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Abstract. We discuss the question whether a typical set in E =
DTIME(2lin), a typical set in EXP = DTIME(2poly), a typical com-
putable set, or a typical set in general is weakly hard for E in the sense
of Lutz [14] (i.e., measure hard), in the sense of Ambos-Spies [3] (i.e.,
category hard) or in the sense of Ambos-Spies and Bakibayev [4] (i.e.,
nontrivial or strongly nontrivial). We will show that the answer depends
on both, the base class we choose and the weak hardness notion we con-
sider.

1 Introduction

The standard way for proving a problem to be intractable is to show that the
problem is hard for the linear-exponential-time class E = DTIME(2lin) un-
der polynomial-time-bounded many-one reducibility (p-m-reducibility for short).
Lutz [14] proposed a generalization of this approach by relaxing hardness as fol-
lows. While a set A is hard for E if all problems in E can be reduced to A,
Lutz proposed to call a set A weakly hard if a nonnegligible part of E can be
reduced to A. He formalized this idea by introducing a resource-bounded mea-
sure on E and by saying that a subclass of E is negligible if it has measure 0 in
E. In the following this approach has been further generalized. So Ambos-Spies
[3] introduced a weak hardness based on Baire category in place of measure
and, more recently, Ambos-Spies and Bakibayev [4] introduced some further,
much less technical generalizations of weak hardness, called strong nontriviality
and nontriviality, where the latter may be viewed as the weakest weak hardness
notion for E.

Though Lutz [14] has shown that there are measure hard sets (i.e., weakly
hard sets in his sense) which are not hard, Ambos-Spies [3] has shown that
there are category hard sets which are not measure hard, and Ambos-Spies and
Bakibayev [4] have shown that there are nontrivial sets which are not strongly
nontrivial and strongly nontrivial sets which are not category hard, one may ask
whether these separations - or what of these separations - apply to typical sets.

If we look at all (not necessarily computable) sets then the weakly hard sets
(in any of the above senses) are as rare as the hard sets, namely the class of
nontrivial sets has (Lebesgue) measure 0. This is an easy consequence of some
more general result in [1] (see Section 3 below). If we consider only sets in E,
i.e., compare completeness with weak completeness, however, then the situtation
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becomes different. Namely, Mayordomo [16] has shown that the hard sets have
measure 0 in E (in the sense of Lutz’s resource bounded measure theory) whereas
Ambos-Spies et al. [8] have shown that the class of measure hard sets has measure
1 in E. So a typical set in E is weakly hard but not hard.

Here we analyze typicalness of the weak hardness notions for some interme-
diate classes between E and the class of all sets, namely for the polynomial-
exponential-time class EXP and for the class REC of computable sets. We show
that among the sets in EXP not only the E-hard sets but also the measure and
category hard sets for E are rare (i.e., have measure 0 in EXP) whereas the
nontrivial and strongly nontrivial sets are not rare (i.e., do not have measure 0
in EXP) but also not typical (i.e., do not have measure 1 in EXP). Finally, for
the class of the computable sets, only the nontrivial sets are not rare (i.e., do
not have computable measure 0) wereas the sets with any of the stronger weak
hardness properties for E are rare.

The outline of the paper is as follows. After introducing the relevant concepts
and some basic facts on them in Section 2, in Sections 3 - 6 we shortly review
the results which can be found (explicitly or implicitly) in the literature before
in Sections 7 - 10 we present our new results. Due to lack of space in most cases
only some of the ideas underlying the proofs are given.

Our notation is standard (see e.g. the monographs of Balcázar et al. [10] and
[11]). The exponential time classes we will deal with are the classes

E =
⋃
k≥1

DTIME(2kn) and EXP =
⋃
k≥1

DTIME(2n
k

)

where we abbreviate the individual levels of these classes by

Ek = DTIME(2kn) and EXPk = DTIME(2n
k

).

