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Abstract

Lutz [20] proposed the following generalization of hardness: While a problem A is hard for
a complexity class C if all problems in C can be reduced to A, Lutz calls a problem weakly
hard if a nonnegligible part of the problems in C can be reduced to A. For the linear
exponential-time class E = DTIME(2lin), Lutz formalized these ideas by introducing a
resource-bounded (pseudo) measure on this class and by saying that a subclass of E is
negligible if it has measure 0 in E.

Here we introduce and investigate new weak hardness notions for E, called E-non-
triviality and strong E-nontriviality, which generalize Lutz’s weak hardness notion for
E and which are conceptually much simpler than Lutz’s concept. Namely, a set A is
E-nontrivial if, for any k ≥ 1, there is a set Bk ∈ E which can be reduced to A (by a
polynomial time many-one reduction) and which cannot be computed in time O(2kn),
and a set A is strongly E-nontrivial if the sets Bk can be chosen so that they are almost
everywhere O(2kn)-complex.

1. Introduction

The standard way for proving a problem to be intractable is to show that the problem
is hard or complete for one of the standard complexity classes containing intractable
problems. Lutz [20] proposed a generalization of this approach by introducing more
general weak hardness notions which still imply intractability. While a set A is hard
for a class C if all problems in C can be reduced to A (by a polynomial-time-bounded
many-one reduction) and complete if it is hard and a member of C, Lutz proposed to
call a set A weakly hard if a nonnegligible part of C can be reduced to A and to call A
weakly complete if in addition A ∈ C. For the exponential-time classes E = DTIME(2lin)
and EXP = DTIME(2poly), Lutz formalized these ideas by introducing resource-bounded
(Lebesgue) measures on these classes and by saying that a subclass of E is negligible if
it has measure 0 in E (and similarly for EXP). A variant of these concepts, based on
resource-bounded Baire category in place of measure, was introduced by Ambos-Spies
[4] where now a class is declared to be negligible if it is meager in the corresponding
resource-bounded sense.
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A certain drawback of these weak hardness notions in the literature, called measure-
hardness and category-hardness in the following, is that they are based on the some-
what technical concepts of resource-bounded measure and resource-bounded category,
respectively. So here we introduce some alternative weak hardness notions which are
conceptually much simpler and are solely based on the basic concepts of computational
complexity theory.

While the weak hardness notions in the literature implicitly used the fact that, by
the time-hierarchy theorem, the linear-exponential time class E is a proper hierarchy of
time complexity classes, where the individual levels are the deterministic-time classes
Ek = DTIME(2kn) (k ≥ 1), our primary new weak hardness notion for E, called E-
nontriviality, is based on this observation explicitly. We consider a subclass of E to be
negligible, if it is contained in a fixed level Ek of the linear-exponential-time hierarchy. In
other words, a set A is E-nontrivial if it has predecessors (under p-m-reducibility) from
arbitrarily high levels of this hierarchy.

Since any level Ek of E has measure 0 in E and is meager in E, E-nontriviality
generalizes the previously introduced weak hardness notions for E. On the other hand,
since P ⊆ E1, E-nontriviality still guarantees intractability. In fact, we may argue that
E-nontriviality is the most general weak hardness notion for E if for such a notion we do
not only require that it generalizes E-hardness and implies intractability but that it also
reflects the internal, hierarchical structure of E.

The second new weak hardness notions we will consider, called strong E-nontriviality,
may be viewed as a link between the weak notion of E-nontriviality and the stronger
notions of measure- and category-hardness. A strongly E-nontrivial set does not only
have predecessors from arbitrarily high levels E\Ek of the hierarchy E but, for any given
k ≥ 1, it has a predecessor in E which is almost-everywhere complex for the kth level of
the linear exponential-time hierarchy, i.e., which is Ek-bi-immune.

The outline of the paper is as follows.

After formally introducing our new weak hardness notions for E - E-nontriviality and
strong E-nontriviality - in Section 2, in Section 3 we give some examples of intractable
but still E-trivial sets in E thereby showing that E-nontriviality is a strict refinement of
intractability. First we observe that sets of sufficiently low hyper-polynomial complexity
are E-trivial. Though this observation is not surprising, it gives us some first nontrivial
facts on the distribution of the E-trivial and the E-nontrivial sets in E. For instance it
implies that the only sets which code all E-trivial sets in E are the E-hard sets. We then
show (what might be more surprising) that there are E-trivial sets in E of arbitrarily
high complexity, i.e., that, for any k ≥ 1, there is an E-trivial set in E \ Ek. In fact, by
generalizing a result of Buhrman and Mayordomo [13] for measure hardness, we obtain
some natural examples of such sets by showing that the sets of the Kolmogorov-random
strings w.r.t. exponential-time-bounded computations are E-trivial.

In Section 4 we give some examples of (strongly) E-nontrivial sets and give a sepa-
ration theorem for the weak E-completeness notions mentioned before. In order to show
that there are strongly E-nontrivial sets in E which are not category and measure com-
plete for E and that there are E-nontrivial sets which are not strongly E-nontrivial we
analyse the minimum density of the the complete sets under the various weak hardness
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notions considered here. In particular, we show that there are tally strongly E-nontrivial
sets in E whereas no category complete (hence no measure complete) set for E has
this property, and that there are exptally E-nontrivial sets in E whereas no strongly
E-nontrivial set in E has this property.

In Section 5 we analyse the information content of weakly complete sets thereby
giving some more structural differences among the complete sets under the various weak
hardness notions. For instance we show, that the effective disjoint union of two E-trivial
sets is E-trivial again, and that E-trivial sets don’t help. The latter means that if an
E-hard set H can be reduced to the effective disjoint union of sets A and B where A is
E-trivial then H can be reduced to B already, i.e., B is E-hard. In other words, if we
decompose an E-complete set into two incomplete parts then both parts are E-nontrivial.
For the other weak hardness notions the corresponding facts fail. In fact, any set A ∈ E
can be split into two sets which are not strongly E-trivial.

