construction,

d(A � zs+1) ≤ d(A � zs) + be(s− 1)

and be(s) = 0 while be′(s) = be′(s − 1) for e′ 6= e. So, again, the claims are
immediate by inductive hypothesis.

Claim 2. A is n2-random.

Proof. By Claim 1, A satisfies (7). So A is n2-random by choice of d.

Claim 3. Every requirement <e requires attention at most finitely often.

Proof. For a contradiction, pick e minimal such that requirement <e requires
attention infinitely many times. By minimality of e, we may fix s∗ such that no
requirements <e′ with e′ < e will require attention after stage s∗. Then, whenever
<e requires attention after stage s∗, <e will be eligible to act. On the other hand,
<e will never become active since once a requirement became active it stops to
require attention.

So there are infinitely many stages at which <e is eligible to act and <e becomes
blocked at all of these stages. Let s0 < s1 < s2 < . . . be these stages. Now, by
a straightforward induction on s, 0 ≤ be(s) ≤ be(s + 1) (since <e is never active).

12



Moreover, for any stage sn (n ≥ 0), A(zsn) = 1 − i for some i ≤ 1 satisfying (19)
whence, by the fairness condition (11),

d(A � zsn+1) < d(A � zsn)− be(sn − 1).

So, by (20), be(s0) > 0 and, for n ≥ 1, be(sn) > 2 · be(sn − 1) ≥ 2 · be(sn−1). It
follows that

lim
s→∞

be(s) = lim
n→∞

be(sn) =∞.

Since d is a martingale, hence nonnegative, this contradicts (21) in Claim 1.

Claim 4. Every requirement <e is met.

Proof. For a contradiction assume that requirement <e is not met. Fix e0, e1
such that e = 〈e0, e1〉. Then Ee0 ≤pm A via fe1 and

∃∞x (|x| < 2−e · |fe1(x)|2). (22)

Moreover, <e is never satisfied. (Obviously, if <e becomes satisfied at a stage s
then the hypothesis of <e fails whence <e is met.) So <e requires attention at any
stage s such that e < |zs| and (17) holds. But, as one can easily show, by (22)
there will be infinitely many such stages s. So, contrary to Claim 3, <e requires
attention infinitely often.

It remains to show that A satisfies (9). In order to do so we have to analyze
the complexity of the basic features of the construction. Recall that d is an n6-
martingale whence, by Lemma 2.4, d ∈ DTIME(n8). So, given A � zs, d(A � zs)
can be computed in O(28·|zs|) steps.

Claim 5. Given e, e0, e1, s ≥ 0 such that e = 〈e0, e1〉 and 6 < e < |zs|, the

following can be done in O(2
1

e+1 |zs|
2

) steps: decide whether (17) holds and, if so,
compute the least witness x for (17) and decide whether x ∈ Ee0 .

Proof. It suffices to look at all strings x with

|x| ≤ 2−e · |zs|2, (23)

and to compute fe1(x) and Ee0(x) for each such x. Now, by (23) and by choice
of {fm : m ≥ 0}, fe1(x) can be computed in O(2|zs|) steps, while, by (23) and by
choice of {Em : m ≥ 0}, Ee0(x) can be computed in

O(2e0|x|) ≤ O(2e0(2
−e·|zs|2))

steps.
Since there are O(22

−e·|zs|2) strings x as in (17), the above procedure can be
completed in

O(22
−e·|zs|2) · (O(2|zs|) +O(2e0(2

−e·|zs|2))) ≤ O(2
1

e+1 |zs|
2

)

steps.

Claim 6. Let

SAT (s) = {e′ : ∃t ≤ s (<e′ is satisfied at stage t)}.

13



For any k ≥ 1 there is a procedure which computes A(zs), SAT (s) and be′(s) for

k < e′ ≤ s in O(2
1
k |zs|

2

) steps.

Proof. Fix k ≥ 1 and, by Claim 3, fix s0 such that no requirement <e′ with
e′ ≤ k is active after stage s0. It suffices to give a procedure which, for s > s0,
computes A(zs), SAT (s) and be′(s) (for k < e′ ≤ s) from A � zs, SAT (s− 1) and

be′(s − 1) (for k < e′ ≤ s − 1) in O(2
1

k+1 |zs|
2

) steps (where SAT (−1) = ∅). Then
the claim follows by induction.

Now, given s > s0, A � zs, SAT (s − 1) and be(s − 1) (for k < e′ ≤ s − 1), we
proceed as follows.

• Compute rs.

This can be done in O(28·|zs|) steps.

