
Nontriviality for Exponential Time w.r.t. Weak Reducibilities

Klaus Ambos-Spies

University of Heidelberg, Institut für Informatik, Im Neuenheimer Feld 294, D-69120 Heidelberg,

Germany.

Timur Bakibayev

Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty 050038, Kazakhstan.

Abstract

A set A is nontrivial for the linear exponential time class E = DTIME(2lin) if A ∈ E
and the sets from E which can be reduced to A are not from a single level DTIME(2kn)
of the linear exponential hierarchy. Similarly, a set A is nontrivial for the polynomial
exponential time class EXP = DTIME(2poly) if A ∈ EXP and the sets from EXP which

can be reduced to A are not from a single level DTIME(2n
k

) of the polynomial exponential
hierarchy (see [2]). Here we compare the strength of the nontriviality notions with respect
to the underlying reducibilities where we consider the polynomial-time variants of many-
one, bounded truth-table, truth-table, and Turing reducibilities. Surprisingly, the results
obtained for E and EXP differ. While the above reducibilities yield a proper hierarchy
of nontriviality notions for E, nontriviality for EXP under many-one reducibility and
truth-table reducibility coincides.

1. Introduction

A set A is nontrivial for E = DTIME(2lin) (or E-nontrivial for short) if there are
arbitrarily complex sets from E which can be reduced to A, i.e., if for any k ≥ 1 there
is a set B ∈ E reducible to A which is 2kn-complex (i.e., B 6∈ DTIME(2kn)). Similarly,
a set A is nontrivial for EXP = DTIME(2poly) if for any k ≥ 1 there is a set B ∈
EXP \DTIME(2n

k

) which can be reduced to A. Nontriviality which was introduced by
the authors in [2] was inspired by Lutz’s concept of weak completeness. While a set
A ∈ C is complete for a complexity class C in the classical sense if all problems in C
can be reduced to A, Lutz [11] proposed to call a set A ∈ C weakly complete for C if
a nonnegligible part of problems in C can be reduced to A. Lutz formalized the idea
of weak completeness for the exponential time classes E and EXP by introducing some
resource bounded (pseudo) measures on these classes and by calling a subclass of E and
EXP negligible if it has measure 0 in E and EXP, respectively. As one can easily show,
weakly complete sets for E and EXP in the sense of Lutz [11] are E-nontrivial and EXP-
nontrivial, respectively, and in [2] it is argued that E-nontriviality and EXP-nontriviality
are the weakest meaningful weak completeness notions for the corresponding exponential
time classes.

Preprint submitted to Elsevier February 14, 2011

While weak completeness generalizes completeness by relaxing the requirement that
all sets from the considered class C can be reduced, the classical approach for generalizing
completeness is to relax (i.e., to weaken) the underlying reducibility. So one might re-
place the polynomial time bounded many-one reducibility (p-m-reducibility for short) on
which completeness (as well as weak completeness and nontriviality) is usually based by
more general polynomial-time reducibilities like the polynomial time variants of bounded
truth-table reducibility (p-btt) or truth-table reducibility (p-tt) or Turing reducibility (p-
T). As Watanabe [12] has shown, these more general reducibilities also yield more general
completeness notions for the exponential time classes. For Lutz’s weak completeness no-
tions for E and EXP the corresponding separations have been obtained by Ambos-Spies,
Mayordomo and Zheng [4]. Moreover, there it has been shown that there are no trade-
offs between the two types of generalizations of completeness, i.e., completeness under a
weaker reducibility does not imply weak completeness under a stronger reducibility and
vice versa.

Here we generalize these results in the literature by addressing the corresponding
questions for nontriviality where we also consider the question of possible trade-offs: If
arbitrarily complex sets from E - or even all sets from E - can be reduced to a set A ∈ E
by some weaker reducibility, can we also reduce arbitrarily complex sets from E to A by
some stronger reducibility (and, similarly, for EXP)?

For the investigation of these questions, the following phenomenon has to be taken
into account. While, by a simple padding argument, hardness for E and EXP coincide
(whence a set A ∈ E is E-complete if and only if it is EXP-complete), surprisingly,
for Lutz’s weak completeness only one direction holds. Namely any weakly E-complete
set is weakly EXP-complete but there are sets in E which are weakly EXP-complete
but not weakly E-complete (see Juedes and Lutz [9]). For the still weaker nontriviality
notions, E-nontriviality and EXP-nontriviality are in fact independent (see Ambos-Spies
and Bakibayev [3]), i.e., there are sets in E which are E-nontrivial but not EXP-nontrivial
and vice versa.

This difference in the nontriviality notions for E and EXP is also manifested in a quite
surprising way in our results here. While for E the hierarchy of the nontriviality notions
under the weak polynomial time reducibilities completely mirrors Watanabe’s separation
results for the corresponding completeness notions, for EXP nontriviality under truth-
table reducibility and nontriviality under many-one reducibility coincide.

The outline of the paper is as follows. In Section 2 we show that, for E and EXP,
nontriviality under truth-table reducibility is stronger than nontriviality under Turing
reducibility. In fact we show that there is a T -complete set A for E which is neither tt-
nontrivial for E nor tt-nontrivial for EXP. So the fact that all sets in E can be recovered
from a set A by a Turing reduction does not imply that there are arbitrarily complex
sets in E which can be recovered from A by some truth-table reductions. In Section
4 we give corresponding separations of many-one, bounded truth-table and truth-table
reducibility for E whereas in Section 3 we prove the coincidence of EXP-nontriviality
under many-one reducibility with EXP-nontriviality under truth-table reducibility.

We assume familiarity with the basic notions of structural complexity theory (see e.g.
Balcázar et al. [5] and [6] for unexplained notation). All reducibilities considered here are
polynomial-time bounded. For a survey of the polynomial-time reducibilities see Ladner,
Lynch and Selman [10]

In the following we let Ek = DTIME(2kn) and EXPk = DTIME(2k
n

). Then a set
2

A ∈ E is r-E-nontrivial if, for any k ≥ 1, there is a set Bk ∈ E \ Ek such that Bk ≤pr A;
and A is r-E-trivial otherwise. Similarly, A ∈ EXP is r-EXP-nontrivial if, for any k ≥ 1,
there is a set Bk ∈ EXP \ EXPk such that Bk ≤pr A; and A is r-EXP-trivial otherwise.

