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Overview

Basic concepts from complexity theory
I The exponential time classes E and EXP
I Resource-bounded measure and pseudo-randomness

(what are typical sets?)
I Weak hardness notions for exponential time

(some views on the nonnegligible parts of E)

Are typical sets weakly hard for E?
I Typical sets among all sets
I Typical sets in E
I Typical sets in EXP
I Typical elementarily recursive sets (i.e., sets in EL)
I Typical computable sets (i.e., sets in REC)
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A (somewhat vague) analogy

REC P = PTIME
(theoretically) solvable problems (feasibly solv. =) tractable problems

≤T (≤m) ≤P
m (≤P

T)
effective reductions feasible (=poly-time) reductions

REC ⊂ CE ⊂ ∆0
2 P ⊂ DT(2O(n)) ⊂ DT(2poly(n))

CE-hard ⇒ noncomputable DT(2O(n))-hard ⇒ intractable

CE≤T = ∆0
2 DT(2O(n))≤P

m
= DT(2poly(n))

In complexity theory we consider sets of binary strings and measure the
complexity in the length of the strings. We may identify the number n
with the nth string zn in the canoncial ordering (NB: |n| := |zn| ≈ log(n)).
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The exponential-time classes: definitions

Linear Exponential Time:

E = DTIME(2lin) = ∪k≥1 Ek

where
Ek = DTIME(2kn)

Polynomial Exponential Time:

EXP = DTIME(2poly ) = ∪k≥1 EXPk

where
EXPk = DTIME(2n

k
)

By the time hierachy theorem:

P ⊂ E1(= EXP1) ⊂ E2 ⊂ E3 · · · ⊂ E

EXP1 ⊂ E ⊂ EXP2 ⊂ EXP3 ⊂ · · · ⊂ EXP ⊂ REC
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The exponential-time classes: some facts

E is generally considered to be the least natural (i.e. sufficiently closed) time
complexity class which allows diagonalizations over polynomial-time
concepts (so, in particular, is a proper super class of P).

The standard way to prove intractability of a problem A is to show that A is
E-hard.

EXP is the least (deterministic) time complexity class which is known to
contain NP.

For any set A ∈ EXPk there is a set A′ ∈ E1 such that A =p
m A′:

PADDING LEMMA. For A ∈ EXPk , Ak = {0|x|k x : x ∈ A} ∈ E1.

So E is not downward-closed under P-m-reducibility and (as one can easily
check) EXP is the downward-closure of E under P-m-reducibility. So, in
particular, hardness for E and EXP coincide.
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Resource-bounded measure and pseudo-randomness

Definition (Martingales and time-bounded martingales)

A (normed) martingale is a real valued function d : {0, 1}∗ → [0,∞) such
that d(λ) = 1 and, for every x ∈ {0, 1}∗, the following equality holds.

d(x0) + d(x1)

2
= d(x) (fairness condition) (1)

A martingale d succeeds on a set A if lim supn≥0 d(A � n) =∞. A
martingale d succeeds on a class C if it succeeds on all sets A ∈ C.

The (betting) strategy sd underlying the martingale d is the function

sd(x) =

{
d(x0)
2d(x) if d(x) 6= 0

0 otherwise.

A t(n)-martingale d is a rational valued martingale d : {0, 1}∗ → Q ∩ [0,∞)
such that, for the underlying strategy sd , sd ∈ DTIME(t(n)).
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Resource-bounded measure and pseudo-randomness

Definition (Measure, time-bd. measure, pseudo-randomness)

A class C has measure 0 if there is a martingale which succeeds on C; and C
has measure 1 if the complement C of C has measure 0.

A class C has t(n)-measure 0 if there is a t(n)-martingale which succeeds on
C; and C has t(n)-measure 1 if the complement C of C has t(n)-measure 0.

A set A is t(n)-random if no t(n)-martingale succeeds on A (i.e., if the
singleton {A} does not have t(n)-measure 0).

As Lutz has shown one can define (pseudo) measures on complexity
classes by considering families of martingales of corresponding complexity:

E p-measure: nk -martingales (k ≥ 1)

EXP p2-measure: 2(log n)
k
-martingales (k ≥ 1)

EL elementary -measure: elementary-recursive martingales
REC computable-measure: computable martingales
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Resource-bounded measure and pseudo-randomness

Definition (p-Measure and measure for E)

A class C has p-measure 0 if C has nk -measure 0 for some k ≥ 1; and C has
p-measure 1 if C has p-measure 0.