Finally, in Section 6 we give a short summary of results on some other aspects of our
new weak hardness notions which will be presented in more detail elsewhere.

We conclude this section by introducing some notation and by summarizing some ba-
sic definitions and facts related to the exponetial time classes to be used in the following.

Our notation is standard. Unexplained notation can be found in the monographs of
Balcázar et al. [11] and [12]. We let Σ∗ = {0, 1}∗ be the set of (finite binary) strings. A set
or problem or language is a subset of Σ∗, a class is a set of sets, i.e., a subset of the power
set of Σ∗. Strings will be denoted by lower case letters from the end of the alphabet (u,
. . . , z, un, . . . ), sets by italic capital letters (A, B, C, . . . , An, . . . ), and classes by straight
capital letters (A, B, C, . . . , An, . . . ). The (n + 1)th string with respect to the length-
lexicographical ordering ≤ is denoted by zn, i.e., z0 = λ, z1 = 0, z2 = 1, z2 = 00, . . . .
Note that |zn| ≈ log(n) where |x| denotes the length of x. For a set A and string x we
write A(x) = 1 if x ∈ A and A(x) = 0 if x 6∈ A.

The exponential time classes we will deal with are the classes

E =
⋃
k≥1

DTIME(2kn) (Linear Exponential T ime) (1)

EXP =
⋃
k≥1

DTIME(2n
k

) (Polynomial Exponential T ime) (2)

where we will use the following abbreviations for the individual levels of these classes:

Ek = DTIME(2kn) and EXPk = DTIME(2n
k

).

Note that, by the time-hierarchy theorem, the hierarchies of the linear-exponential-time
classes and of the polynomial-exponential-time classes are proper, and that

E1 = EXP1 ⊂ E ⊂ EXP2.

For comparing the complexity of problems we use the polynomial-time-bounded version
of many-one reducibility (p-m-reducibility for short) where a set B is p-m-reducible to
a set A (B ≤pm A) via f if f is polynomial-time computable function f : Σ∗ → Σ∗ and
B(x) = A(f(x)) holds for all strings x. Note that ≤pm is a preordering, i.e., reflexive
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and transitive. So p-m-equivalence is an equivalence relation where sets A and B are
p-m-equivalent (A =p

m B) if A ≤pm B and B ≤pm A hold.
We call B a predecessor of A (and A a successor of B) if B is p-m-reducible to A,

and we let Pm(A) = {B : B ≤pm A} denote the class of predecessors of A under p-m-
reducibility. A set A is hard for a class C (or C-hard for short) if C ⊆ Pm(A), i.e., if any
set in C is p-m-reducible to A, and A is complete for a class C (or C-complete for short)
if A is a member of C and C-hard.

The (downward) closure of a class C under p-m-reducibility is the class of the prede-
cessors of the members of C,

Clpm(C) =
⋃
A∈C

Pm(A),

and a class C is closed under p-m-reducibility if Clpm(C) = C holds.
Note that EXP is closed under p-m-reducibility, i.e., Clpm(EXP) = EXP. The other

exponential classes E,Ek,EXPk, however, are not closed under p-m-reducibility. This is
a consequence of the well known Padding Lemma.

Lemma 1.1 (Padding Lemma). For any set A ∈ Ek, the set Ak = {0k·|x|1x : x ∈ A}
is in E1 and p-m-equivalent to A, and, for any set A ∈ EXPk, the set Âk = {0|x|k1x :
x ∈ A} is in E1 and p-m-equivalent to A.

So
Clpm(Ek) = Clpm(E) = Clpm(EXPk) = Clpm(EXP) = EXP

(for all k ≥ 1). Though E is not closed under p-m-reducibility, we will use the observation
that E is closed under p-m-reductions of linearly bounded size.

Lemma 1.2. Assume that A ∈ Ek and B ≤pm A via f where |f(x)| ≤ k′ · |x|+ k′′ for all
x (k, k′ ≥ 1, k′′ ≥ 0). Then B ∈ Ek·k′ .

Proof. Given a string x of length n, B(x) can be computed using the identity B(x) =
A(f(x)) where, by |f(x)| ≤ k′ ·n+k′′ and by A ∈ DTIME(2kn), A(f(x)) can be computed
in O(2k·(k

′·n+k′′)) ≤ O(2k·k
′
) steps. �
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2. E-Nontriviality and Strong E-Nontriviality

We now introduce the two new central notions which we will study in this paper.
As pointed out in the introduction these notions have been inspired by Lutz’s idea of
generalizing hardness and completeness for a complexity class C ⊃ P in such a way that
hardness still guarantees intractability. Following Lutz [20], we call a problem A weakly
hard for a complexity class C if a nonnegligible part of the problems in C can be p-m-
reduced to A, and we call A weakly complete if A ∈ C and A is weakly hard for C. In
order that this notion meets its goals, the family of the nonnegligible subclasses of C
must have the following properties:

(i) The class C itself has to be nonnegligible thereby guaranteeing that any hard (com-
plete) set for C (under p-m-reducibility) is weakly hard (weakly complete).

(ii) The class P of the polynomial time computable sets has to be negligible thereby
guaranteeing that weakly hard problems for C are intractable.

Moreover, it is natural to ask that subclasses of negligible classes are negligible again and
that finite unions of negligible classes remain negligible:

(iii) For any subclasses C′,C′′ of C such that C′ ⊆ C′′ and C′′ is negligible, C′ is
negligible too.

(iv) For negligible subclasses C′,C′′ of C, C′ ∪ C′′ is negligible too.

Finally, the definition of negligibility should reflect the structure of C.
For the linear exponential-time class E = DTIME(2lin) (and for other sufficiently

closed complexity classes like the polynomial exponential-time class EXP), Lutz formal-
ized these ideas by introducing a resource-bounded (pseudo) measure on this class and
by saying that a subclass of E is negligible if it has measure 0 in E. He then showed
that the above conditions (i) - (iv) are satisfied whence the corresponding weak hardness
and completeness notions are meaningful. He also showed that his negligibility notion
reflects the hierarchical structure of E as follows.