The current paper is the extended version of the authors’ conference paper [1] pre-
sented at TAMC 2010.

2. Turing Completeness vs. Truth-Table Nontriviality

We start with separating nontriviality (for E and EXP) under Turing and truth-table
reducibility.

Theorem 2.1. There is a T -E-complete set A such that A is tt-trivial for E and EXP.

ProofF. ix an m-complete set C for E such that C ∈ E1. It suffices to define a set A
such that

C ≤pT A (1)

A ∈ E1, and (2)

∀ B (B ≤ptt A⇒ B ∈ E6) (3)

hold. Namely, (1) and (2) guarantee that A is T -complete for E while, by (3), A is
tt-trivial for E and EXP.

We first describe a framework for constructing sets which will guarantee (1) and (2),
and then we define a set A within this framework which will satisfy condition (3) too.

In order to guarantee (1) we define a p-Turing reduction of C to A as follows. For
any string z 6= λ, let

CODE(z) = {〈z, y〉 : |y| ≤ 3|z|2 + 1}
be the set of z-codes where the pairing function 〈, 〉 is defined by 〈z, y〉 = 04|z|1zy. Then,
in the course of the construction of A, we define a string code(z) of length 3|z|2 + 1 such
that the last bit of code(z) is the value of C(z), i.e.,

C(z) = code(z)(3|z|2), (4)

and we put a z-code 〈z, y〉 into A if and only if y is an initial segment of code(z) thereby
guaranteeing

A ∩ CODE(z) = {〈z, y〉 : y v code(z)}. (5)

Obviously, this ensures that C ≤pT A since, by (5), A can compute code(z) by a standard
prefix search, and, by (4), code(z) gives the value of C(z).

Strings will be put into A only by the above coding procedure. So

A =
⋃

z∈{0,1}+
{04|z|1zy : y v code(z)} =

⋃
z∈{0,1}+

{〈z, y〉 : y v code(z)}. (6)

Now, for a string z of length n ≥ 1, code(z) will consist of n segments of length 3n
and the final coding bit, i.e.,

code(z) = vz1 . . . vzn C(z) where n = |z| and |vz1 | = · · · = |vzn| = 3n. (7)
3

Moreover, these segments will be chosen so that

vz1 . . . v
z
m (1 ≤ m ≤ |z|) can be computed in O(poly(|z|) · 24m) steps. (8)

Note that, by C ∈ E1, (7) and (8) guarantee that

code(z) can be computed in O(poly(|z|) · 24|z|) ≤ O(25|z|) steps. (9)

This allows us to argue that (2) holds, i.e., that A ∈ E1, as follows. Given a string x, it
follows from (6) that x is in A if and only if there is a string z such that x = 04|z|1zy
for some initial segment y of code(z). But, by the above observation on the complexity
of code(z) and by |x| ≥ 5|z|, this can be decided in O(poly(|x|) + 25|z|) ≤ O(2|x|)) steps.

Having described the frame for the construction, we now show how, for given z of
length n ≥ 1, the segments vzm (1 ≤ m ≤ n) of code(z) can be chosen so that (8) is
satisfied and such that, for the corresponding set A defined according to (6) and (7), A
satisfies condition (3). Since, by the preceding discussion, A will satisfy (1) and (2) too,
this will complete the proof.

We start with some notation. Fix a standard enumeration {Me : e ≥ 0} of the
polynomial-time bounded oracle Turing machines such that, for any oracle X, the run
time of MX

e on inputs of length n is bounded by pe(n) (uniformly in e and n) where
the polynomials pe are chosen such that n ≤ pe(n) ≤ pe+1(n) and pe(n)2 < 2n for all e
and n with e ≤ n. Let Qe(x) be the set of oracle queries made by M∅e on input x. Note
that, for e and x such that e ≤ |x|, Qe(x) consists of less than pe(|x|) < 2|x| strings, each
having length less than pe(|x|) < 2|x|, and Qe(x) can be computed in time pe(|x|) < 2|x|.
Finally, note that if Me describes a p-tt-reduction then Me is nonadaptive, i.e., the query
set of Me on input x does not depend on the oracle set whence Qe(x) is the query set of
MA
e (x).

Now, given a string z of length n ≥ 1, the segments vz1 , . . . , v
z
n of code(z) are induc-

tively defined as follows. Given m with 1 ≤ m ≤ n and the strings vz1 , . . . v
z
m−1, let vzm

be the least string v of length 3n such that

∀ e < m ∀ x ∈ {0, 1}m ∀ y ∈ Qe(x) (04|z|1zvz1 . . . v
z
m−1v 6v y). (10)

In order to show that vzm is well defined (i.e., that there is a string v satisfying
(10)) and that the segments vzm of code(z) satisfy (8), we first observe that the set Q =⋃
e<m,|x|=mQe(x) of the strings y which are not allowed to extend 04|z|1zvz1 . . . v

z
m−1v

z
m

has cardinality less than 22m and can be listed in time O(22m). Note that there are m
numbers e < m and 2m strings x of length m. Moreover, as observed above, for each
such e and x, |Qe(x)| < pe(m). So, by choice of the polynomials pe (and by e < m),

|Q| < m · 2m · pe(m) ≤ pm(m)2 · 2m ≤ 22m.

The existence of a listing of Q in time O(22m) follows by a similar argument from the
observation that each of the sets Qe(x) can be listed in time ≤ pe(m).

Now the existence of a string v of length 3n as in (10) is immediate since there are
23n strings v of length 3n but there are are only less than 22n strings y which have to be
avoided as extensions of 04|z|1zvz1 . . . v

z
m−1v.

4

Condition (8) is established by induction on m. Given m and vz1 , . . . , v
z
m−1 it suffices

to show that vzm can be computed in O(poly(n) · 24m) steps. Since Q can be listed in
time O(22m) and since z, vz1 , . . . , v

z
m−1 are given, in poly(n) ·22m steps we can list the set

Q′ of all strings w of length 3n such that 04|z|1zvz1 . . . v
z
m−1w is an initial segment of a

string y in Q. So, by sorting Q′, in O(poly(n) · 24m) steps we can find the least string v
of length 3n such that v 6∈ Q′ and, obviously, vzm is the least such string.