A class C has measure 0 in E if C ∩ E has p-measure 0; and C has measure
1 in E if the complement C of C has measure 0 in E.

A set A is p-random if A is nk -random for all k ≥ 1 and A.

Lutzn has shown that the measure on E is consistent:

E does not have p-measure 0, hence not measure 0 in E.

For k ≥ 1, Ek has p-measure 0, hence measure 0 in E.

There is no p-random set in E and no nk -random set in Ek (but there are
p-random sets in EXP2 and nk -random sets in Ek+3).

A class C has measure 0 in E if and only if there is a number k such that
C ∩ E does not contain any nk -random set.
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Typicalness

Measures on EXP, EL and REC are defined correspondingly, and there are
corresponding characterizations in terms of time bounded randomness.

A set A is computably random or rec-random if it is t(n)-random for all
computable functions t. Note that no rec-random set is computable while
there are computable t(n)-random sets for all computable functions t(n).

Now we can define that a property P is

I typical (untypical) for E if {A ∈ E : P(A)} has measure 1 (0) in E
I typical (untypical) for EXP if {A ∈ EXP : P(A)} has measure 1 (0) in

EXP
I typical (untypical) for EL if {A ∈ EL : P} has measure 1 (0) in EL
I typical (untypical) for the computable sets if {A ∈ REC : P(A)} has

measure 1 (0) in REC
I typical (untypical) for the sets in general if {A : P(A)} has (classical)

measure 1 (0)
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Fractions of E: hardness and weak hardness

We now want to quantify the amount of knowledge a set A has about
E.Obviously this is determined by the “size” of the part of E which can be
reduced to A, i.e., by the size of

Pm(A) ∩ E = {B ∈ E : B ≤P
m A}

The extremes are:

I A is E-hard: Pm(A) ∩ E = E (i.e., A knows all about E)
I A is E-useless: Pm(A)∩E = P (i.e., A doesn’t know anything about E)

(In the following we say that A is E-useful if P ⊂ Pm(A) ∩ E.)

Intermediate cases are provided by the weak hardness notions for E, a
concept originally proposed by Lutz (1995).
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Fractions of E: hardness and weak hardness

While a set is hard for a complexity class C if all sets in C can be reduced to
A, Lutz proposed to call a set A weakly hard for C if a nonnegligible part of
C can be reduced A.

Lutz further argued that a part of C is nonnegligible if it does not have
measure 0 in C:

LUTZ (1995): A set A is measure-hard for E if Pm(A) does not have
measure 0 in E, i.e., if Pm(A) ∩ E does not have p-measure 0.

One obtains alternative weak hardness notions by giving different
interpretations of the nonnegligible parts of E. E.g. this has been done in
terms of Baire category / genericity in place of measure / randomness (A-S
1996).

Here we consider other interpretations in terms of complexity theory due to
A-S und Bakibayev (ICALP 2010):
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Fractions of E: hardness and weak hardness

A set A is strongly nontrivial for E if, for any k ≥ 1, there is an almost
everywhere 2kn-complex set (i.e., a DTIME(2kn)-bi-immune set) in E which
can be reduced to A:

∀ k ≥ 1 ∃ Ak ∈ E (Ak Ek -bi-immune & Ak ≤P
m A)

A set A is nontrivial for E if, for any k ≥ 1, there is an infinitely-often
2kn-complex set in E which can be reduced to A:

∀ k ≥ 1 ∃ Ak ∈ E \ Ek (Ak ≤P
m A)

Note that

hard ⇒ measure-hard ⇒ strongly nontrivial ⇒ nontrivial ⇒ useful

holds. Moreover, all implications are strict (even on E).
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What weak hardness notions are typical?

Our goal is to complete the following table by filling in the corresponding
(resource-bounded) measures:

E EXP EL REC ALL
hard ? ? ? ? ?

measure hard ? ? ? ? ?
strongly non-trivial ? ? ? ? ?

nontrivial ? ? ? ? ?
useful ? ? ? ? ?
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What weak hardness notions are typical? - Some first
observations

Since any level Ek of E has measure 0 in E it follows in particular that P has
measure 0 in E. So typical sets in E are not in P, hence useful.