(v) For any k ≥ 1, Ek is negligible.

I.e. a class which intersects only finitely many of the infinitely many levels of E =
⋃
k≥1 Ek

is negligible.
In the following we refer to the weak hardness (completeness) notion of Lutz [20]

which is based on the measure on E as measure hardness (measure completeness) for E
or E-measure hardness (E-measure completeness) for short.

Following Lutz [20], Ambos-Spies [4] introduced alternative weak hardness notions for
E which are based on Baire category in place of measure. Correspondingly, the negligible
subclasses of E are now those which are meager in E. In fact, there are several Baire
category concepts for E discussed in [4], but one of the concepts - called AFH-category
there - proved to be of particular interest since it is compatible with measure, namely
AFH-meager subclasses of E have measure 0 in E. So the corresponding weak hardness
concept is more general than Lutz’s measure hardness.
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In the following we refer to the weak hardness (completeness) notion of Ambos-Spies
[4] based on AFH-category on E as category hardness (category completeness) for E or
E-category hardness (E-category completeness) for short.

Though the weak hardness and completeness notions of Lutz [20] and Ambos-Spies
[4] are very intuitive in being based on two of the classical systems for measuring the
size of a class, namely Lebesgue measure and Baire category, a certain drawback of these
notions is that the resource-bounded measure and category notions they are based on
are somewhat technical. (For this reason we also do not introduce these concepts here
formally.) So here we propose alternative weak hardness notions for E which are solely
based on standard concepts of complexity theory.

By our above analysis, the most general negligibility notion for E which reflects the
structure of E (i.e., satisfies (v) above) is obtained by calling a subclass of E negligible if it
is contained in one of the levels Ek of E. In other word, a subclass C of E is nonnegligible
if it has members from arbitrary high levels of the linear exponential hierarchy E. We
call the corresponding weak hardness notion E-nontriviality.

Definition 2.1. A set A is trivial for E (or E-trivial for short) if

∃ k ≥ 1 (Pm(A) ∩ E ⊆ Ek) (3)

holds, and A is nontrivial for E (or E-nontrivial for short) otherwise, i.e., if

∀ k ≥ 1 ∃ B ∈ E \ Ek (B ≤pm A) (4)

holds.

The second concept we will consider here is a strengthening of E-nontriviality and
is called strong E-nontriviality. While, for an E-nontrivial set A, we require that, for
any k ≥ 1, there is a set B in E which can be p-m-reduced to A and which is infinitely
often 2kn-complex (i.e., any algorithm computing B requires more than 2k|x| steps for
infinitely many inputs x), for a strongly E-nontrivial set A we require that there is
such a set B which is almost-everywhere 2k|x|-complex (i.e., any algorithm computing B
requires more than 2k|x| steps for all but finitely many inputs x). Since almost everywhere
complexity coincides with bi-immunity, i.e., since a set A is a.e. t(n)-complex if and only
if A is DTIME(t(n))-bi-immune (see Balcázar et al. [12]), we formally define strong E-
nontriviality in terms of bi-immunity. Recall that a set A is C-bi -immune for a class C
if there is no infinite set B ∈ C such that B ⊆ A or B ∩A = ∅.

Definition 2.2. A set A is strongly nontrivial for E (or strongly E-nontrivial for short)
if

∀ k ≥ 1 ∃ B ∈ Pm(A) ∩ E (B is Ek-bi-immune) (5)

holds; and A is weakly trivial for E (or weakly E-trivial for short) otherwise.

Note that, for any Ek-bi-immune set B, B 6∈ Ek. So, any strongly E-nontrivial set A
is E-nontrivial. Also note that strong E-nontriviality may be viewed as weak hardness
for E if we call a subclass C of E nonnegligible if it contains Ek-bi-immune sets for all
k ≥ 1. That this negligibility notion satisfies (i) above follows for instance from the
time-hierarchy theorem for a.e. complexity by Geske et al. [14] which implies that there
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are Ek-bi-immune sets A ∈ Ek+1 (for any k ≥ 1). In fact, as shown by Ambos-Spies [4],
any E-category hard set has predecessor in E which are Ek-bi-immune (for all k ≥ 1). So
E-category hard sets hence E-measure hard sets are strongly E-nontrivial. So we obtain
the following relations among the weak hardness notions for E.

Lemma 2.3. For any set A the following hold.

A E-hard
⇓

A E-measure hard
⇓

A E-category hard
⇓

A strongly E-nontrivial
⇓

A E-nontrivial
⇓

A intractable

(6)

Proof. The first implication has been shown in Lutz [20], while, as pointed out before,
the second and third implications are shown in Ambos-Spies [4]. The fourth implication
follows from the fact that no set in Ek is Ek-bi-immune. Finally, the last implication
follows from the fact that P ⊂ E1. �

Lutz [20] and Ambos-Spies [4] have shown that the first three inplications in Lemma
2.3 are strict, even if we consider only sets in E (i.e., the corresponding weak completeness
notions). In the following sections we will show that the other implications are strict too.

We conclude this section with some simple observations on the E-nontrivial and
strongly E-nontrivial sets.

Note that the class of the (strongly) E-nontrivial sets is closed upwards under ≤pm
hence, in particular, closed under p-m-equivalence. By definition, an E-nontrivial set A
has predecessors in infinitely many levels Ek+1 \ Ek of the linear exponential hierarchy
E. In fact, an E-nontrivial set has predecessors in all of these levels.

Lemma 2.4. Let A be E-nontrivial. Then

∀ k ≥ 1 ∃ B ∈ Ek+1 \ Ek (B ≤pm A) (7)

holds.

Lemma 2.4 directly follows from the following variation of the Padding Lemma which
is obtained by calibrating the amount of padding.

