Common fundamentals, remarkably versatile applications

July 10–15

The World Conference on Carbon The Penn Stater Conference Center Hotel State College, Pennsylvania, USA

Program

CARBON16

The Penn Stater Conference Center, State College, PA July 10-15

TABLE OF CONTENTS

Chairs of Previous American Carbon Conferences		
Foreward	iii	
Conference Organization	iv	
Symposia Chairs	v	
Sponsors & Exhibitors	ix	
American Carbon Society	xii	
Awards	1	
Program at a Glance	2	
Plenary Lectures		
American Carbon Society Medalists Roundtable	4	
Program by Symposia		
S1: Carbons for Health and Medicine	5	
S2: Carbon Blacks and Flame-Formed Carbons		
S3: Catalysts and Electrocatalysts		
S4: Cokes and Graphite		
S5: Electrochemical Carbons		
S6: Fibers and Composites		
S7: Fullerenes, Nanotubes and Other Curved Nanostructures		
S8: Graphene		
S9: Modeling and Simulation		
S10: Porous Carbons		
Penn Stater Floor Plan		

S9: Modeling and Simulation

¹Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, ²Research Center of Advanced Materials Science and Technology, and ³College of Chemistry and Chemical Engineering,

Taiyuan University of Technology, Taiyuan 030024, China.

P2-92

PEERING INTO THE EVOLUTION OF THE CARBON MICROSTRUCTURE OF GLASSY CARBONS DERIVED FROM PHENOL FORMALDEHYDE RESINS – BY AN ADVANCED EVALUATION METHOD OF WIDE ANGLE X-RAY SCATTERING

M. O. Loeh¹, S. Hintner², F. Badaczewski¹, J. Metz², B. M. Smarsly¹ ¹Department of Physical Chemistry, Justus Liebig University Giessen, 35390 Germany ²Schunk Carbon Technology GmbH, 35452 Germany.

P2-93

NICKEL-CARBON NANOPARTICLES: SIZE-DEPENDENT PHASE DIAGRAMS AND INTERACTION WITH GRAPHENIC LAYERS

Yann Magnin¹, Christophe Bichara¹, Hakim Amara², Roland Pellenq^{1,2,3} ¹Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille University and CNRS, Campus de Luminy, Case 913, F-13288 Marseille, France ²Laboratoire d'Etude des Microstructures, ONERA-CNRS, BP 72, F-92322 Châtillon, France ³MultiScale Materials Science for Energy and Environment, UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

P2-94

REACTION MECHANISM OF BENZENE OXIDATION

Moldir Auyelkhankyzy^{1,2}, Nadezda Slavinskaya³, Mhedi Abbasi³, Tatiyana Shabanova^{1,2}, Nikolay Prikhodko^{1,4}, and Zulkhair Mansurov^{1,2}

¹Institute of Combustion Problems, 050012, Almaty, Kazakhstan

²Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan

³German Aerospace Center (DLR), Institute of Combustion Technology, 70569, Stuttgart, Germany ⁴Almaty University of Energetics and Communications, 050013, Almaty, Kazakhstan.

P2-95

EVALUATION OF FUNCTIONAL GROUPS FOR EXFOLIATED CARBON FIBERS

Kazuki Matsumura, Taro Kinumoto, Tomoki Tsumuta and Masahiro Toyoda Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1124, Japan.

P2-96

PYROLYSIS OF BIOMASS WITH POLYSTYRENE AND POLYVINYLCHLORIDE: THERMAL DEGRADATION MECHANISM AND PRODUCT CHARACTERIZATION

Gamzenur Özsin, Ayşe Eren Pütün

Anadolu University, Faculty of Engineering, Department of Chemical Engineering, 26555, Eskişehir, Turkey.

P2-97

MODELLING OF CO-PYROLYSIS OF OIL SHALES WITH POLYETHYLENE TEREPHTHALATE VIA DAEM APPROACH

Gamzenur Özsin¹, Murat KILIÇ, Esin Apaydin-Varol, Ayşe Eren Pütün¹, Ersan Pütün²

REACTION MECHANISM OF THE BENZENE OXIDATION

Moldir Auyelkhankyzy¹, Nadezda Slavinskaya², Mhedi Abbasi², Tatiyana Shabanova¹, Nikolay Prikhodko^{1,3}, and Zulkhair Mansurov¹

¹Institute of Combustion Problems, 172 Bogenbay Batyr Str., 050012, Almaty, Kazakhstan ²German Aerospace Center (DLR), Institute of Combustion Technology, 70569, Stuttgart, Germany ³Almaty University of Energetics and Communications, 126 Baitursynova Str., Almaty, Kazakhstan

Design and operation of gas turbines and engines are very sensitive to the underlying fuel chemistry. Practical fuels are complex mixtures of several hundreds of individual species, which can be divided in four hydrocarbon families (n-/i- paraffins, naphthenes (cycloparaffins) and aromatics). The kinetics of all of the fuel components and intermediate species are not fully determined and investigated.