It remains to show that (3) is satisfied. So fix a set B such that B ≤ptt A. We have
to show that B ∈ E6.

Fix e such that Me is nonadaptive and B = MA
e . Then, given a string x where

w.l.o.g. e < |x|, B(x) can be computed in O(26|x|) steps by simulating MA
e (x) as follows.

Since Me is nonadaptive, Qe(x) is the query set of this computation. So knowing A(y)
for all strings y ∈ Qe(x) allows us to compute MA

e (x) in polynomial time. Hence, by
|Qe(x)| ≤ 2|x|, it suffices to compute A(y) for a given y ∈ Qe(x) in O(25|x|) steps.

In order to compute A(y), first decide whether y is an element of a code set CODE(z)
and if so compute the unique z such that y ∈ CODE(z) and the unique w such that
y = 04|z|1zw. Since |y| < pe(|x|), this can be done in poly(|x|) steps. Now if y is not
in any code set then, by (6), y 6∈ A. If y = 04|z|1zw is a z-code then, by (6), y ∈ A
iff y v 04|z|1zcode(z). For deciding the latter, distinguish the following two cases. If
|z| ≤ |x| then, by (9), code(z) can be computed in O(25|z|) ≤ O(25|x|) steps. Finally,
if |x| < |z| then, by e < |x| < |z| and by choice of vz|x| (see (10)), y v 04|z|1zcode(z)

if and only if y v 04|z|1zvz1 . . . v
z
|x|. Moreover, by (8), vz1 . . . v

z
|x| can be computed in

O(poly(|z|) · 24|x|) steps, and, by |z| < |x|, O(poly(|z|) · 24|x|) ≤ O(25|x|).

This completes the proof. �

3. Collapse of Truth-Table Nontriviality for EXP

In contrast to the hierarchy theorems for EXP-completeness by Watanabe [12] and
for weak EXP-completeness by Ambos-Spies, Mayordomo and Zheng [4], here we show
that tt-nontriviality for EXP and m-nontriviality for EXP coincide.

Theorem 3.1. For any set A ∈ EXP the following are equivalent.

(i) A is m-nontrivial for EXP.

(ii) A is tt-nontrivial for EXP.

ProofF. or a proof of the nontrivial direction assume that A is tt-nontrivial for EXP
and fix k ≥ 1. It suffices to show that there is a set B such that B ≤pm A and B 6∈ EXPk.
(Note that, by A ∈ EXP and by downward closure of EXP under ≤pm, B ≤pm A will
imply that B ∈ EXP.)

By tt-nontriviality of A, fix a set C such that C ∈ EXP \ EXPk+1 and C ≤ptt A.
Moreover, fix a nonadaptive oracle Turing machine M such that C ≤ptt A via M and let
p be a polynomial time-bound for M . For any input string x let q(x, 1), . . . , q(x, nx) be
the list of oracle queries of M on input x (with empty oracle) in order of appearance.
Finally, define the set B by

B = {〈x, zn〉 : n ≤ nx & q(x, n) ∈ A}
5

where zn is the nth string with respect to the length-lexicographical ordering and the
coded pair 〈x, y〉 is defined by 〈x, y〉 = 1|x|0xy.

We claim that B has the required properties.
Obviously, B ≤pm A via f where f is defined by

f(y) =

{
q(x, n) if y = 1|x|0xzn & n ≤ nx
0 otherwise.

It remains to show that B 6∈ EXPk. For a contradiction assume B ∈ EXPk. Then,
for given x, C(x) can be computed by the following procedure.

• Compute the queries q(x, 0), . . . , q(x, nx) by running M∅ on input x.
(This can be done in p(|x|) steps.)

• For n ≤ nx compute A(q(x, n)) by using the identity

A(q(x, n)) = B(〈x, zn〉) = B(1|x|0xzn).

(Note that n ≤ nx < p(|x|) and that the length of zn is logarithmic in n whence
|1|x|0xzn| ≤ 3|x| + O(1). So, by assumption on B, this part of the procedure can

be completed in O(p(|x|) · 2(3|x|)k) steps.)

• Finally, using the values A(q(x, n)) (n ≤ nx), simulate the computation of M with
oracle A on input x in order to get C(x) = MA(x).
(This can be done in p(|x|) steps.)

So C(x) can be computed in

O(p(|x|) · 2(3|x|)
k

) ≤ O(2|x|
k+1

)

steps. It follows that C ∈ EXPk+1 contrary to assumption.
This completes the proof. �

For a tt-E-nontrivial set A ∈ E we can modify the above argument as follows. Given
k ≥ 1, take a set C such that C ∈ E \ E4k and C ≤ptt A, and let B be the set obtained
from C as above. Then one can show as above that B ≤pm A and B 6∈ Ek. We cannot
argue, however, that B is in E. So the above proof of Theorem 3.1 cannot be converted
into a proof of the corresponding claim for E in place of EXP. In fact, as we will show
next, Theorem 3.1 fails for E.

4. Separating Nontriviality for E Under Truth-Table Type Reducibilities

We now separate the nontriviality notions for E under the different truth-table type
reducibilities. In order to separate E-nontriviality under bounded truth-table reducibil-
ity from E-nontriviality under many-one reducibility, we give some stronger separation
results by showing that E-nontriviality (or even E-completeness) under bounded truth-
table reductions of norm k+ 1 does not imply E-nontriviality under bounded truth-table
reductions of norm k.

6

Theorem 4.1. (a) Let k ≥ 1. There is a (k + 1)-tt-complete set in E which is k-tt-E-
trivial.

(b) There is a tt-complete set in E which is btt-E-trivial.

Proof. Since the proofs of the two parts are very similar, we give a detailed proof of
part (a) and give some hints how this proof has to be changed in order to prove part (b).

(a) By a slow diagonalization argument, we construct a set A ∈ DTIME(2n
2

) such
that

A is (k + 1)-tt-hard for E (11)

and
∀B ∈ E (B ≤pk−tt A⇒ B ∈ DTIME(2n)). (12)

Then any set Â ∈ E with Â =p
m A (as, for instance, Â = {0|x|21x : x ∈ A}) will be

(k + 1)-tt-complete for E but k-tt-E-trivial.