By the Padding Lemma, this implies usefulness of the typical sets in EXP too.

In fact, by a similar padding argument (Book, see A-S 1987), one can show that
any set A ∈ EL \ P has a predecessor in E \ P. So typical sets in EL are useful
too.

E EXP EL REC ALL
hard ? ? ? ? ?

measure hard ? ? ? ? ?
strongly non-trivial ? ? ? ? ?

nontrivial ? ? ? ? ?
useful 1 1 1 ? ?
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What weak hardness notions are typical among all sets ?

COMPUTABILITY THEORY:

THEOREM (SACKS, 1965). For any set A 6∈ REC, µ({B : A ≤T B}) = 0.

COMPLEXITY THEORY:

THEOREM (A-S, 1986). For any set A 6∈ P, µ({B : A ≤P
m B}) = 0.

By countable additivity of µ this implies:

COROLLARY. µ({A : P ⊂ Pm(A)∩REC}) = µ({A : P ⊂ Pm(A)∩E}) = 0. I.e.,
the class of E-useful sets has measure 0.

(The question whether the full analog of Sacks’s theorem holds in complexity
theory is equivalent to the BPP =? P-Problem (Bennet and Gill 1981, A-S 1986),
hence one of the fundamental open problems in this area!)
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What weak hardness notions are typical among all sets ?

By the last corollary we get:

E EXP EL REC ALL
hard ? ? ? ? 0

measure hard ? ? ? ? 0
strongly non-trivial ? ? ? ? 0

nontrivial ? ? ? ? 0
useful 1 1 1 ? 0

The corollary can be effectivized as follows:

THEOREM. Let A be rec-random. Then A is E-useless. In fact,
Pm(A) ∩ REC = P.

PROOF (IDEA). If a computable set B 6∈ P is P-m-reducible to a set A via f
then f (B) is an infinite c.e. subset of A, hence A is not REC-immune (whereas
rec-random sets are REC-(bi-)immune).
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E-Hard sets are untypical everywhere!

Bi-immunity properties of pseudo-random sets can be used to show that
E-hardness is untypical in all of the settings we consider here:

THEOREM 1 (Berman, 1976) No E-hard set is P-immune.

THEOREM 2 (Mayordomo, 1994) The class of P-biimmune sets has
p-measure 1 (hence measure 1 in E, EXP, EL and REC, and classical
measure 1).

COROLLARY (Mayordomo, 1994) The class of E-hard sets has measure 0
in E, EXP, EL, REC and ALL.

Mayordomo’s Theorem 2 and Corollary has been rephrased in terms of
randomness as follows.

THEOREM (A-S, Terwijn, Zheng, 1997). Any n-random set is P-biimmune hence
not E-hard.
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By Mayordomo’s results:

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard ? ? ? ? 0
strongly non-trivial ? ? ? ? 0

nontrivial ? ? ? ? 0
useful 1 1 1 ? 0

We next look at the question of typicalness of the weak hardness notions in E
(i.e., typicalness of the weak completeness notions).
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What weak hardness notions are typical in E ?

THEOREM (A-S, Terwijn, Zheng, 1997). Any n2-random set A ∈ E is
E-measure-hard.

Since, by the randomness characterization of the measure in E, a set A is
E-measure-hard if and only if for every k ≥ 1 there is an nk -random set Ak ∈ E
such that Ak ≤P

m A, this is immediate by the following lemma.

RANDOMNESS EXPANSION LEMMA (A-S, Terwijn, Zheng, 1997). Let A ∈ E
be n2-random. Then, for k ≥ 1, there are sets Ak and A′k such that

Ak is nk -random, Ak ≤P
m A, and Ak ∈ E

A′k is 2(log n)k -random, A′k ≤P
m A (and A′k ∈ EXP)

PROOF (IDEA). Let Ak = {x : 0k·|x|x ∈ A} and A′k = {x : 0|x|
k+1

x ∈ A}.
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What weak hardness notions are typical in E ?