Lemma 2.5 (Second Padding Lemma). Let A and k ≥ 1 be given such that A ∈
Ek+1 \ Ek. Then, for any k′ ≤ k (with k′ ≥ 1), there is a set A′ ∈ Ek′+1 \ Ek′ such that
A′ =p

m A.
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Proof (Sketch). Given k ≥ 2 and A ∈ Ek+1 \ Ek, let A′ = {0f(|x|)1x : x ∈ A} for
f(n) = bnk c. Then, as one can easily show, A′ =p

m A and A′ ∈ Ek \ Ek−1. The claim
follows by induction. �

For strongly E-nontrivial sets we can make the correspondig observation. By defi-
nition, for a strongly E-nontrivial set A there are infinitely many k such that A has a
predecessor B ∈ E which is Ek-bi-immune but not Ek+1-bi-immune. By applying the
Second Padding Lemma above one may argue that this is in fact true for all k:

∀ k ≥ 1 ∃B ∈ E ∩ Pm(A) (B is Ek-bi-immune & B is not Ek+1-bi-immune) (8)

We omit the proof and rather give another alternative characterization of strong E-
nontriviality which is of greater technical interest.

Theorem 2.6 (Characterization Theorem for Strong Nontriviality). A set A is
strongly E-nontrivial if and only if there is an E1-bi-immune set B ∈ E such that B ≤pm A.

The nontrivial direction of Theorem 2.6 follows from the following lemma by consid-
ering the sets Bk there for a given E1-bi-immune predecessor B of A in E.

Lemma 2.7. Let B be E1-bi-immune. Then, for any k ≥ 1, there is an Ek-bi-immune
set Bk and an EXPk-bi-immune set B′k such that Bk, B

′
k ∈ Pm(B). If moreover B ∈ E

then the set Bk can be chosen such that Bk ∈ Pm(B) ∩ E.

Proof. The idea is taken from Ambos-Spies et al. [10] where a similar lemma for
randomness in place of bi-immunity is proven. So we only sketch the proof.

Let Bk = {x : 0k|x|1x ∈ B} and B′k = {x : 0|x|
k

1x ∈ B}. Then Bk ≤pm B via

f(x) = 0k|x|1x and B′k ≤pm B via g(x) = 0|x|
k

1x. Moreover, if B ∈ E, say B ∈ Em, then
Bk ∈ E(k+1)m, hence Bk ∈ E too.

It remains to show that Bk is Ek-bi-immune and B′k is EXPk-bi-immune. We will
prove the former, the proof of the latter is similar.

For a contradiction assume that Bk is not Ek-bi-immune. By symmetry, we may
assume that there is an infinite set C ′ ⊆ Bk such that C ′ ∈ Ek.

Now let C = {0k|x|1x : x ∈ C ′}. Then, by infinity of C ′, C is infinite, and, by
C ′ ⊆ Bk and by definition of Bk, C ⊆ B. Moreover C ∈ E1, since, for a string y we can
decide whether y ∈ C by first checking (in polynomial time) whether there is a string x
such that y = 0k|x|1x and, if so, by checking in O(2k|x|) ≤ O(2|y|) steps whether x ∈ C ′.
So B is not E1-bi-immune contrary to assumption. �
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3. Some Examples of E-Trivial Sets in E

In order to show that E-nontriviality does not coincide with intractability, here we give
some examples of intractable but E-trivial sets. As one might expect, sets of sufficiently
low time complexity are E-trivial. As we will also show, however, E-trivial sets can be
found at all levels of the linear-exponential hierarchy.

Lemma 3.1. Let t be a nondecreasing, time constructible function such that, for some
number k ≥ 1,

t(p(n)) ≤a.e. 2kn (9)

for all polynomials p. Then any set A ∈ DTIME(t(n)) is E-trivial.

Proof. Given A ∈ DTIME(t(n)) it suffices to show that Pm(A) ⊆ Ek. So fix B ∈
Pm(A), let f be a polynomial time computable function f such that B ≤pm A via f ,
and let p be a polynomial time bound for f . Then B(x) can be computed by using the
identity B(x) = A(f(x)) in O(p(|x|) + t(p(|x|)) steps since it takes at most p(|x|) steps
to compute f(x) and, by A ∈ DTIME(t(n)) and by |f(x)| ≤ p(|x|), it takes at most
t(p(|x|)) steps to compute A(f(x)) for the given string f(x). So, by (9), B(x) can be
computed in O(2kn) steps, i.e., B ∈ Ek. �

Theorem 3.2. There is an E-trivial set A ∈ E \ P.

Proof. By Lemma 3.1 it suffices to show that there is a nondecreasing time con-
structible function t such that P ⊂ DTIME(t(n)) and such that t(p(n)) ≤a.e. 2n for all
polynomials p.

Note that, for any polynomial p,

p(n) ≤a.e. 2(logn)
2

≤a.e. 2(logn)
4

and 2(logn)
4

6∈ O(2(logn)
2

· log(2(logn)
2

)).

So P ⊆ DTIME(2(logn)
2

) ⊂ DTIME(2(logn)
4

) where strictness of the latter inclusion

holds by the time-hierarchy theorem. Moreover, 2(log p(n))4 ≤a.e. 2n for all polynomials
p. So the nondecreasing and time constructible function t(n) = 2(logn)

4

has the required
properties. �

Theorem 3.2 can be strengthened by using some results on the p-m-degrees of hy-
perpolynomial shifts proven in Ambos-Spies [1]. Here a set Ah = {1h(|x|)0x : x ∈ A} is
called a hyperpolynomial shift of A if h is a time constructible, nondecreasing function
h : N → N such that h dominates all polynomials. Note that, for any hyperpolynomial
shift Ah of a set A ∈ EXP, Ah ∈ DTIME(t(n)) for a function t(n) as in Lemma 3.1
whence Ah is E-trivial. Now, in [1] it has been shown that,

(i) for any set A 6∈ P and for any hyperpolynomial shift Ah of A, Ah is a strict
predecessor of A, i.e., Ah <

p
m A and

(ii) for any computable sets A and B such that A 6≤pm B there is a hyperpolynomial
shift Ah of A such that Ah 6≤pm B.