We first explain how condition (11) is satisfied. Fix an E-complete set C such that
C ∈ E1. Then it suffices to ensure that C ≤p(k+1)−tt A. This is achieved by guaranteeing

x ∈ C ⇔ |A ∩ CODE(x)| odd (13)

for all strings x and for
CODE(x) = {xzk0 , ..., xzkk}

where zkn is the (n+ 1)th string of length k in lexicographical order.
Note that |CODE(x)| = k+ 1. Moreover, for any string y ∈ CODE(x), |y| = |x|+ k

and, for any strings x and x′,

x < x′ ⇒ ∀y ∈ CODE(x) ∀y′ ∈ CODE(x′) (y < y′) (14)

holds. So, in particular, CODE(x)∩CODE(x′) = ∅ for x 6= x′. By construction we will
have

A ⊆ CODE where CODE =
⋃

x∈{0,1}∗
CODE(x). (15)

Moreover, for the (s+ 1)th string zs with respect to the length-lexicographical ordering,
A ∩ CODE(zs) will be defined at stage s of the construction of A below.

Our strategy for satisfying (12) is much less straightforward, and, for implementing
it, we will need a speed-up argument. We start with some notation.

We model a p-k-tt-reduction by a pair (−→g , h) where −→g = (g1, . . . , gk) is a k-tuple of
polynomial-time computable selector functions gi : {0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ ×
{0, 1}k → {0, 1} is a polynomial-time computable evaluator function. Then X ≤pk−tt Y
via (−→g , h) if

∀ x [X(x) = h(x, Y (g1(x)), . . . , Y (gk(x)))].

We fix an enumeration {(−→ge , he) : e ≥ 0} of all p-k-tt-reductions (where−→ge = (ge,1, ..., ge,k))
such that, for a simultaneous time bound pe of ge,1, . . . , ge,k and he,

∀ e ≥ 0 ∀ x [|x| > e⇒ pe((|x|+ k)2) ≤ 2|x|

7

holds. Since we will only consider reductions to A, by (15) we may assume that all
queries are elements of CODE, and, w.l.o.g., we may assume that, for any input x the
corresponding queries are ordered, i.e., that for all e and x

ge,1(x), . . . , ge,k(x) ∈ CODE and ge,1(x) < · · · < ge,k(x)

holds. Finally, let {Ee : e ≥ 0} be an enumeration of E such that, for x with |x| > e,
Ee(x) can be (uniformly) computed in time 2e|x|.

Then, in order to satisfy (12), it suffices to meet the requirements

<′e : If Ee0 ≤
p
k−tt A via (−→ge1 , he1) then Ee0 ∈ DTIME(2n). (16)

for all numbers e = 〈e0, e1〉 ≥ 0. The strategy for meeting these requirements is based
on the following observation. Assume that Ee0 ≤

p
k−tt A via (−→ge1 , he1) i.e., that

Ee0(x) = he1(x,A(ge1,1(x)), . . . , A(ge1,k(x))) (17)

for all strings x. Then, by A ∈ DTIME(2n
2

), Ee0 ∈ DTIME(2n) can be established
by using this identity as long as, for almost all relevant queries ge1,i(x), |ge1,i(x)|2 ≤ |x|
(where a query ge1,i(x) is irrelevant if the value of A(ge1,i(x)) is not needed for computing
he1(x,A(ge1,1(x)), . . . , A(ge1,k(x)))). So in order to meet requirement <′e it suffices to
ensure (by diagonalization) that Ee0 is not p-k-tt-reducible to A via (−→ge1 , he1) if there
are infinitely many relevant queries ge1,i(x) such that |ge1,i(x)|2 > |x|.

A naive implementation of this strategy, however, will fail since the complexity of
the required diagonalization process is not compatible with making A computable in
time O(2n

2

) while, on the other hand, the latter is crucial for the argument that the
requirements are met. This conflict will be resolved by a speed-up argument. For growing
index e the search for a diagonalization witness x for requirement <e will be more strictly
bounded. I.e., the diagonalization will only ensure that there is no relevant query ge1,i(x)
such that |ge1,i(x)|2 ≥ 2e · |x|. So the complexity of the diagonalization procedure is
decreasing in e. Since the requirements are finitary this will allow us to argue that, for
any e, we get an algorithm for computing A which runs in time O(22

−e·n2

). Hence, in
case that we do not diagonalize, the obtained bound on the relevant queries will ensure
that Ee0 can be computed by (17) in time O(2n). So requirement <e will be met.

Formally, we will ensure that

∀ α ≥ 0 (A ∈ DTIME(2α·n
2

)) (18)

holds (where α is a real number), and, for e ≥ 0 where e = 〈e0, e1〉, we will meet the
requirement

<e : If Ee0 ≤
p
k−tt A via (−→ge1 , he1) then, for almost all x and all 1 ≤ i ≤ k

such that i is (e1, x)-critical, |x| > 2−e · |ge1,i(x)|2.

where a number i (1 ≤ i ≤ k) is (e1, x)-critical if there are bits ji, . . . , jk and j′i, . . . , j
′
k

such that
he1(x,A(ge1,1(x)), ..., A(ge1,i−1(x)), ji, ..., jk) 6=
he1(x,A(ge1,1(x)), ..., A(ge1,i−1(x)), j′i, ..., j

′
k).

(19)

8

In order to show that this will guarantee (12), let B ∈ E be given such that B ≤pk−tt A.
Fix e = 〈e0, e1〉 such that B = Ee0 and Ee0 ≤

p
1−tt A via (−→ge1 , he1). Then, by requirement

<e, we may fix n0 such that, for all x with |x| ≥ n0 and for all i such that i is (e1, x)-
critical, |x| > 2−e|ge1,i(x)|2 holds. Now, given x with |x| ≥ n0, let

yi =

{
A(ge1,i(x)) if |x| > 2−e|ge1,i(x)|2

0 otherwise

for 1 ≤ i ≤ k. Then by assumption and by choice of n0

B(x) = E0(x) = he1(x,A(ge1,1(x)), ..., A(ge1,k(x))) = he1(x, y1, . . . , yk).