The class of computable (recursive) problems is denoted by REC. For comparing
problems we use the polynomial-time-bounded version of many-one reducibility
(p-m-reducibility for short) where a set A is p-m-reducible to a set B (A ≤p

m B)
via f if f is polynomial-time computable and A(x) = B(f(x)) for all strings x.
We let P≤(A) = {B : B ≤p

m A} and P≥(A) = {B : A ≤p
m B} denote the class of

predecessors respectively successors of A under p-m-reducibility.

2 Weak hardness: basic definitions and facts

Following Lutz [14] we call a set A weakly hard for E if a nonneglibile part of
E can be p-m-reduced to A. Then the weak hardness notions we will consider
here are obtained by different interpretations of the (non)negligible parts of E.
For the more recent weak hardness notions of Ambos-Spies and Bakibayev [4] a
subclass C is considered to be neglibile if it is contained in some level Ek of the
hierarchy E or if it does not contain any sets which are bi-immune to some level
Ek (i.e., if for some k no set in C is almost-everywhere 2kn-complex).

Definition 1 (Ambos-Spies and Bakibayev [4]).
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(i) A set A is E-nontrivial if, for any k ≥ 1, there is a set Bk ∈ E \ Ek such
that Bk ≤p

m A; and A is E-trivial otherwise.
(ii) A set A is strongly E-nontrivial if, for any k ≥ 1, there is an Ek-bi-immune

set Ck ∈ E such that Ck ≤p
m A; and A is weakly E-trivial otherwise.

Lutz’s original weak hardness notion for E in [14] is more technical. It is
based on Lutz’s resource-bounded measure theory [13] which allows the defini-
tion of (pseudo) measures on sufficiently closed complexity classes. This resource
bounded measure theory will be used here too in order to define typicalness for
complexity classes. More background information on resource-bounded measure
theory can be found in the surveys by Lutz [15] and Ambos-Spies and Mayor-
domo [7] where the latter also explains the relations between resource-bounded
measure and randomness to be used here. The following definitions and facts are
taken from [7].

Definition 2. (a) A martingale is a real valued function d : {0, 1}∗ → [0,∞)
such that d(λ) > 0 and, for every x ∈ {0, 1}∗, (d(x0) + d(x1)) / 2 = d(x) holds.

(b) A martingale d succeeds on a set A if lim supn≥0 d(A � n) = ∞ (where
A � n = A(0), . . . , A(n−1) is the initial segment of length n of the characteristic
sequence of A). A martingale d succeeds on a class C if it succeeds on all sets
A ∈ C.

(c) The (betting) strategy sd underlying the martingale d is the function

sd(x) =

{
d(x0)
2d(x) if d(x) 6= 0

0 otherwise.

(d) A t(n)-martingale d is a rational valued martingale d : {0, 1}∗ → Q ∩
[0,∞) such that, for the underlying strategy sd, sd ∈ DTIME(t(n)).

(e) A class C has t(n)-measure 0 if there is a t(n)-martingale which succeeds
on C.

(f) C has p-measure 0 (p2-measure 0) if C has nk-measure 0 (2(logn)k -
measure 0) for some k ≥ 1; and C has computable or rec-measure 0 if C
has t(n)-measure 0 for some computable t. A class C has measure 0 in E (EXP,
REC) if C ∩ E (C ∩ EXP , C ∩ REC) has p-measure 0 (p2-measure 0, rec-
measure 0). And C has measure 1 in E (EXP, REC) if the complement C of C
has measure 0 in E (EXP, REC).

(g) A set A is t(n)-random if no t(n)-martingale succeeds on A (i.e., if the
singleton {A} does not have t(n)-measure 0). A is p-random (p2-random) if A

is nk-random (2(logn)k -random) for all k ≥ 1 and A is computably random or
rec-random if A is t(n)-random for all computable functions t(n).

As Lutz has shown, the measures on the classes E, EXP and REC are con-
sistent. So a subclass C of E which has measure 0 in E may be considered to be
negligible, and if the the class CP of sets with a property P has measure 1 in E
then we may say that property P is typical for the sets in E (and, similarly, for
EXP and REC).
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Definition 3 (Lutz [14]). A set A is measure hard for E if the class of prede-
cessors of A, P≤(A), does not have measure 0 in E (i.e., if P≤(A) ∩ E does not
have p-measure 0).