These results imply the following facts on the distribution of the E-trivial sets in E
w.r.t. p-m-reducibility. By letting A be any E-complete set, the above implies:
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Theorem 3.3. (a) For any set A ∈ E \ P there is an E-trivial set T ∈ E \ P such that
T <pm A.

(b) For any computable set B which is not E-hard there is an E-trivial set T such
that T 6≤pm B.

Proof. As observed above, for any set A ∈ E and any hyperpolynomial shift Ah of A,
Ah ∈ E, Ah is E-trivial, and (by (i)) Ah <

p
m A. So for a proof of (a) it suffices to show

that for given A ∈ E \ P there is a hyperpolynomial shift Ah of A such that Ah 6∈ P.
But this follows from (ii) above by letting B be any polynomial time computable set.
Similarly, for a proof of (b) it suffices to show that there is a set A ∈ E which possesses
a hyperpolynomial shift Ah such that Ah 6≤pm B. But this follows from (ii) too by letting
A be any E-complete set. �

Note that, by part (a) of Theorem 3.3 any intractable set in E bounds an intractable
E-trivial set in E while, by part (b), the only sets in E which bound all the E-trivial sets
in E are the E-complete sets.

Having given examples of intractable E-trivial sets of low hyperpolynomial complexity,
we now show that there are E-trivial sets at arbitrarily high levels E \ Ek of the E-
hierarchy. (So, by Lemma 2.5, there are E-trivial sets at all levels Ek+1 \ Ek of the
E-hierarchy.)

Theorem 3.4. For any k ≥ 1 there is an E-trivial set A in E \ Ek.

The idea of the proof is as follows. Given k ≥ 1, by a diagonalization argument we
construct a set A ∈ Ek+2 \ Ek such that any set B which is p-m-reducible to A will be
p-m-reducible to A via a polynomial-time computable function f such that |f(x)| ≤ 2|x|.
Then, by Lemma 1.2, Pm ⊆ E2(k+2). So A is E-trivial.

To be more precise, we will apply the following lemma generalizing Lemma 1.2.

Lemma 3.5 (Boundedness Lemma). Let A and B be sets and let f be a polynomial
time computable function such that A ∈ Ek, B ≤pm A via f , and

∀ x (|f(x)| ≤ k′ · |x|+ k′′ or f(x) 6∈ A) (10)

(for some k, k′ ≥ 1, k′′ ≥ 0). Then B ∈ Ek′·k.

Proof. Using the identity B(x) = A(f(x)) we can compute B(x) for a given string
x of length n in O(2(k

′·k)n) steps as follows. First, in O(poly(n)) steps compute f(x).
Then, in O(poly(n)) steps check whether |f(x)| ≤ k′ · n + k′′ or not. If not, then
B(x) = A(f(x)) = 0. If so, by A ∈ Ek, compute B(x) = A(f(x)) in O(2k·|f(x)|) ≤
O(2k·(k

′·n+k′′)) = O(2(k
′·k)n) steps. �

Proof of Theorem 3.4. Fix k ≥ 1 and let {Eke : e ≥ 0} and {fe : e ≥ 0} be enumer-
ations of Ek and of the class of the polynomial time computable functions, respectively,
such that Eke (x) can be computed in time O(2(k+1)max(e,|x|)) and fe(x) can be computed
in time O(2max(e,|x|)) (uniformly in e and x).

By a diagonal argument we define a set A ∈ Ek+2 which meets the requirements

<2e : A 6= Eke
10



and
<2e+1 : ∀x ∈ Σ∗ (|fe(x)| > |x|+ e+ 1⇒ fe(x) 6∈ A)

for e ≥ 0.
Obviously, the requirements with even indices ensure that A 6∈ Ek. Similarly, by

A ∈ Ek+2, the requirements with odd indices ensure that A is E-trivial since, by Lemma
3.5, Pm(A) ⊆ Ek+2.

For the definition of A, call a string y forbidden if y = fe(x) for some number e and
some string x such that |x|+ e+ 1 < |y|, and let F be the set of forbidden strings. Then,
in order to meet the requirements <2e+1 (e ≥ 0) it suffices to ensure that no forbidden
string is put into A, i.e., to enusre that A ∩ F = ∅.

Note that the number f(n) of pairs (x, e) such that |x| + e + 1 < n is less than 2n.
Namely, for n ≤ 1, f(n) = 0 and, for n ≥ 2,

f(n) = |{(x, e) : |x|+ e+ 1 < n}|

=
∑n−2
e=0 |{0, 1}<n−e−1|

=
∑n−2
e=0 (2n−e−1 − 1)

=
∑n−1
e=1 (2e − 1)

<
∑n−1
e=0 (2e)

= 2n − 1

So the question of whether a string y of lenght n is forbidden can be decided in
O(22n) steps since it suffices to compute for each of the f(n) < 2n pairs (x, e) statisfying
|x|+e+1 < n the value of fe(x) which, by choice of the functions fe can be done in O(2n)
steps. So F ∈ E2. Moreover, since f(n) is a bound on the number of forbidden strings of
length n, at least one of the 2n strings of length n is not forbidden, i.e, F ∩ {0, 1}n 6= ∅
for all n ≥ 0.

So if we let A = {ye : ye 6∈ Eke } where ye is the least string of length e which is not
forbidden then all requirements are met and, as one can easily check, A ∈ Ek+2. �

Alternatively we obtain E-trivial sets of high complexity in E by refining a result of
Buhrman and Mayordomo [13] on the random strings in the setting of time-bounded
Kolmogorov complexity. Call a string x t(n)-K-random if there is no t(n)-time-bounded
Turing machine compressing x (for the formal definition, see e.g. Li and Vitanyi [18]),
and let Rt be the set of t(n)-K-random strings. Buhrman and Mayordomo have shown
that, for an exponential time bound t(n) = 2kn (k ≥ 2), the set Rt of t(n)-K-random
strings is not weakly E-complete in the sense of Lutz. This can be strengthened as
follows.