So, in order to show that B ∈ DTIME(2n) it suffices to show that the strings yi can be
computed in O(2|x|) steps. But this is immediate by definition of yi since, by (18) (for

α = 2−e), A ∈ DTIME(22
−e·n2

).

We now turn to the construction of A and describe stage s of the construction at
which A ∩ CODE(zs) is defined.

We say that requirement <e requires attention at stage s if e < |zs|, <e is not satisfied
at any stage t < s, and either

There is an <e-commitment (yi, ji), ..., (yk, jk) at the end of stage
s− 1 such that yi ∈ CODE(zs).

(20)

or there is no <e-commitment at the end of stage s− 1 and

∃x ∃i (1 ≤ i ≤ k & i is (e1, x)-critical & |x| ≤ 2−e(|zs|+ k)2 &
ge1,i(x) ∈ CODE(zs) & [i > 1⇒ ge1,i−1(x) /∈ CODE(zs)])

(21)

holds. (It will be explained below when <e will be satisfied and what an <e-commitment
will be. Note that (21) can be decided at stage s: By ge1,i(x) ∈ CODE(zs) and
ge1,i−1(x) 6∈ CODE(zs), the question of whether i is (e1, x)-critical or not depends
only on the part of A defined prior to stage s. Also note that |x| ≤ 2−e(|zs| + k)2 and
ge1,i(x) ∈ CODE(zs) imply that |x| ≤ 2−e(|ge1,i(x)|)2 since the elements of CODE(zs)
have length |zs|+ k.)

Now, if some requirement requires attention, then fix e minimal such that <e requires
attention. Declare that <e is active at stage s and distinguish the following cases.

If <e requires attention via (20) then let (yi, ji), ..., (yk, jk) be the <e-commitment at
the end of stage s− 1. Otherwise define (yi, ji), ..., (yk, jk) as follows. Fix x and i as in
(21) minimal, let yi = ge1,i(x), ..., yk = ge1,k(x) and fix ji, ..., jk minimal such that

Ee0(x) 6= he1(x,A(ge1,1(x)), ..., A(ge1,i−1(x)), ji, ..., jk). (22)

In either case call (yi, ji), ..., (yk, jk) the critical sequence of <e at stage s and proceed as
follows. Let

Ps = {yr : i ≤ r ≤ k & jr = 1 & yr ∈ CODE(zs)}

Ns = {yr : i ≤ r ≤ k & jr = 0 & yr ∈ CODE(zs)}

and fix p ≤ k minimal such that yp /∈ CODE(zs) (if there is no such p then let p = k+1).
9

Define A ∩ CODE(zs) by

A ∩ CODE(zs) =


Ps ∪ {y} if |Ps| even and C(zs) = 1

or |Ps| odd and C(zs) = 0

Ps otherwise

where y is the least element of CODE(zs) such that y /∈ Ps∪Ns. (Note that |Ps∪Ns| ≤ k
and |CODE(zs)| = k + 1.)

Moreover, if p ≤ k then let (yp, jp), ..., (yk, jk) be the <e-commitment at stage s, and
if p = k + 1 then declare <e to be satisfied. Cancel all <e′ -commitments where e < e′.
(If e < e′ and the current <′e-commitment is cancelled then we say that requirement <e′
is injured by requirement <e.)

If no requirement requires attention then let

A ∩ CODE(zs) =

{
∅ if C(zs) = 0

{zs0k} if C(zs) = 1

Finally, in any case, if there is an <e-commitment (yi, ji), ..., (yk, jk) at the end of
stage s − 1 and <e is neither active nor injured at stage s then the <e-commitment
(yi, ji), ..., (yk, jk) is in force at the end of stage s too.

This completes the construction of the set A.

Note that the definition of A ∩ CODE(zs) at stage s ensures that (13) (hence (11))
holds. So, in order to show that A has the required properties, it suffices to show that
all requirements <e are met and that (18) holds. We do this by establishing a series of
claims.

Claim 1. Every requirement <e is active at most finitely often.

Proof. The proof is by induction. Fix e and, by inductive hypothesis, choose s0 such
that no requirement <e′ with e′ < e becomes active after stage s0. Then <e will not be
injured after stage s0.

Now, for a contradiction, assume that <e is active at infinitely many stages s > s0, say
at stages s1 < s2 < s3 . . . Then <e is not satisfied at any of these stages since otherwise
it will cease to require attention. So, by construction, at the end of any stage sn, n ≥ 1,
there will be some commitment (yp, jp), ..., (yk, jk) attached to <e and, since <e is not
injured after stage s0, no such commitment will be cancelled. So at the following stage
at which <e will become active, i.e, at stage sn+1, <e will require attention via (20). But
then, by construction, the commitment attached to <e at the end of stage sn+1 will be
a proper suffix of (yp, jp), ..., (yk, jk). So this can happen only finitely often contrary to
assumption.

Claim 2. Every requirement <e requires attention at most finitely often.

Proof. By Claim 1 fix a stage s0 such that no requirement <e′ with e′ ≤ e is active
after stage s0. Then <e will not require attention at any stage s > s0 (since otherwise
<e or some <e′ with e′ < e will become active at stage s contrary to choice of s0).

Claim 3. If requirement <e is satisfied at some stage s then <e is met.

10

Proof. Assume that <e is satisfied at stage s. Fix s′ ≤ s minimal such that <e
is active at stage s′ and <e is not injured at any stage t with s′ ≤ t ≤ s. Then <e
requires attention via (21) at stage s′. So there is a string x, a number 1 ≤ i ≤ k, and
a sequence (yi, ji), ..., (yk, jk), namely the critical sequence of <e at stage s′, such that
yi = ge1,i(x), ..., yk = ge1,k(x), and (22) holds. Now, in order to show that <e is met it
suffices to show that

Ee0(x) 6= he1(x,A(ge1,1(x)), ..., A(ge1,k(x))) (23)

holds. We do this by distinguishing the following two cases.
First assume that s′ = s. Then yi, ..., yk ∈ CODE(zs′) and we let A(ge1,m(x)) = jm

for i ≤ m ≤ k at stage s. So (23) is immediate by (22),
Finally, assume that s′ < s. Let s′ = s1 < s2 < ... < sn = s be the stages t,

s′ ≤ t ≤ s, at which <e requires attention. Since <e is not injured, <e becomes active at
these stages. So, by construction, there are numbers i = p0 < p1 < p2 < ... < pn = k+ 1
such that (ypm , jm), ..., (yk, jk) is the <e-commitment at the end of stage sm and A(yq)
is set to jq at stage sm for pm−1 ≤ q < pm. So (23) follows from (22) in this case too.