A final weak hardness notion for E we will consider here is the notion of
category hardness for E introduced in Ambos-Spies [3] which is based on resource-
bounded Baire category (or genericity) in place of resource-bounded measure (or
randomness) and which generalizes Lutz’s measure hardness. For lack of space
we do not introduce this notion here formally but refer the reader to [3] and
[7] for details. Here we only note the following implications among the weak
hardness notions for E (see Ambos-Spies and Bakibayev [4]):

A measure hard ⇒ A category hard ⇒ A strongly nontrivial ⇒ A nontrivial

In the following we will use the following characterization of resource-bounded
measure (and category) in terms of randomness (and genericity) (see [7] and [3]).

Lemma 1. A class C does not have p-measure 0 (p2-measure 0) if and only if,

for any k ≥ 1, there is an nk-random (2(logn)k -random) set in C. And C does
not have rec-measure 0 if and only if, for any computable function t(n), there is
a t(n)-random set in C.

By the preceding lemma a set A is measure hard for E if, for any k ≥ 1, there
is an nk-random set in E which can be reduced to A. The following lemma and
variants of this lemma for genericity and bi-immunity in place of randomness
yield more simple characterizations of E-measure hardness, E-category hardness
and strong E-nontriviality.

Lemma 2 (Ambos-Spies, Terwijn and Zheng [8]). Let A be an n2-random
set and, for k ≥ 1, let

Ak = {x : 0k·|x|x ∈ A} and A′k = {x : 0|x|
k+1

x ∈ A}. (1)

Then Ak ≤p
m A, A′k ≤p

m A, Ak is nk-random, and A′k is 2(log n)k -random. More-
over, if A ∈ E then Ak ∈ E too.

Theorem 1 (Characterization Theorems for Weak E-Hardness).

(i) A set A is E-measure hard if and only if there is an n2-random set B ∈ E
such that B ≤p

m A (Ambos-Spies, Terwijn and Zheng [8]).
(ii) A set A is E-category hard if and only if there is an n2-generic set B ∈ E

such that B ≤p
m A (Ambos-Spies [3]).

(iii) A set A is strongly E-nontrivial if and only if there is an E1-bi-immune set
B ∈ E such that B ≤p

m A (Ambos-Spies and Bakibayev [4]).

We conclude our presentation of the basic concepts with some technical result
(for a proof see e.g. [7]).

Theorem 2. Let t(n) be any computable time-bound. Then any t(n)-random
set is DTIME(t(2n − 1))-bi-immune. In particular, any nk-random set is Ek-
bi-immune. (Throughout this paper we assume that any computable time-bound
t(n) is strictly increasing and time-constructible and satisfies t(n) ≥ n.)
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3 Noncomputable weakly E-hard sets are untypical

We now turn to the question whether typical sets are weakly hard for E. We first
show that, independent of the type of weak hardness we consider, weakly E-hard
sets - hence E-hard sets - are rare among all sets. This is a direct consequence
of the following more general observation in Ambos-Spies [1].

Theorem 3 (Ambos-Spies [1]). For any set A 6∈ P, the upper cone of A
under p-m-reducibility, P≥(A) = {B : A ≤p

m B}, has Lebesgue measure 0.

So, in particular, by letting A be an E-complete set, the class of E-hard sets
has measure 0. In order to get the corresponding result for the weak hardness
notions, it suffices to observe that, by countable additivity of Lebesgue measure,
Theorem 3 implies that the class of sets which have only the polynomial-time
computable sets among their computable predecessors has measure 1.

Corollary 1. The class T = {A : P≤(A) ∩ REC = P} has measure 1.

Corollary 2. The class of the E-nontrivial sets has measure 0. Hence, in par-
ticular, the classes of the strongly E-nontrivial sets, the E-category hard sets, the
E-measure hard sets, and the E-hard sets have measure 0.

Proof. This is immediate by Corollary 1 since any set A in T is E-trivial.

The preceding observations can be effectivized by showing that sufficiently
random sets are in the class T hence E-trivial.