The present study reports results of further develop of the DLR reaction kinetic mechanism for the benzene (C_6H_6) oxidation, which is the base chemistry for an oxidation of the larger aromatic molecules. The DLR C_6H_6 reaction sub-mechanism was extended with 15 new species, $C_6H_5O_2$, C_6H_4OOH , OOC_6H_4OOH , C_6H_5OOH , C_6H_4O , OC_6H_4OO , C_2H_2O , C_6H_4O , OC_6H_4O , OC_6H_4OH , C_6H_4 , C_6H_3 , C_5H_4OH , C_5H_5OH , C_5H_5O , C_5H_4O to describe the low-temperature (T < 1500 K) ignition. For some of these molecules the thermodynamical and transport properties were evaluated with the empirical rules. Also the reaction pathways of PAH formation and growth in benzene flames were investigated and improved. For the new adopted reactions the uncertainty intervals of reaction rate coefficients have been evaluated. The developed reaction mechanism has been validated on the experimental data for ignition delay times, laminar flames speeds and concentration profiles obtained in laminar flames of benzene.

REACTION MECHANISM OF THE BENZENE OXIDATION

Moldir Auyelkhankyzy^{1,2}, Nadezda Slavinskaya³, Mhedi Abbasi³, Tatiyana Shabanova^{1,2}, Nikolay Prikhodko^{1,4}, and Zulkhair Mansurov^{1,2}

¹Institute of Combustion Problems, 050012, Almaty, Kazakhstan ²al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan ³German Aerospace Center (DLR), Institute of Combustion Technology, 70569, Stuttgart, Germany ⁴Almaty University of Energetics and Communications, 050013, Almaty, Kazakhstan

INTRODUCTION

Design and operation of gas turbines and engines are very sensitive to the underlying fuel chemistry. Practical fuels are complex mixtures of several hundreds of individual species, which can be divided in four hydrocarbon families (n-/i- paraffins, naphthenes (cycloparaffins) and aromatics). The kinetics of all of the fuel components and intermediate species are not fully determined and investigated.

Benzene is the first aromatic compound, a relevant intermediate of several combustion processes and also a key precursor to soot formation.

There is considerable current interest in the kinetics and mechanism of benzene oxidation because of the increasing use of aromatics as fuel components. A number of modeling studies of benzene (C_6H_6 , A1) oxidation have been reported. The detailed chemical kinetic mechanism for the combustion, oxidation and pyrolysis of benzene have been developed by Norrish and Taylor, Asaba, Fujii, McLain, Santoro and Glassman, Bittner and Howard, Venkat and Brezinsky, Kern et al., Hsu co-workers, Rotzoll, Brezinsky, Bittker, Lovell, Lindstedt and Skevis, Richter, Wang and Djurisic, Alzueta and et al., Costa and coworkers, Blanquart et al., Ranzi and et al., Saggese, and Yang validated on the measured data obtained in shock tube, jet stirred reactor (JSR), plug flow reactors (PFR) and premixed laminar flames.

METHODOLOGY

On the basis of existing detailed kinetic schemes [1,2] a general and consistent mechanism of the oxidation of hydrocarbons and the formation of higher hydrocarbons was compiled for computational studies covering the characteristic properties of a wide range of combustion processes.

The DLR C₆H₆ reaction sub-mechanism was extended with 15 new species, C₆H₅O₂, C₆H₄OOH, OOC₆H₄OOH, C₆H₅OOH, C₆H₄O, OC₆H₄OO, C₂H₂O, C₆H₄O, OC₆H₄O, OC₆H₄OH, C₆H₄O, C₆H₄O, C₆H₄O, C₆H₄OH, C₅H₅OH, C₅H₅O, C₅H₄O to describe the low-temperature (T < 1500 K) ignition. For some of these molecules the thermodynamical and transport properties were evaluated with the empirical rules. Also the reaction pathways of PAH formation and growth in benzene flames were investigated and improved.

Numerical modelling was performed using the SENKIN (for simulation of ignition delay time) and PREMIX (for simulation of laminar flame speed, species concentration profiles and sensitivity analysis) code from the CHEMKIN II package [3] and Chemical Workbench [4].

RESULTS AND DISCUSSION

The reaction sub-mechanism for C_6H_6 oxidation was validated in literature experimental data obtained in laminar premixed flames (flame speed and concentration profiles for small and PAH molecules) and ignition delay time (Table 1). The good agreement was obtained for the modeling experimental data for ignition delay times, laminar flames speeds and concentration profiles obtained in laminar flames of benzene. There is special focus was on the benzene oxidation at low-temperature (T < 1500 K) in this work. So the modelling results match experimental data of the laminar flame speeds, ignition delay times, and species concentration profiles both at high (T > 1500 K) and low temperatures (T < 1500 K).