Theorem 3.6. For t(n) = 2kn (k ≥ 2), the set Rt of the t(n)-K-random strings is
E-trivial.

11



Proof (Idea). As one can easily check, R2kn ∈ E. So, given a set A and a p-m-

reduction function f such that A ≤pm R2kn via f , by Lemma 3.5 it suffices to show that

for almost all x such that |f(x)| > 2|x|, f(x) 6∈ R2kn . But this is straightforward, since
for a string x with |f(x)| > 2|x|, f(x) can be computed from the shorter string x in
polynomial time hence, for sufficiently large x, in time 2k|x|. �

Remark. In this paper we only look at E-(non)trivial sets in E, i.e., investigate (strong)
E-nontriviality as a weak completeness notion, and do not consider the corresponding,
more general weak hardness notion. So we only remark here that outside of E we can
find computable E-trivial sets of arbitrarily high time complexity. Moreover, there are
numerous noncomputable E-trivial sets. In fact, the class of E-trivial sets has (classical)
Lebesgue measure 1. These observations immediately follow from results in the literature
about p-m-minimal pairs. (Sets A and B form a p-m-minimal pair if, for any set C such
that C ≤pm A and C ≤pm B, C ∈ P.) It suffices to observe that, for sets A and B such
that B is E-hard and A and B form a minimal pair, A is E-trivial.

xxxxxx eventuell erst im abschnitt conclusion xxxxxxxxxxx

4. On the Density of E-Nontrivial and Strongly E-Nontrivial Sets

Lutz [20] has shown that any E-measure complete set is exponentially dense whereas
for E-category completeness introduced by Ambos-Spies [4] there are sparse E-category
complete sets. (In fact, in [4] weak completeness notions were introduced for various
time-bounded category concepts. Here we refer to the category concept called AFH-
category there which proved to be useful for analysing time-bounded measure (see [7]
and [10] for more details) since - in contrast to the classical Baire category concept -
this concept is compatible with measure.) By results in [4] and [10], however, E-category
complete sets cannot be tally.

So, in order to distinguish strong E-nontriviality from E-category completeness (and
E-measure completeness), it suffices to show that there are tally strongly E-nontrivial
sets in E. To do so we need the following observation on Ek+1-bi-immune sets.

Lemma 4.1. Let A ∈ E be Ek+1-bi-immune (k ≥ 1) and let Â be the length language
Â = {x : 0|x| ∈ A}. Then Â ∈ E, Â ≤pm A, and Â is Ek-bi-immune.

Proof. Obviously, Â ≤pm A via f(x) = 0|x|. Since |f(x)| = |x| and A ∈ E it follows
that Â ∈ E too. It remains to show that Â is Ek-bi-immune. By symmetry, it suffices to
show that there is no infinite set B ∈ Ek such that B ⊆ Â. For a contradiction assume
that such a set B exists. Then, for B̃ = {0n : ∃ x ∈ B (|x| = n)}, B̃ ∈ Ek+1, B̃ is infinite
and B̃ ⊆ A. So A is not Ek+1-bi-immune contrary to assumption. �

Theorem 4.2. There is a tally set A ∈ E which is strongly E-nontrivial.

Proof. Since there are E2-bi-immune sets in E, it follows from Lemma 4.1 that there
is a length language A1 ∈ E which is E1-bi-immune. By Theorem 2.6, A1 is strongly
E-nontrivial. Since, for the tally set A = A1 ∩ {0}∗, A is in E and A is p-m-equivalent
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to A1, it follows from p-m-invariance of strong E-nontriviality that A has the desired
properties. �

In order to distinguish E-nontriviality from strong E-nontriviality we will show that
there are E-nontrivial sets of very low density whereas strongly E-nontrivial sets in E
do not have (sufficiently easily recognizable) exponential gaps. These observations will
allow us to argue that there are exptally sets in E which are E-nontrivial whereas no
such set is strongly E-nontrivial.

In order to prove the existence of E-nontrivial sets of very low density in E, we observe
that any sufficiently complex tally set in E is E-nontrivial.

Theorem 4.3. Let A ∈ E \ E1 be tally. Then A is E-nontrivial.

Proof. Given k ≥ 1, it suffices to give a set Bk such that Bk ≤pm A and Bk ∈ E \ Ek.
For n ≥ 0 let

yn = 0b
n
k+1 c1zn

where zn in the nth binary string with respect to the canonical ordering, and let

Bk = {yn : n ≥ 0 & 0n ∈ A}.

In order to show that Bk has the required properties, first note that the strings yn have
the following properties.

(i) For almost all n, n
k+1 ≤ |yn| ≤

n
k ,

(ii) for a given number n, yn can be computed in poly(n) steps, and

(iii) for a given string x, in poly(|x|) steps we can tell whether x = yn for some n and
if so compute the unary representation 0n of the unique n with this property.

Now, since yn ∈ Bk if and only if 0n ∈ A, (iii) implies that Bk ≤pm A via f where
f(x) = 0n if x = yn and f(x) = 1 6∈ A if x is not among the strings yn, n ≥ 0. Moreover,
by the first inequality in (i), |f(x)| ≤ (k + 1) · |x| for almost all x whence, by A ∈ E,
Bk ∈ E too. Finally, Bk 6∈ Ek. Namely, otherwise, for sufficiently large n, A(0n) can be
computed in O(2n) steps (contrary to A 6∈ E1), by first computing yn (which, by (ii),
can be done in poly(n) steps) and then computing Bk(yn) (which, by assumption and by
the second inequality in (i), can be done in O(2k·|yn|) ≤ O(2n) steps). �

Corollary 4.4. Let B be an infinite tally set such that B ∈ E. There is an E-nontrivial
set A in E such that A ⊆ B.

Corollary 4.4 is a direct consequence of Theorem 4.3 and the following observation.