Claim 4. Every requirement <e is met.

Proof. For a contradiction assume that <e (e = 〈e0, e1〉) is not met. Then Ee0 ≤
p
k−tt

A via (−→ge1 , he1) and

∃∞x ∃i (1 ≤ i ≤ k & i is (e1, x)-critical & |x| ≤ 2−e · |ge1,i(x)|2). (24)

Also note that, by Claim 3, <e is never satisfied and, by Claim 2, we may fix s0 such
that e < |zs0 | and such that no requirement <e′ with e′ ≤ e will require attention after
stage s0. So, in particular, <e neither requires attention nor is injured at any stage ≥ s0.
It follows, by construction, that there is no <e-commitment at the end of stage s0 − 1.
(Otherwise this commitment will be of the form (yi, ji), ..., (yk, jk) where yi ∈ CODE(zs′)
for some s′ > s0 − 1. So <e will require attention at stage s′ unless it will be injured at
a stage t with s0 − 1 < t ≤ s′. But either will contradict the choice of s0.) It follows by
choice of s0 that there will be no <e-commitments at any stage s ≥ s0 + 1. Hence <e
will require attention at any stage s ≥ s0 such that (21) holds.

So, in order to get the desired contradiction, it suffices to show that there is a stage
s ≥ s0 such that (21) holds. But the existence of such a stage easily follows from (24).
Namely, by (24), there is a string x such that, for some i (1 ≤ i ≤ k), i is (e1, x)-critical,
|x| ≤ 2−e · |ge1,i(x)|2 and |ge1,i(x)| > |zs0 | + k. By our convention on the values of the
selection functions gei and by choice of the code sets, the latter implies that ge1,i(x) ∈
CODE(zs′) for some s′ > s0. So (21) holds at stage s′ > s0.

Claim 5. (18) holds.

Proof. It suffices to show that A ∈ DTIME(2e
−1·n2

) for e ≥ 4. Fix such a number
e and let A � n be the initial segment of (the characteristic sequence of) A of length n,
i.e., A � n = A(z0) . . . A(zn−1) = {zm ∈ A : m < n}, let SAT (s) be the set of indices
e′ such that requirement <e′ is satisfied by the end of stage s, and let com(e′, s) be the
<e′ -commitment at the end of stage s (if any, and let com(e′, s) = λ otherwise).

11

Then, in order to show that A ∈ DTIME(2e
−1·n2

), it suffices to show that there is an
inductive procedure which given

A � zs0k = A ∩
⋃
s′<s CODE(zs′)

SAT (s− 1)
com(e′, s− 1) (for e′ < |zs−1|; note that com(e′, s− 1) = λ for e′ ≥ |zs−1|)

(25)

computes
A ∩ CODE(zs) (hence A � zs+10k)

SAT (s)
com(e′, s) (for e′ < |zs|)

(26)

in O(2(e+1)−1·|zs|2) steps. Namely, by this inductive procedure, A ∩ CODE(zs) can be
computed in

O(

s∑
s′=0

2(e+1)−1·|zs′ |
2

) ≤ O(2|zs|2(e+1)−1·|zs|2) ≤ O(2e
−1·|zs|2)

steps. Since A ⊆ CODE and since, for given x, x ∈ CODE can be decided in poly(|x|)
steps, and if so the unique corresponding zs with x ∈ CODE(zs) can be found in poly(|x|)
steps too, the claim follows by the fact that |x| ≥ |zs| for x ∈ CODE(zs).

Now, in order to show that there is a procedure which computes (26) from (25) in

time O(2(e+1)−1·|zs|2), we give a procedure P which, given (25), in O(2(e+1)−1·|zs|2) steps
tells whether any requirement is active at stage s and, if so, gives the index e′ of the
active requirement and its critical sequence (yi, ji), ..., (yk, jk) at stage s. Note that this
is sufficient since, by construction, the parameters in (26) can be computed from these
parameters and from the parameters in (25) in poly(|zs|) steps.

For giving the procedure P we first observe that (by using a finite table look-up) we
may consider only sufficiently large stages s. Hence, by Claim 2, we may assume that
no requirement <e′ with e′ ≤ e requires attention after stage s− 1. So fix such an s and
assume that (25) is given. Then the procedure P works as follows.

1. First, P determines the indices e′ such that <e′ requires attention at stage s.
Moreover, in case that <e′ requires attention via (21), P in addition computes the
least corresponding witnesses x and i together with the least sequences ji, . . . , jk
and j′i, . . . , j

′
k witnessing that i is (e′1, x)-critical (i.e. satisfying (19)).

Note that <e′ may require attention at stage s only if e′ < |zs| and e′ 6∈ SAT (s−1)
(by construction) and if e′ ≥ e+1 (by assumption on s). In order to decide whether
for such a number e′ the requirement <e′ requires attention, P distinguishes the
following cases.

If com(e′, s− 1) 6= λ, say com(e′, s− 1) = (yi, ji), ..., (yk, jk) (note that com(e′, s−
1) is given by (25)), then <e′ requires attention (via (20)) if and only if yi ∈
CODE(zs), and the latter can be decided in poly(|zs|) steps.

If com(e′, s − 1) = λ then <e′ requires attention if and only if there are numbers
x and i as in (21) (for e′ = 〈e′0, e′1〉 in place of e = 〈e0, e1〉). In order to find the

12

least such x and the least corresponding i (if any), P runs the following subroutines
Q(e′, x) for x with |x| ≤ 2−e

′
(|zs| + k)2 which, for the given x, will find the least

corresponding i as in (21) if it exists.

For i = 1, . . . , k in order, Q(e′, x) computes ge′1,i(x) and checks whether ge′1,i(x) ∈
CODE(zs). If there is no such i then there is no i corresponding to x as in
(21). Otherwise, for the least such i, Q(e′, x) decides whether i is (e′1, x)-critical by
checking for all pairs of (k + 1 − i)-tuples of bits ji, . . . , jk and j′i, . . . , j

′
k whether

(19) (again with e′ = 〈e′0, e′1〉 in place of e = 〈e0, e1〉) holds. If such a pair is found,
Q(e′, x) returns x, i to the procedure P together with the least pair ji, . . . , jk and
j′i, . . . , j

′
k witnessing that i is (e′1, x)-critical.