Since the class of n2-random sets has p-measure 1, the class of n2-random sets in
E has measure 1 in E. So the theorem of A-S, Terwijn and Zheng implies:

COROLLARY (A-S, Terwijn, Zheng, 1997). The class of E-measure-hard sets has
measure 1 in E.

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard 1 ? ? ? 0
strongly non-trivial 1 ? ? ? 0

nontrivial 1 ? ? ? 0
useful 1 1 1 ? 0
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What weak hardness notions are typical in EXP ?

THEOREM (Juedes and Lutz, 1995). Let A be p-random. Then A is not
E-measure hard.

PROOF (IDEA). It suffices to show that there is no n2-random set B ∈ E such
that B ≤P

m A. For a contradiction assume that B ≤P
m A via f where B ∈ Ek is

n2-random. Then, by n2-randomness of B, f cannot compress B, i.e., |f (x)| ≥ |x |
for infinitely many x . Since D = {f (x) : |f (x)| ≥ |x |} ∈ E2, it follows with
B ∈ Ek that A is not Emax(k,2)-biimmune, hence not nk+2-random.

Since the class of p-random sets has measure 1 in EXP, EL, REC, it follows:

COROLLARY (Juedes and Lutz, 1995). The class of E-measure hard sets has
measure 0 in EXP, EL and REC.
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What weak hardness notions are typical in EXP ?

By Juedes and Lutz (1995):

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard 1 0 0 0 0
strongly non-trivial 1 ? ? ? 0

nontrivial 1 ? ? ? 0
useful 1 1 1 ? 0

This leaves for EXP the question whether the E-strongly nontrivial sets and the
E-nontrivial sets are typical or untypical in EXP. As we will show neither is the
case.
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What weak hardness notions are typical in EXP ?

We first show that the strongly E-nontrivial sets are not untypical in EXP, i.e.,
do not have measure 0 in EXP. By the characterization of the measure in EXP
in terms of randomness, it suffices to show.

THEOREM (A-S and Bakibayev). For any k ≥ 1 there is a 2(log n)k -random set
Ak ∈ EXP such that Ak is strongly E-nontrivial.

PROOF (IDEA).

Fix an n2-random set A ∈ E.

Then, by the Randomness Expansion Lemma, A′k = {x : 0|x|
k+1

x ∈ A} is

2(log n)k -random and A′k ∈ EXP.

So it suffices to show that A′k is strongly E-nontrivial, i.e., that, for any
k ′ ≥ 1, there is an Ek′-biimmune set Bk′ ∈ E such that Bk′ ≤P

m A′k .

In fact, by a Biimunity Expansion Lemma, it suffices to give an E1-biimmune
set B1 ∈ E such that B1 ≤P

m A′k .

B1 = {yx : |x |k+1 ≤ |y | < |x + 1|k+1 & x ∈ A′k} will do.
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What weak hardness notions are typical in EXP ?

We now show that the E-trivial sets are not untypical in EXP either, i.e., do not
have measure 0 in EXP. Again, by the characterization of the measure in EXP in
terms of randomness, it suffices to show.

THEOREM (A-S and Bakibayev). For any k ≥ 1 there is a 2(log n)k -random set
Ak ∈ EXP such that Ak is E-trivial.

By downward closure of E-triviality and by the Randomness Expansion Lemma, it
suffices to prove:

MAIN LEMMA (A-S and Bakibayev, TOCS ta). There is an n2-random set
A ∈ EXP which is E-trivial.

We come back to the proof later! A direct proof of the Theorem can be given
along the same lines (only the notation and some of the calculations are more
tedious). In fact, the proof can be modified, in order to build for elementary
recursive (time-constructible) t(n) an E-trivial t(n)-random set A ∈ EL
(A ∈ REC). So the E-trivial sets in the classes EL and REC are not untypical
either.
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What weak hardness notions are typical in EXP ?

By the preceding results we can extend the diagram as follows:

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard 1 0 0 0 0
strongly non-trivial 1 6= 0, 6= 1 (6= 1),= 0? (6= 1),= 0? 0

nontrivial 1 6= 0, 6= 1 (6= 1),= 0? (6= 1),= 0? 0
useful 1 1 1 ? 0

For EL and REC we have argued already that the nontrivial sets (hence the
strongly nontrivial sets) are not typical. This leaves the question whether they are
untypical or neither typical nor untypical.