Theorem 4. Let A be computably random and let B be any computable set such
that B ≤p

m A. Then B ∈ P. (In other words, the class of computably random
sets is contained in T.)

Proof. For a contradiction assume that B 6∈ P and fix f such that B ≤p
m A via

f . Then f(B) is an infinite subset of A. Moreover, since f and B are computable,
f(B) is computably enumerable whence f(B) contains an infinite computable
set D. So, for a computable function t such that D ∈ DTIME(t(n)), A is not
DTIME(t(n))-immune. It follows by Theorem 2 that A is not t(n)-random hence
not computably random. But this contradicts the choice of A.

Corollary 3. Let A be computably random. Then A is E-trivial.

In Section 10 we will show that Corollary 3 (hence Theorem 4) is optimal.
Namely, for any computable function t(n) there is an E-nontrivial t(n)-random
set.

4 E-hard sets are untypical

E-hardness is not only untypical among all sets but, as Mayordomo [16] has
shown, also untypical among the sets in E, in EXP, and in REC. This is imme-
diate by the following stronger result.
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Theorem 5 (Mayordomo [16]). The class of E-hard sets has p-measure 0.

Proof (Idea). Berman [9] has shown that no E-hard set is P-(bi-)immune and
Mayordomo [16] has shown that the class of P-bi-immune sets has p-measure 1.

Corollary 4 (Mayordomo [16]). The class of E-hard sets has measure 0 in
E, measure 0 in EXP, measure 0 in REC, and Lebesgue measure 0.

Proof. This follows from Theorem 5 since any p-measure-0 class has measure 0
in E, measure 0 in EXP, measure 0 in REC, and classical measure 0.

Note that Mayordomo’s theorem has been rephrased in terms of randomness
as follows.

Theorem 6 (Ambos-Spies, Terwijn and Zheng [8]). No n-random set is
E-hard.

Proof. By Theorem 2, any n-random set is P-bi-immune, hence (by Berman’s
observation) not E-hard.

5 Weakly E-complete sets are typical in E

Having seen in the two preceding sections that weakly E-hard sets are untypical
among all sets and that E-hard sets are untypical not only among all sets but
also among the sets in E, EXP, and REC, we next contrast these observations
by a result of Ambos-Spies, Terwijn and Zheng [8] showing that all types of
weak hardness for E are typical for sets in E. So a typical set in E is weakly
E-complete but not E-complete.

Theorem 7 (Ambos-Spies, Terwijn and Zheng [8]). The class of E-measure
hard sets has measure 1 in E.

Proof (Idea). By Theorem 1 (i), any n2-random set in E is E-measure hard. The
claim follows since the class of n2-random sets has p-measure 1 whence the class
of n2-random sets in E has measure 1 in E.

Corollary 5. The classes of E-nontrivial sets, strongly E-nontrivial sets, and
E-category hard sets have measure 1 in E.

6 E-measure hard and E-category hard sets are untypical
in EXP and REC

Having seen in the preceding section that, for any of the weak hardness notions
we consider, typical sets in the linear-exponential-time class E are weakly E-
hard, we now analyze the question of typicalness of weak E-hardness in the larger
polynomial-exponential-time class EXP. Note that, typically, a polynomial-expo-
nential-time set is not a linear-exponential-time set (i.e., more formally, the class
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E has measure 0 in the class EXP). So typicalness in E does not imply typicalness
in EXP. In fact, Juedes and Lutz [12] have shown that, in contrast to Theorem
7, E-measure hard sets are untypical in EXP, and Ambos-Spies [3] has extended
this observation to E-category hardness.

Theorem 8 (Juedes and Lutz [12], Ambos-Spies [3]). Let A be p-random.
Then A is not E-category hard, hence not E-measure hard.

Proof (Idea). By Theorem 1 (ii) it suffices to show that there is no n2-generic
set B ∈ E such that B ≤p

m A. So, for a contradiction, assume that there is such
a set B. Since n2-generic sets are p-incompressible, it follows from B ∈ E and
B ≤p

m A that A is not E-bi-immune. So, by Theorem 2, A is not p-random.