• Decide whether there is a requirement <e, e < |zs| which is eligible to act at
stage s and, if so, compute e, the least x as in (17), and i = 1− Ee0(x).

To do so, for any e < |zs|, such that k < e and e /∈ SAT (s− 1), it suffices to
check whether (17) holds and, if so, to compute the least witness x for (17) and

to decide whether x ∈ Ee0 . By Claim 5 this can be done in O(s · 2
1

k+2 |zs|
2

) =

O(2
1

k+2 |zs|
2+|zs|) steps.

• If no requirement is eligible to act at stage s then A(zs) = rs, SAT (s) =
SAT (s− 1) and be(s) = be(s− 1) for all e ≤ s.

• If <e is eligible to act at stage s then check whether (19) holds. If so, A(zs) =
rs, SAT (s) = SAT (s − 1) and be(s) can be computed from (20); otherwise,
A(zs) = i, SAT (s) = SAT (s − 1) ∪ {e}, and be(s) = 0. In either case,
be′(s) = be′(s− 1) for e′ 6= e.

This can be done in O(28·|zs|) steps.

This completes the procedure. By the analysis of the time required for perform-

ing the individual steps, the procedure can be completed in time O(2
1

k+1 |zs|
2

).

Claim 7. A satisfies (9).

Proof. This is immediate by Claim 6.

Claim 8. A ∈ EXP and A is E-trivial.

Proof. The former is immediate by Claim 7 while, as shown above, the latter
follows from Claims 4 and 7.

This completes the proof of Lemma 5.2. 2

6 Conclusion

We can summarize the relations among the weak hardness notions for E and EXP
in the following theorem.
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Theorem 6.1 For any set A the following hold.

A E-hard ⇔ A EXP-hard
⇓ ⇓

A E-measure hard ⇒ A EXP-measure hard
⇓ ⇓

A strongly E-nontrivial ⇒ A strongly EXP-nontrivial
⇓ ⇓

A E-nontrivial A EXP-nontrivial

(24)

Moreover, (up to transitive closure) no other implications hold and sets witnessing
the failure of the other relations can be found in E.

Proof. The positive relations in (24) hold by Lemma 3.1, by the coincidence of
hardness for E and EXP, by Theorem 3.3, and by Lemma 3.4.

To show that no other relations hold and that the failure is witnessed by sets in
E, we first observe that, by Theorem 3.2, none of the weak hardness concepts for E
and EXP implies any of the stronger (weak) hardness concepts for E or EXP. So
it only remains to argue that E-nontriviality does not imply EXP-nontriviality and
that none of the weak hardness notions for EXP implies any of the weak hardness
notions for E. But the former is true by Theorem 4.1, while the latter is true by
Theorem 5.1 which shows that the strongest weak hardness notion for EXP does
not imply the weakest weak hardness notion for E. 2

Diagram (24) can be extended by including Ambos-Spies’s weak hardness notion
based on resource-bounded Baire category. In fact, in [1] weak hardness notions
were introduced for various time-bounded category concepts. Here we refer to
the category concept called AFH-category there and call the corresponding weak
hardness notion category hardness. AFH-category proved to be useful for analysing
time-bounded measure (see [4] and [5] for more details) since - in contrast to the
classical Baire category concept - this concept is compatible with measure. As
shown in [1], category hardness for E (EXP) is a proper generalization of measure
hardness for E (EXP) and, as shown in [2], strong nontriviality for E (EXP) is
a proper generalization of category hardness for E (EXP). Moreover, in [5] the
analog of Theorem 3.3 for category hardness has been shown. By these results and
by Theorem 6.1, for any set A,

A E-hard ⇔ A EXP-hard
⇓ ⇓

A E-measure hard ⇒ A EXP-measure hard
⇓ ⇓

A E-category hard ⇒ A EXP-category hard
⇓ ⇓

A strongly E-nontrivial ⇒ A strongly EXP-nontrivial
⇓ ⇓

A E-nontrivial A EXP-nontrivial

holds. Moreover, no other implications hold in general and sets witnessing the
failure of the other relations can be found in E.
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[3] Ambos-Spies, K., Kräling, T.: Quantitative aspects of speed-up and gap phe-
nomena. Mathematical Structures in Computer Science 20, 707–722 (2010)

[4] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness.
In: Complexity, logic, and recursion theory, Lecture Notes in Pure and Appl.
Math. 187, 1–47, Dekker, New York (1997)

[5] Ambos-Spies, K., Terwijn, S.A. and Zheng, X.: Resource bounded randomness
and weakly complete problems. Theoret. Comput. Sci. 172, 195–207 (1997)
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