K. Ambos-Spies (with T. Bakibayev) Weak Hardness for Exponential time Barcelona 2011 25 / 35



What weak hardness notions are typical in EXP ?

By the preceding results we can extend the diagram as follows:

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard 1 0 0 0 0
strongly non-trivial 1 6= 0, 6= 1 (6= 1),= 0? (6= 1),= 0? 0

nontrivial 1 6= 0, 6= 1 (6= 1),= 0? (6= 1),= 0? 0
useful 1 1 1 ? 0

For EL and REC we have argued already that the nontrivial sets (hence the
strongly nontrivial sets) are not typical. This leaves the question whether they are
untypical or neither typical nor untypical.

K. Ambos-Spies (with T. Bakibayev) Weak Hardness for Exponential time Barcelona 2011 25 / 35



What weak hardness notions are typical in EXP ?

By the preceding results we can extend the diagram as follows:

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard 1 0 0 0 0
strongly non-trivial 1 6= 0, 6= 1 (6= 1),= 0? (6= 1),= 0? 0

nontrivial 1 6= 0, 6= 1 (6= 1),= 0? (6= 1),= 0? 0
useful 1 1 1 ? 0

For EL and REC we have argued already that the nontrivial sets (hence the
strongly nontrivial sets) are not typical. This leaves the question whether they are
untypical or neither typical nor untypical.

K. Ambos-Spies (with T. Bakibayev) Weak Hardness for Exponential time Barcelona 2011 25 / 35



Strongly nontrivial sets are untypical in EL and REC

THEOREM (A-S and Bakibayev). The class of strongly E-nontrivial sets has
measure 0 in EL and REC.

By the characterization of the measure in these classes in terms of randomness, it
suffices to show.

THEOREM (A-S and Bakibayev). Let A be exp5(n)-random (where exp5(n) is
the 5-times iterated exponential function). Then A is not strongly E-nontrivial.

This is immediate by the following lemma, since exp5(n)-random sets are
DTIME(exp5(n))-biimmune.

LEMMA (A-S and Bakibayev). Let A and B be sets such that A is
DTIME(exp5(n))-biimmune, B ∈ E and B ≤P

m A. Then B is not E2-biimmune.

PROOF (IDEA). By DTIME(exp5(n))-biimmunity a reduction f must be very
strongly compressing. So, for infinitely many x there are much shorter x ′ with
f (x) = f (x ′) (hence B(x) = B(x ′)) which makes the computation of B(x) easy
on such strings x .
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Nontrivial sets are not untypical in EL and REC

We show this for REC. The proof for EL is similar. It suffices to show:

THEOREM (A-S and Bakibayev). For any strictly increasing time-constructible
function t(n) there is a computable t(n)-random set At which is E-nontrivial.

PROOF (IDEA).

Let A ∈ E be n2-random and let At = {zn : 0t(n) ∈ A}.

Then At is computable and t(n)-random (by a Random Expansion
argument).

Moreover, for D = {0t(n) : n ≥ 0}, D ∈ P and A ∩D ≤P
m At (both by choice

of t) and A ∩ D ∈ E \ E1 (by n2-randomness of A).

The claim follows since any tally set in E \ E1 is E-nontrivial (and since
E-nontriviality is inherited upwards).
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What weak hardness notions are typical in EL and REC? -
Conclusion

By the preceding results we can almost complete the diagram:

E EXP EL REC ALL
hard 0 0 0 0 0

measure hard 1 0 0 0 0
strongly non-trivial 1 6= 0, 6= 1 0 0 0

nontrivial 1 6= 0, 6= 1 6= 0, 6= 1 6= 0, 6= 1 0
useful 1 1 1 ? 0

It only remains to classify the E-useful sets in REC. Since E-nontrivial sets are
E-useful, we already know that the E-useful sets are not untypical in REC. But
are they typical? The answer is NO!
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E-useful sets are not typical in REC

It suffices to show:

THEOREM (A-S and Bakibayev). Let B be E-complete. For any strictly
increasing time-constructible function t(n) there is a computable t(n)-random set
A such that A and B are a minimal pair (i.e., A is E-useless).
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(1987) (which uses a speed-up-argument) with the construction of a
pseudo-random set in the style of Ambos-Spies and Kräling (2009). The technical
features are similar to the proof of the MAIN LEMMA. So we sketch the proof of
the latter.
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Proof of the Main Lemma

MAIN LEMMA. There is an n2-random set A ∈ EXP which is E-trivial.