Corollary 6 (Juedes and Lutz [12], Ambos-Spies [3]). The class of the
E-category hard sets - hence the class of the E-measure hard sets - has measure
0 in EXP, measure 0 in REC, and classical measure 0.

Proof (Idea). This follows from Theorem 8 and the fact that the class of p-
random sets has p2-measure 1.

7 Strongly E-nontrivial and E-nontrivial sets are not
untypical in EXP

We now contrast the observation that E-category hard sets, hence E-measure
hard sets, are untypical among the sets in EXP by showing that strongly E-
nontrivial sets - hence E-nontrivial sets - are not untypical in EXP.

Theorem 9. For any k ≥ 1 there is a 2(logn)k -random set Ak ∈ EXP such that
Ak is strongly E-nontrivial.

Corollary 7. The class of the strongly E-nontrivial sets does not have measure
0 in EXP (hence not p2-measure 0).

Proof (of Corollary 7). This follows from Theorem 9 by the characterization of
the measure in EXP in terms of randomness.

Proof (of Theorem 9; idea). Fix an n2-random set A ∈ E and, for k ≥ 1, let

A′k = {x : 0|x|
k+1

x ∈ A}. By Lemma 2, A′k is 2(logn)k -random and A′k ≤p
m A.

Note that, by the latter, A′k ∈ EXP (since EXP is the downward closure of E
under p-m-reducibility). So it suffices to show that A′k is strongly E-nontrivial.
By Theorem 1 (iii), this can be established by showing that there is an E1-bi-
immune set B ∈ E such that B ≤p

m A′k. Such a set B is defined as follows.

For any string z let lk(z) be the unique number n such that

nk+1 + n ≤ |z| < (n+ 1)k+1 + (n+ 1)
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and let sufk(z) be the last lk(|z|) bits of z. Then B is defined by

B = {z : sufk(z) ∈ A′k}.

Then, as one can easily check, B ≤p
m A′k via sufk and B ≤p

m A via f(z) =

0|sufk(z)|
k+1

sufk(z). Since A ∈ E and |f(z)| ≤ |z| the latter implies that B ∈ E.
It remains to show that B is E1-bi-immune. For a contradiction, assume that

there is an infinite set I ∈ E1 such that, for z ∈ I, B(z) can be computed in
O(2|z|) steps. By symmetry, w.l.o.g. we may assume that I ∩B is infinite. For f
as above let Î = {f(z) : z ∈ I ∩ B}. Then, by assumption, Î is infinite and, by
B ≤p

m A via f , Î ⊆ A. Moreover, it is not hard to shows that Î ∈ E4. So A is
not E4-bi-immune. Since, by Theorem 2, n4-random sets are E4-bi-immune this
contradicts choice of A.

8 Strongly E-nontrivial and E-nontrivial sets are not
typical in EXP

Though, as we have shown in the preceding section, E-nontrivial and strongly
E-nontrivial sets are not untypical in EXP, we now show that these sets are not
typical in EXP. So these weak notions are neither typical nor untypical among
the polynomial-exponential-time sets.

Theorem 10. For any k ≥ 1 there is a 2(logn)k -random set Ak ∈ EXP such
that Ak is E-trivial (hence weakly E-trivial).

Corollary 8. The class of the E-trivial sets (hence the class of the weakly E-
trivial sets) does not have measure 0 in EXP (hence not p2-measure 0).

Theorem 10 is an easy consequence of the following quite deep lemma.

Lemma 3 (Ambos-Spies and Bakibayev [5]). There is an n2-random set
A ∈ EXP which is E-trivial.

Proof (of Theorem 10). Since EXP and the class of the E-trivial sets are closed
downwards under ≤p

m this is immediate by Lemma 3 and by Lemma 2.

9 Strongly E-nontrivial are untypical in REC

Finally, we look at typicalness of the weak hardness notions among the com-
putable sets. By Corollary 6, E-category hard sets hence E-measure hard sets
are untypical in REC. So it suffices to consider strong E-nontriviality and E-
nontriviality. We first show that strong E-nontriviality is untypical in REC too.
Then, in the next section, we will show that E-nontriviality is neither typical
nor untypical in REC.