Lemma 4.5. Let B be any infinite set in E and let k ≥ 1. There is a subset A of B
such that A ∈ E \ Ek.
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Proof. This can be shown by a straightforward diagonalization. Alternatively, we
can use the fact that, for any k′ ≥ 1, there is an Ek′ -bi-immune sets in E. Namely,
given k′ ≥ k such that B ∈ Ek′ , let A = B ∩ C where C is any Ek′ -bi-immune set in
E. Then, obviously, A ⊆ B and, by closure of E under intersection, A ∈ E. Finally, by
Ek′ -bi-immunity of C and by choice of B, A = B ∩ C 6∈ Ek′ . So, by k′ ≥ k, A 6∈ Ek. �

Now, Corollary 4.4 directly implies that there are exptally E-nontrivial sets in E.
Here a set A is exptally if A ⊆ {0δ(n) : n ≥ 0} where δ : N→ N is the iterated exponential
function inductively defined by δ(0) = 0 and δ(n + 1) = 2δ(n). (Intuitively, an exptally
set may be viewed as the unary encoding of a tally set or as the unary encoding of the
unary encoding of an arbitrary set.)

Corollary 4.6. There is an E-nontrivial set A in E which is exptally.

Proof. Since {0δ(n) : n ≥ 0} ∈ P, this is immediate by Corollary 4.4. �

Remarks 4.7. 1. It might be of interest to note that Theorem 4.3 and Corollary 4.4 in
general fail for sparse sets in place of tally sets. A counter example provides the E-trivial
set A constructed in the proof of Theorem 3.4 which is sparse (in fact contains exactly
one string of each length). Moreover, A satisfies the condition

∀∞ x (|f(x)| ≤ 2 · |x| or f(x) 6∈ A)

for all polynomial-time computable functions f . Since this property is inherited by any
subset of A, it follows by the Boundedness Lemma (Lemma 3.5) that all subsets of A in
the classe E are E-trivial too.

2. Similarly, in Theorem 4.3 and Corollary 4.4 the assumptions that A ∈ E and
B ∈ E, respectively are necessary. Namely, there is a tally set A 6∈ E1 such that

∀ B (B ⊆ A⇒ B E-trivial).

Such a set A can be obtained a diagonal argument. It suffices to ensure that for any set
E ∈ E and for any polynomial time computable function f such that f(E) is infinite,
f(E) 6⊆ A.

xxxxxxxxxxx

We first observe that no exptally set in E is strongly E-nontrivial.

Theorem 4.8. Let A ∈ E be exptally. Then A is not strongly E-nontrivial.

Since any strongly E-nontrivial set has an E1-bi-immune (hence P-bi-immune) pre-
decessor, it suffices to show the following.

Lemma 4.9. Let A and B be sets such that A ∈ E, A is exptally, and B ≤pm A. Then
B is not P-bi-immune.

14



The idea of the proof of Lemma 4.9 is as follows. Given a polynomial bound p for a
p-m-reduction f from B to A, let D = {0δ′(n) : n ≥ 0} where δ′(n) is the least number
m such that p(m + 1) ≥ δ(n). Then D is infinite and polynomial-time computable.
Moreover, for x ∈ D, B(x) can be computed in polynomial time using the reduction
B(x) = A(f(x)). Namely if, for x = 0δ

′(n), f(x) = 0δ(r) then r < n whence, by definition
of δ and δ′ and by A ∈ E, A(f(x)) can be computed in poly(|x|) steps; and if f(x) is not
of the form 0δ(r), then B(x) = A(f(x)) = 0.

The observation that exptally sets in E cannot be strongly E-nontrivial can be gen-
eralized as follows.

Theorem 4.10. Let A and B be sets in E such that B ⊆ {0}∗, B is infinite, and

∀ n (0n ∈ B ⇒ A ∩ {x : n < |x| < 2n} = ∅) (11)

holds. Then A is not strongly E-nontrivial.

Proof. By A,B ∈ E fix k ≥ 1 such that A,B ∈ Ek. It suffices to show that there is
no Ek-bi-immune set (in E) which can be p-m-reduced to A. So, given any D ∈ Pm(A),
in order to show that D is not Ek-bi-immune fix f such that D ≤pm A via f and, by
polynomial time computability of f , fix n0 such that |f(x)| < 2|x| for all strings x of
length > n0. Since the tally set B is infinite and in Ek, it suffices to show that, for
n > n0 such that 0n ∈ B, D(0n) can be computed in O(2kn) steps. Since f is polynomial
time computable and since D(0n) = A(f(0n)), for n such that |f(0n)| ≤ n, this follows
from A ∈ Ek, while, for n such that |f(0n)| > n, A(f(0n)) = 0 by (11) and n > n0. �

Theorem 4.10 implies that many constructions (of sets in E) in the theory of the
polynomial-time degrees which are based on so-called gap languages (see e.g. Section 3
of [3]) yield sets which are not strongly E-nontrivial.

4.1. Exptally Sets and Nontriviality

In contrast to the above negative result on strong E-nontriviality for exptally sets,
there are exptally sets in E which are E-nontrivial. In fact, any sufficiently complex
exptally set A ∈ E is E-nontrivial.

Theorem 4.11. Let A ∈ E \ E1 be exptally. Then A is E-nontrivial.

Proof (Idea). Given k ≥ 1, we have to show that there is a set Ak ≤pm A such that
Ak ∈ E \ Ek. Such a set Ak is obtained from A by compressing strings of the form 0δ(n)

by the factor k: Ak = {0b
δ(n)
k c : 0δ(n) ∈ A}. Note that, by A being exptally, all (but a

finite amount) information about A is coded into Ak in k-compressed form. This easily
implies the claim. �

Note that, by a straightforward diagonalization, there is an exptally set A ∈ E \ E1.
So, by Theorems 4.11 and 4.8, there is an E-nontrivial set in E which is not strongly
E-nontrivial.
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4.2. The Hierarchy of Weak Completeness Notions

By the above given differences in the possible densities of the sets with the various
weak completeness properties we immediately get the following hierarchy theorem.

Theorem 4.12. For any set A the following hold.