We construct a set A with the required properties by an effective “slow
diagonalization” or “wait-and-see argument” where A(zs) is defined at stage
s + 1 of the construction.

Complexity. In order to guarantee A ∈ EXP we ensure that
A ∈ EXP2 = DTIME(2n2).

n2-randomness. In order to make A n2-random we have to ensure that no
n2-martingale succeeds on A.

Since there is an (normed) n6-martingale d which is universal for the
n2-martingales, it suffices to ensure

(∗) ∀ s (d(A � zs) ≤ 1)

We say we use the safe randomness strategy at stage s + 1 if we let
A(zs) = i for the least i ≤ 1 such that d(A � zs)i ≤ d(A � zs) (such an i
exists by the fairness condition).
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Proof of the Main Lemma

E-triviality. It suffices to ensure

(∗∗) ∀B ∈ E (B ≤p
m A⇒ B ∈ DTIME (2n))

This is done by some speed-up-argument. Given (sufficiently fast)
computable enumerations {Ee : e ≥ 0} and {fe : e ≥ 0} of the sets in E
(where Ee ∈ Ee uniformly) and the polynomial time reduction functions
(where fe ∈ E1), respectively, it suffices to meet the requirements

<e : Ee0 ≤p
m A via fe1 ⇒ ∀∞x (|x | > 1

2e
· |fe1(x)|2)

(e = 〈e0, e1〉) and to ensure

(∗ ∗ ∗) ∀e > 0 (A ∈ DTIME(2
1
2e ·n

2

)).

If fe1 is not sufficiently compressing then <e is met by diagonalization.

(Time required for doing so: about 2
1
e ·n

2

, i.e., decreasing for growing e.
Since the requirements are finitary, this is consistent with (∗ ∗ ∗)!)
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Proof of the Main Lemma

Potential conflicts. Meeting a requirement <e by appropriately setting
A(zs) = j (some j) may not be compatible with the safe randomness
strategy and may result in an increase of d yielding d([A � zs ]j) > 1 which is
not compatible with (∗).

This conflict is resolved as follows.

I Each requirement <e is provided with an account where the original
balance be is 0.

So, at the beginning, d(A � z0) +
∑∞

e=0 be(0) = 1 + 0 ≤ 1. And this
bound will be preserved throughout the construction.

(So (∗) is satisfied.)
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Proof of the Main Lemma

I Now, if <e is elected to act at stage s + 1 and the current balance
be(s) suffices to compensate the increase in d , i.e., if

d([A � zs ]j) ≤ d(A � zs) + be(s)

then <e is allowed to act and its account is set to 0 (be(s + 1) = 0).

Otherwise the safe randomness strategy is performed and the resulting
decrease in d , i.e.,

ds+1 := d(A � zs)− d([A � zs ]A(zs))

is payed into the account of <e (be(s + 1) = be(s) + ds+1).

Note that in this case be(s + 1) > 2 · be(s) by the fairness condition.
So, eventually, <e has enough money in its account in order to pay for
the desired diagonalization step. (Again, by the fairness condition, <e

has never to pay more than 1 while if <e would be prevented from
acting infinitely often, the balance be(s) would go to infinity.)
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Conclusion

The measure results we have obtained yield the following results on randomness
telling us how much randomness is compatible with what knowledge of E:

(i) No n-random set is E-hard.

(ii) No p-random set is E-measure hard (whereas there are nk -random sets
which are E-measure hard).

(iii) No exp5(n)-random set is strongly E-nontrivial.

(iv) No rec-random set is E-useful or even E-nontrivial (whereas, for each
computable t there are t(n)-random sets which are E-nontrivial hence
E-useful).

So (i), (ii) and (iv) are optimal whereas (iii) is not optimal (due to very generous
estimates of the required upper bounds). We do not not know the optimal bound
here.
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