The time complexity of the subroutine Q(e′, x) is bounded by O(2|zs|). This is
shown as follows. By our choice of the enumeration of the p-k-tt-reductions and by
|x| ≤ 2−e

′
(|zs|+ k)2, ge′1,i(x) can be computed in

pe′1(|x|) ≤ pe′1((|zs|+ k)2) ≤ 2|zs|

steps. Moreover, since CODE ∈ P ⊆ E1 and since the elements of CODE(zs)
have length |zs|+k, ge′1,i(x) ∈ CODE(zs) can be decided in O(2|zs|) steps too. So,

the first part of the procedure can be completed in O(k · 2|zs|) = O(2|zs|) steps. If
a least i with ge′1,i(x) ∈ CODE(zs) is found then, in order to complete procedure
Q(e′, x), for a constant number of sequences of bits ji, ..., jk the value of

he′1(x,A(ge′1,1(x)), ..., A(ge′1,i−1(x)), ji, ..., jk)

has to be computed where the values of ge′1,1(x), . . . , ge′1,i−1(x) have been previously
computed and the values of A(ge′1,1(x)), ..., A(ge′1,i−1(x)) are provided by (25). So,
again by choice of the enumeration of the p-k-tt-reductions, this part of the proce-
dure can be completed in O(2|zs|) steps too.

Since the subroutine Q(e′, x) will be called only for strings x with |x| ≤ 2−e
′
(|zs|+

k)2, it follows that the decision whether requirement <e′ requires attention can be

done in O(22
−e′ (|zs|+k)2 · 2|zs|) steps. Since there are at most |zs| requirements <e′

which may require attention and since, for each such e′, e′ ≥ e + 1, the first part
of procedure P can be completed in

O(|zs| · 22
−(e+1)(|zs|+k)2 · 2|zs|) ≤ O(22

−(e+1)·|zs|2+O(|zs|)) ≤ O(2(e+1)−1·|zs|2)

steps.

2. If no requirement requires attention then P is done. Otherwise, by part 1 of the
procedure, fix the least e′ such that <e′ requires attention at stage s and, if <e′
requires attention via (21), fix the least corresponding witnesses x and i together
with the least sequences ji, . . . , jk and j′i, . . . , j

′
k as in (19).

Then, in either case, <e′ becomes active at stage s. Moreover, if <e′ requires
attention via (20) then the critical sequence of <e′ at stage s is just the <e′ -
commitment com(e′, s − 1) = (yi, ji), ..., (yk, jk) at the end of stage s − 1 which is
given by (25).

13

Finally, if <e′ requires attention via (21) then the critical sequence of <e′ at stage
s is the sequence (ge′1,i(x), ji), ..., (ge′1,k(x), jk) if

Ee′0(x) 6= he′1(x,A(ge′1,1(x)), ..., A(ge′1,i−1(x)), ji, ..., jk) (27)

holds, and the critical sequence is (ge′1,i(x), j′i), ..., (ge′1,k(x), j′k) otherwise (for the
above given x, i, ji, . . . , jk and j′i, . . . , j

′
k).

As we have seen in part 1 of the procedure already, the right hand side of (27) can be
computed in O(2|zs|) steps (from (25)). On the other hand, by |x| ≤ 2−e

′
(|zs|+k)2

and by choice of the sets En, Ee′0(x) can be computed in

O(2e
′
0|x|) ≤ O(2e

′|x|) ≤ O(2e
′·2−e′ (|zs|+k)2) ≤ O(2e

′·2−e′ ·|zs|2+O(|zs|))

steps. Moreover, by e+ 1 ≥ 5, (e+ 1) · 2−(e+1) < (e+ 1)−1, hence

(e+ 1) · 2−(e+1) · n2 +O(n) < (e+ 1)−1 · n2

for sufficiently large n. So, by e′ ≥ e+ 1,

O(2e
′·2−e′ ·|zs|2+O(|zs|)) ≤ O(2(e+1)−1|zs|2).

It follows that the second part of the procedure P can be completed inO(2(e+1)−1|zs|2)
steps too.

This completes the proof of Claim 5 and the proof of part (a) of the theorem.

(b) For a proof of the second part of the theorem it suffices to construct a set A ∈
DTIME(2n

2

) such that
A is tt-hard for E (28)

and
∀B ∈ E (B ≤pbtt A⇒ B ∈ DTIME(2n)). (29)

In order to ensure (28), we fix an E-complete set C such that C ∈ E1 and ensure
that C ≤ptt A as follows. For any string x we guarantee (13) where now the coding set is
defined by

CODE(x) = {xz|x|0 , ..., xz
|x|
|x|}.

Note that |CODE(x)| = |x|+ 1. Moreover, for any string y ∈ CODE(x), |y| = 2|x| and,
for any strings x and x′, (14) holds. As in the proof of part (a), the constructed set A
will satisfy (15), and A ∩ CODE(zs) will be defined at stage s of the construction.

The above coding will be flexible enough to allow us to diagonalize against btt-
reductions in order to satisfy (29). We now fix an enumeration {(−−−→g(k,e), h(k,e)) : e ≥ 0}
of all p-btt-reductions (i.e., of all k-tt-reductions for all k ≥ 1) with properties similar to
the enumeration of the p-k-tt-reductions in part (a), say by letting (−−−→g(k,e), h(k,e)) be the
k-tt-reduction (−→ge , he) defined there.

Then (just as in part (a)), in order to satisfy (29), it suffices to satisfy (18) and to
meet the requirements

<〈k,e〉 : If Ee0 ≤
p
k−tt A via (−−−→g(k,e1), h(k,e1)) then, for almost all x and all

1 ≤ i ≤ k such that i is (e1, x)-critical, |x| > 2−e · |g(k,e1),i(x)|2.
14

for all numbers k ≥ 1 and e = 〈e0, e1〉 ≥ 0 where (e1, x)-criticalness is defined as in the
proof of part (a).