In order to show that the class of strongly E-nontrivial sets has computable
measure 0, we first observe that any sufficiently bi-immune set does not have any
E2-bi-immune predecessors in E. Let expk(n) be the k-ply iterated exponential
function, i.e., exp0(n) = n and expk+1(n) = 2expk(n).
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Lemma 4. Let A and B be sets, such that A is DTIME(exp5(n))-bi-immune,
B ∈ E and B ≤p

m A. Then B is not E2-bi-immune.

Proof (Sketch). Fix k ≥ 1 such that B ∈ Ek and fix a polynomial-time com-
putable function f such that B ≤p

m A via f . First observe that

∀∞ x (exp3(|f(x)|) < |x|). (2)

This is shown as follows. For a contradiction assume that (2) fails. Then, for

C = {y : ∃x [|x| ≤ exp3(|y|) & y = f(x)]},

C is infinite. Moreover, C ∈ DTIME(exp4(n)) and, for y ∈ C, A(y) can be
computed in exp5(|y|) steps by computing the least string x of length < exp3(|y|)
such that f(x) = y and by computing B(x). Note that, by B ∈ Ek, the latter
can be done in O(2k·|x|) ≤ O(2k·exp3(|y|)) ≤ O(exp5(|y|)) steps. So, contrary to
assumption, A is not DTIME(exp5(n))-bi-immune.

Now, (2) implies that f compresses B in such a strong way that f is not only
not one-to-one but for infinitely many strings x there is a string x′ such that
f(x) = f(x′) and x′ is much shorter than x. To be more precise, by (2), the set

D = {x : ∃x′ (f(x) = f(x′) & k · |x′| ≤ |x|)}

is infinite. Moreover, D ∈ E2 and, for x ∈ D, B(x) can be computed in O(22n)
steps by computing the least x′ such that f(x) = f(x′) and by computing B′(x).
Note that B(x′) = B(x) and, by B ∈ Ek, B(x′) can be computed in O(2k·|x

′|) ≤
O(2|x|) steps. So B is not E2-bi-immune which completes the proof.

Theorem 11. Let A be exp5(n)-random. Then A is weakly E-trivial.

Proof. Since, by Theorem 2, any exp5(n)-random set is exp5(n)-bi-immune, it
follows from Lemma 4 that A does not have any E2-bi-immune predecessor in E.
By (the third part of) Theorem 1 this implies that A is not strongly E-nontrivial.

Corollary 9. The class of strongly E-nontrivial sets has computable measure 0
hence measure 0 in REC.

Proof. This is immediate by Theorem 11 since, for any computable function
t(n), the class of t(n)-random sets has computable measure 1.

10 E-nontrivial sets are neither typical nor untypical in
REC

We conclude our investigation of typicalness of the weak hardness notions for E
by showing that (just as in case of EXP) E-nontrivial sets are neither typical
nor untypical among the computable sets.

For a proof of the latter we will need the following variant of Lemma 2.
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Lemma 5. Let t(n) be a strictly increasing time constructible function and let A
be a computable n-random set. Then, for At = {zn : 0t(n) ∈ A}, At is computable
and t(n)-random.

Theorem 12. For any strictly increasing, time constructible function t(n) there
is a t(n)-random set At ∈ REC such that At is E-nontrivial.

Proof. Fix t(n) and let A be any n2-random set in E. Then, for At as in Lemma
5, At is computable and t(n)-random whence it suffices to show that At is E-
nontrivial.

By choice of t(n), the tally set D = {0t(n) : n ≥ 0} is infinite and D ∈ P.
So A ∩ D ≤p

m At via f where f(0t(n)) = zn and, for x 6∈ D, f(x) = y0 for
some fixed string y0 6∈ At. Moreover, since A is n2-random hence, by Theorem 2,
E1-bi-immune and since A ∈ E it follows that A∩D ∈ E\E1. Since, as shown in
Ambos-Spies and Bakibayev [4], any tally set in E \E1 is E-nontrivial. It follows
that A∩D is E-nontrivial. Since the class of E-nontrivial sets is closed upwards
under ≤p

m, it follows that At is E-nontrivial too which completes the proof.