Reference

1. N.A. Slavinskaya et al. Kinetic study of the effect of ethanol addition on PAH and soot formation in ethylene flames // Comb. and flame (impress) (2015)

2. N.A. Slavinskaya, U. Riedel, S.B. Dworkin, M.J. Thomson, Combust. Flame 159 (3) (2012) 979-995.

3. R.J. Kee, F.M. Rupley, J.A. Miller. Report No. SAND89-8009B, Sandia Laboratories Report, (1993)

4. http://www.kintechlab.com/products/chemical-workbench/

Shock tube		Flame	Pyrolysis	Laminar flame	JSR	PFR
Ignition delay	Concentration			speed		
time	profiles					
$p_5 = 1.7-7.89$ atm	$p_5 = 1.1 - 1.7$ atm	p = 2.67 kPa	p = 0.2-3 atm	p = 1atm	p = 350 torr	p = 1 atm
$T_5 = 1212 - 1748 \text{ K}$	$T_5 = 1700-2800 \text{ K}$	(0.0267atm)	$T_0 = 1515 - 2500 \text{ K}$	$T_0 = 298, 500,$	$T_0 = 900-1300$	$T_0 = 900-1450 \text{ K}$
$\phi = 1.0$	$\phi = 1.0$	$T_0 = 700-1900$	$\phi = \infty$	588, 700 K	K	$\phi = 0.8 - 1.3$
		$\varphi = 1.8-1.9$		$\phi = 0.8 - 1.3$	φ=0.19, 1.02	
$p_5 = 13-40$ bar	$p_5 = 0.4 - 0.5$ atm	p = 0.04 atm		p = 3 atm (304)	p = 1 atm	p = 1 atm
$T_5 = 800-1400 \text{ K}$	$T_5 = 1704 - 2192 \text{ K}$	$T_0 = 298 \text{ K}$		kPa)	$T_0 = 950 - 1350$	$T_0 = 1118 - 1280 \text{ K}$
$\phi = 1.0$	$\phi = \infty$	$\phi = 1.78$		$T_0 = 450 \text{ K}$	K	$\varphi = 0.39 - 1.5$
				$\phi = 0.8 - 1.4$	$\phi = 0.3 - 1.5$	
$p_5 = 6.5 - 9.5$ atm	p = 0.05 atm	p = 1 atm		p = 1 atm	p = 1 atm	p = 1 atm
$T_5 = 1230-1970 \text{ K}$	T = 298 K	$T_0 = 1100 - 1810 \text{ K}$		$T_0 = 353 \text{ K}$	$T_0 = 923 \text{ K}$	$T_0 = 1096 - 1217 \text{ K}$
$\phi = 1.0-3.0$	$\Phi = 2.0$	φ = 1.98		$\phi = 0.7 - 1.5$	φ = 1.9-3.6	$\varphi = 0.76 - 1.36$
$p_5 = 5.4-7.4$ atm	p = 0.045 atm	p = 1.8 atm		p = 1 atm		p = 1 atm
$T_5 = 1210-1615 \text{ K}$	T = 298 K	$T_0 = 500-1800 \text{ K}$		$T_0 = 298 \text{ K}$		$T_0 = 1108 \text{ K}$
$\varphi = 0.2-2.8$	$\phi = 2.0$	$\phi = 1.8$		$\phi = 0.7 - 1.7$		$\varphi = 0.65$
$p_5 = 25-45$ atm	$p_5 = 1$ atm			p = 1 atm		p = 1 atm
$T_5 = 920-1100 \text{ K}$	$T_5 = 875 - 1500 \text{ K}$			$T_0 = 298 \text{ K}$		$T_0 = 1110 - 1280$
$\varphi = 0.5, 1$	$\phi = 1.0$			$\phi = 0.8 - 1.3$		$\phi = 1.0$
$p_5 = 4 \text{ atm}$	$p_5 = 7.3 - 9.5$ atm					p = 400 mbar
$T_5 = 1110-2220 \text{ K}$	$T_5 = 1230-1970 \text{ K}$					$T_0 = 950-1150 \text{ K}$
$\phi = 1.0$	$\varphi = 0.5 - 3.0$					$\phi = 1.0$
	$p_5 = 30-50$ atm					p = 1 atm
	$T_5 = 1200 - 1800 \text{ K}$					$T_0 = 1118 - 1280 \text{ K}$
	$\phi = \infty$					$\varphi = 0.39 - 1.5$

Table 1. Proposed kinetic mechanisms of benzene and validation data base.