The construction of A and the proof of correctness are obtained by straightforward
changes of the corresponding parts of the proof of part (a) of the theorem.

�

We conclude our analysis of E-nontriviality under the weak reducibilities with the
observation that 1-tt-nontriviality for E coincides with m-nontriviality for E. The corre-
sponding observations for E-completeness and weak E-completeness have been made by
Homer et al. [8] and Ambos-Spies et al. [4], respectively.

Lemma 4.2. Let A ∈ E be 1-tt-nontrivial for E. Then A is m-nontrivial for E.

Proof. Given k, we have to show that there is a set B ∈ E\Ek such that B ≤pm A. By
1-tt-nontriviality of A we may pick C ∈ E \ Ek such that C ≤p1-tt A, say C ≤p1-tt A via
the selector function g : {0, 1}∗ → {0, 1}∗ and the evaluator h : {0, 1}∗ ×{0, 1} → {0, 1},
i.e., C(x) = h(x,A(g(x))). Then,

C(x) =


A(g(x)) if h(x, 0) < h(x, 1)

1−A(g(x)) if h(x, 0) > h(x, 1)

0 if h(x, 0) = h(x, 1) = 0

1 if h(x, 0) = h(x, 1) = 1.

Now let

B(x) =

{
1− C(x) if h(x, 0) > h(x, 1)

C(x) otherwise.

Then, as one can easily check, B ∈ E\Ek. Moreover, B ≤pm A via the function f defined
by

f(x) =


g(x) if h(x, 0) 6= h(x, 1)

y0 if h(x, 0) = h(x, 1) = 0

y1 if h(x, 0) = h(x, 1) = 1.

where y0 and y1 are fixed strings such that y0 6∈ A and y1 ∈ A. �

5. Summary of Results

Our results on the relations among completeness and nontriviality under the common
polynomial-time reducibilities can be summarized as follows.

Theorem 5.1. For A ∈ E the following and (up to transitive closure) only the following
implications hold in general:

15

A m-E-complete
m

A 1-tt-E-complete
⇒

A m-E-nontrivial
m

A 1-tt-E-nontrivial
⇓ ⇓

A btt-E-complete ⇒ A btt-E-nontrivial
⇓ ⇓

A tt-E-complete ⇒ A tt-E-nontrivial
⇓ ⇓

A T -E-complete ⇒ A T -E-nontrivial

Proof. Note that the downwards implications and the implications from left to right
are immediate by definition (and by the time hierarchy theorem). The unique upwards
arrows in the first and the second columns hold by Homer et al. [8] and Lemma 4.2,
respectively. Finally, Theorems 2.1 and 4.1 imply that no other implications hold. �

Theorem 5.2. For A ∈ EXP the following and (up to transitive closure) only the fol-
lowing implications hold in general:

A m-EXP-complete
m

A 1-tt-EXP-complete
⇓

A btt-EXP-complete
⇓

A tt-EXP-complete
⇓

A T -EXP-complete

⇒

⇒

A m-EXP-nontrivial
m

A 1-tt-EXP-nontrivial
m

A btt-EXP-nontrivial
m

A tt-EXP-nontrivial
⇓

T -EXP-nontrivial

Proof. Again the downwards implications and the implications from left to right are
immediate by definition (and by the time hierarchy theorem) while the unique upwards
arrow in the first column holds by Homer et al. [8]. The upwards implications in the
second column are justified by Theorem 3.1. Finally, Theorems 2.1 and the separation
results for the exponential time completeness notions in Watanabe [12] imply that no
other implications hold. (In place of [12] we may also refer to Theorem 4.1 which, by the
coincidence of hardness for E and EXP, imply the results there.) �

Here we have not looked at E- or EXP-nontriviality under the strong reducibilities,
i.e., at the reducibilities strengthening many-one reducibility. Berman [7] has shown
that E-completeness under many-one reducibility coincides with E-completeness under
length-increasing one-one reducibility and the corresponding fact for weak E- (and EXP-
) completeness has been shown in [4]. It can be easily shown that E- (and EXP-)
nontrivality under many-one reducibility coincides with E- (and EXP-) nontrivality under
length-increasing many-one reducibility. The question whether nontriviality under many-
one reducibility and nontriviality under one-one reducibility coincide, however, is open.
We have obtained such a collapse only under the strong hypothesis that P = PSPACE.

16

References

[1] Ambos-Spies, K., Bakibayev, T.: Nontriviality for exponential time w.r.t. weak reducibilities. Pro-
ceedings TAMC 2010, 84-93, Lecture Notes in Comput. Sci., 6108, Springer, Berlin, 2010

[2] Ambos-Spies, K., Bakibayev, T.: Weak completeness notions for exponential time. Proceedings
ICALP 2010, Part I, 503–514, Lecture Notes in Comput. Sci., 6198, Springer, Berlin, 2010

[3] Ambos-Spies, K., Bakibayev, T.: Comparing nontriviality for E and EXP. To appear
[4] Ambos-Spies K., Mayordomo E., Zheng X.: A Comparison of Weak Completeness Notions. Proceed-

ings of the 11th Annual IEEE Conference on Computational Complexity, 171–178 (1996)
[5] Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural complexity I. Second edition. Springer, Berlin (1995)
[6] Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural complexity II. Springer, Berlin (1990)
[7] Berman, L.: On the structure of complete sets: almost everywhere complexity and infinitely often

speedup. Proceedings of the 17th Annual Symposium on Foundations of Computer Science, 76–80
(1976)

[8] Homer, S., Kurtz, S., Royer, J.: On 1-truth-table-hard languages. Theoret. Comput. Sci. 115, 383–
389 (1993)

[9] Juedes, D.W., Lutz, J.H.: Weak completeness in E and E2. Theoret. Comput. Sci. 143, 149–158
(1995)

[10] Ladner, R. E., Lynch, N. A., Selman, A. L: A comparison of polynomial time reducibilities. Theoret.
Comput. Sci. 1, 103–123 (1975)

[11] Lutz, J.H.: Weakly hard problems. SIAM J. Comput. 24, 1170–1189 (1995)
[12] Watanabe, O.: A comparison of polynomial time completeness notions. Theoret. Comput. Sci. 54,

249–265 (1987)

17