Corollary 10. The class of computable E-nontrivial sets does not have com-
putable measure 0 hence does not have measure 0 in REC.

It remains to show that the class of the computable E-trivial sets does not
have computable measure 0. This is shown by the following minimal pair theo-
rem.

Theorem 13. Let B 6∈ P be computable and let t : N → N be a computable
function. There is a computable t(n)-random set A such that A and B are a
p-m-minimal pair, i.e.,

∀C (C ≤p
m A,B ⇒ C ∈ P). (3)

The quite involved proof is omitted here. We only note that the proof com-
bines the minimal pair technique of Ambos-Spies [2] with a novel construction
of random sets in Ambos-Spies and Kräling [6].

Corollary 11. For any computable function t(n) there is a computable t(n)-
random set which is E-trivial. Hence the class of computable E-trivial sets does
not have computable measure 0 and does not have measure 0 in REC.

Proof. Since, obviously, any set which forms a minimal pair with an E-hard set
is E-trivial, it suffices to apply Theorem 13 to an E-complete set B.

11 Summary

The results on typicalness of the weak hardness notions for E can be summarized
as follows.
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E EXP REC ALL
E-hard untypical untypical untypical untypical

E-measure hard typical untypical untypical untypical
E-category hard typical untypical untypical untypical

strongly
E-nontrivial

typical
neither typical
nor untypical

untypical untypical

E-nontrivial typical
neither typical

nor untypical
neither typical
nor untypical

untypical

Figure 1

Here a property P is typical (untypical) for the members of a class C if the
class of the sets in C with property P has measure 1 (0) in C.

Since, in Figure 1, the weak hardness notions for E are ordered by decreas-
ing strength, typicalness is preserved downwards and untypicalness is preserved
upwards. So the relevant results are the results given in boldface type. Now, for
E, the relevant results hold by Corollary 4 due to Mayordomo [16] and Theo-
rem 7 due to Ambos-Spies, Terwijn and Zheng [8]. The relevant results for EXP
are Corollary 6 due to Juedes and Lutz [12] and Ambos-Spies [3], Corollary 7,
and Corollary 8; and the relevant results for REC are Corollary 9, Corollary
10, and Corollary 11. Finally, the relevant result for ALL is Corollary 2 due to
Ambos-Spies [1].

One might expand Figure 1 by considering some classes between EXP and
REC like the classes ELEMENTARY and PRIM of the elementary sets and
the primitive recursive sets, respectively. For PRIM we obtain the same results
as for REC by some straightforward changes of the proofs given there. In case
of ELEMENTARY, untypicalness of the strongly E-nontrivial sets and the fact
that the E-nontrivial sets are not untypical can be shown as in case of REC. The
proof that the E-trivial sets are not untypical among the recursive sets which is
based on Theorem 13, however, does not carry over to the class of elementary
sets. Namely, as Book has observed (see [2]), no elementary set A 6∈ P forms a
minimal pair with any E-hard set B. So here the question whether the E-trivial
sets are not untypical among the elementary sets remains open.

Finally, note that our investigation in typicalness of the weak hardness no-
tions for E is closely related to the question how much randomness is needed in
order to destroy weak hardness. Above we have obtained the following results:

(i) No n-random set is E-hard (Theorem 6).
(ii) No p-random set is E-measure hard or E-category hard (Theorem 8).
(iii) No exp5(n)-random set is strongly E-nontrivial (Theorem 11).
(iv) No rec-random set is E-trivial (Corollary 3).

Moreover, the results in (ii) and (iv) are optimal since, for any k ≥ 1, there
is an nk-random set which is E-measure hard hence E-category hard, and, for
any computable function t(n) there is a t(n)-random set which is E-nontrivial.
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The former follows from (the first part of) Theorem 1 and the existence of nk-
random sets in E while the latter holds by Theorem 12. In case of (iii), however,
the bound is not optimal. In the proof of Theorem 11 we were very generous
when estimating the required upper bounds. So here we leave it as an open
problem to find the optimal bound.
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