A E-hard
⇓

A E-measure hard
⇓

A E-category hard
⇓

A strongly E-nontrivial
⇓

A E-nontrivial
⇓

A intractable

(12)

Moreover all implications are strict and witness sets A for strictness can be found in E.

5. On the Information Content of E-Nontrivial and Strongly E-Nontrivial
Sets

In the preceding section we have distinguished E-nontriviality from the stronger weak
completeness notions for E by analysing the possible densities of sets with these proper-
ties. Here we present another difference in the sense of information content. We look at
the following question: If we split a (weakly) complete set A into two parts A0 and A1,
is at least one of the parts (weakly) complete again? As we will show, for E-nontriviality
the answer is YES whereas for the other weak completeness notions the answer is NO.

In order to make our question more precise we need the following notion. A splitting
of a set A into two disjoint sets A0 and A1 is a p-splitting if there is a set B ∈ P such that
A0 = A∩B and A1 = A∩B. Note that for a p-splitting (A0, A1) of A, A0, A1 ≤pm A and
A =p

m A0⊕A1 (where A0⊕A1 is the effective disjoint union {0x : x ∈ A0}∪{1y : y ∈ A1}
of A0 and A1). So, intuitively, a p-splitting decomposes a problem A into two subproblems
A0 and A1 so that for solving A it suffices to solve both A0 and A1.

Now Ladner [17] has shown that any computable intractable set A can be p-split into
two lesser intractable problems, i.e., into problems A0, A1 6∈ P such that A0, A1 <

p
m A.

So, in particular, any E-complete set A can be p-split into two incomplete sets. In fact,
by analysing Ladner’s proof, the set B ∈ P defining the p-splitting is a gap language. So,
by Theorem 4.10, we obtain the following stronger observation from Ladner’s proof.

Lemma 5.1. Let A ∈ E \ P. There is a p-splitting of A into sets A0, A1 6∈ P such that
A0 and A1 are weakly E-trivial.

So, in particular, any E-complete (E-measure complete, E-category complete, strongly
E-nontrivial) set A has a p-splitting into sets A0 and A1 which are not E-complete
(E-measure complete, E-category complete, strongly E-nontrivial). For E-nontriviality,
however, the corresponding fact fails.
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Theorem 5.2. Let A be E-nontrivial and let (A0, A1) be a p-splitting of A. Then A0 is
E-nontrivial or A1 is E-nontrivial (or both).

The key to the proof is the simple observation that, for a p-splitting C0, C1 of a set
C 6∈ Ek, C0 6∈ Ek or C1 6∈ Ek.

Proof (Sketch). For a contradiction assume that A0 and A1 are E-trivial. Fix ki such
that Pm(Ai)∩E ⊆ Eki (i = 0, 1) and let k = max(k0, k1). Moreover, fix B ∈ P such that
A0 = A ∩B and A1 = A ∩B. Finally, by E-nontriviality of A, fix a set C ∈ E \ Ek such
that C ≤pm A and let f be a polynomial-time computable function such that C ≤pm A via
f . Then, for D = {x : f(x) ∈ B}, D ∈ P. Now, consider the p-splitting C0 = C ∩D and
C1 = C ∩D of C given by D. Then C0, C1 ∈ E and, as one can easily check, C0 ≤pm A0

and C1 ≤pm A1. Since, by the above observation, C0 6∈ Ek or C1 6∈ Ek, this contradicts
the choice of k. �

For an E-complete set A we obtain the following interesting variant of Theorem 5.2,
which says that for a proper splitting of an E-complete set both parts are E-nontrivial.

Theorem 5.3. Let A be E-complete and let (A0, A1) be a p-splitting of A such that
A0, A1 <

p
m A. Then A0 and A1 are E-nontrivial.

We omit the quite involved proof which requires some new result on the distribution
of the Ek-bi-immune sets in E.

6. Further Results and Open Problems

We conclude with a short summary of some other results on our new weak complete-
ness notions which will appear somewhere else.

6.1. Comparing Weak Hardness for E and EXP

While, by a simple padding argument, E-hardness and EXP-hardness coincide, Juedes
and Lutz [16] have shown that E-measure hardness implies EXP-measure hardness whereas
the converse in general fails. Moreover, by using similar ideas, the corresponding results
have been obtained for category hardness (see [4]).

Now we can easily adapt the concepts of (strong) nontriviality for E to the polynomial-
exponential time class EXP by replacing E and Ek in the definitions by EXP and EXPk,
respectively. Then, the arguments of [16] can be easily duplicated to show that strong
E-nontriviality implies strong EXP-nontriviality but in general not vice versa.

For clarifying the relations between E-nontriviality and EXP-nontriviality, however,
the above arguments fail and new much more sophisticated techniques have to be em-
ployed. As it turns out, in contrast to the above results, E-nontriviality and EXP-
nontriviality are independent. I.e. neither E-nontriviality implies EXP-nontriviality nor
EXP-nontriviality implies E-nontriviality. For details see [5].
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6.2. Weak Hardness Under Weak Reducibilities

The classical approach to generalize hardness notions is to generalize (weaken) the
reducibilities underlying the hardness concepts, i.e., to allow more flexible codings in the
reductions. So Watanabe [22] has shown that weaker reducibilities than p-m-reducibility
like p-btt-reducibility (bounded truth-table), p-tt-reducibility (truth-table) and p-T -reducibility
(Turing) yield more E-complete sets. For measure-completeness and category-completeness
similar results have been shown in [8] (for both E and EXP). For strong nontriviality
we obtain the corresponding results, i.e., a complete separation of p-m, p-btt, p-tt, and
p-T (for both E and EXP), by fairly standard methods. For nontriviality, however, the
separations of E-nontriviality under p-m, p-btt, p-tt, and p-T reducibilities require some
quite involved and novel speed-up diagonalization technique. The reason why standard
methods fail in this setting might be explained by the fact that - in contrast to the above
results - EXP-nontriviality under p-m, p-btt, and p-tt coincide. See [6] for details.
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