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p (A ;ℓ∞) and

Hp(A ;ℓ1) spaces
Kanat Tulenov

Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan

Abstract. In this paper, we introduce the noncommutative H(r,s)
p (A ;ℓ∞) and Hp(A ;ℓ1) spaces. Then, it is shown that both

spaces are Banach spaces for r,s≥ 2 (and resp. p≥ 1) and the analogue of Saito’s theorem for the H(r,s)
p (A ;ℓ∞) and Hp(A ;ℓ1)

spaces are proved.
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INTRODUCTION

Let H be a Hilbert space and M be a finite von Neumann algebra equipped with a normal faithful tracial state τ
[12, 13, 16]. Let D be a von Neumann subalgebra of M , and let Φ : M →D be the unique normal faithful conditional
expectation such that τ ◦Φ = τ . A w∗-closed subalgebra A of M is called finite subdiagonal algebra of M with
respect to Φ, if it is satisfying the following conditions:

(i) A +A ∗ is w∗-dense in M ;
(ii) Φ is multiplicative on A , i.e., Φ(ab) = Φ(a)Φ(b) for all a,b ∈ A ;

(iii) A ∩A ∗ = D , where A ∗ is the family of all adjoint elements of the element of A , i.e., A ∗ = {a∗ : a ∈ A }.

The algebra D is called the diagonal of A . It’s proved by Exel [10] that a finite subdiagonal algebra A is
automatically maximal in the sense that if B is another subdiagonal algebra with respect to Φ containing A , then
B = A . This maximality yields the following useful characterization of A , where A0 = A ∩kerΦ (see [1]):

A = {x ∈ M : τ(xa) = 0,∀a ∈ A0}. (1)

Given 0 < p ≤ ∞ we denote by Lp(M ) the usual noncommutative Lp-spaces associated wit (M ,τ). Recall that
L∞(M ) = M , equipped with the operator norm (see [22, 4]). The norm of Lp(M ) will be denoted by ∥ · ∥p (see
[14, 15].) For p < ∞ we define Hp(A ) to be closure of A in Lp(M ), and for p = ∞ we simply set H∞(A ) = A
for convenience. These are so called Hardy spaces associated with A . They are noncommutative extensions of the
classical Hardy space on the torus T . We refer to [1, 20, 22] for more examples. The theory of vector-valued
noncommutative Lp-spaces are introduced by Pisier in [21]. Pisier considered the case M is hyperfinite. We refer
the reader notably to the recent work by Defant/Junge [9]. Junge and Xu introduced the spaces L(r,s)

p (M , ℓ∞) and
Lp(M ;ℓ1) (see also [17]). They proved that both spaces L(r,s)

p (M , ℓ∞) and Lp(M ;ℓ1) are Banach spaces for 1 ≤ p ≤ ∞
and basic properties of these spaces. We refer the reader notably to the recent work by Defant/Junge [9]. We now define
the analogue of L(r,s)

p (M ;ℓ∞) and Lp(M ;ℓ1) spaces by a similar way (see [3, 24]).

Definition 1. Let 1 ≤ p < ∞ and 1 ≤ r,s ≤ ∞ such that 1/p = 1/r+1/s.

(i) We define H(r,s)
p (A , ℓ∞) as the space of all sequences x = (xn)n≥1 in Hp(A ) which admit a factorization of the

following form: there are a ∈ Hr(A ), b ∈ Hs(A ) and a bounded sequence y = (yn)⊂ A such that

xn = aynb,∀n ≥ 1.

Given x ∈ H(r,s)
p (A , ℓ∞) define

∥x∥p;(r,s) = inf{∥a∥r sup
n
∥yn∥∞∥b∥s},
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where the infimum runs over all factorizations of (xn) as above. The spaces

Hright
p (A ;ℓ∞) := H(∞,p)

p (A ;ℓ∞)

and

H le f t
p (A ;ℓ∞) := H(p,∞)

p (A ;ℓ∞)

will be of special interest - all sequences (xn) which allow uniform factorizations xn = ynb and xn = ayn with
a,b ∈ Hp(A ) and a bounded sequence (yn)⊂ A , respectively. Moreover, in the symmetric case put

Hp(A ;ℓ∞) := H(2p,2p)
p (A ;ℓ∞).

(ii) Let 1≤ p≤∞. We define Hp(A ;ℓ1) as the space of all sequences x=(xn)n≥1 in Hp(A ) which can be decomposed
as

xn =
∞

∑
k=1

uknvnk,∀n ≥ 1

for two families (ukn)k,n≥1 and (vnk)n,k≥1 in H2p(A ) such that
∞

∑
k,n=1

uknu∗kn ∈ Lp(M )and
∞

∑
n,k=1

v∗nkvnk ∈ Lp(M ).

In this space we define the norm

∥x∥Hp(A ;ℓ1) = inf{∥
∞

∑
k,n=1

uknu∗kn∥
1/2
p ∥

∞

∑
n,k=1

v∗nkvnk∥
1/2
p },

where the infimum runs over all decompositions of x as above.
Thus Hp(A ) = [A ]p. Formula (1) admits the following Hp(A ) analogue proved by Saito [23]:

Hp(A ) = {x ∈ Lp(M ) : τ(xa) = 0, ∀a ∈ A0}, 1 ≤ p < ∞ (2)

Then in [2] Bekjan and Xu proved that formula (2) holds for every 0 < p < q ≤ ∞. This noncommutative Hardy spaces
have received a lot of attention since Arveson’s pioneer work. We refer the reader a series of newly finished papers
by Blecher/Labuschagne [5–7], whereas more references on previous works can be found in the survey paper [22].
Most results on the classical Hardy spaces on the torus have been established in this noncommutative setting. Here we
mention some of them directly related with the objective of this paper. One of them is the Saito’s theorem. The main
purpose of the present paper is to extend all these results to the spaces above we define.

MAIN RESULTS

To gain a very first understanding on Hp(A ;ℓ1) and Hp(A ;ℓ∞) spaces above we define, we need the following
propositions.

Proposition 1. Let 1 ≤ p ≤ ∞. Then for any x ∈ Hp(A ;ℓ1) we have∥∥∥∥∥ ∞

∑
n=1

xn

∥∥∥∥∥
p

≤ ∥x∥Hp(A ;ℓ1).

If in addition x is positive, ∥∥∥∥∥ ∞

∑
n=1

xn

∥∥∥∥∥
p

= ∥x∥Hp(A ;ℓ1).

This means that, a positive sequence x = (xn) (i.e. xn ≥ 0 for all n) belongs to Hp(A ;ℓ1) if and only if
∞

∑
n=1

xn ∈ Hp(A ).
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Proposition 2. Let 1 ≤ p ≤ ∞. A positive sequence x = (xn) (i.e. xn ≥ 0 for all n) belongs to Hp(A ;ℓ∞) if and only if
there exists a positive a ∈ Hp(A ) such that

xn ≤ a ∀n ≥ 1.

Proof. Let (xn)∈ Hp(A ). Assume that there exists positive a ∈ Hp(A ) such that xn ≤ a ∀n ≥ 1. Then, by Remark 2.3
in [9], there exists a contraction operator un ∈M such that x1/2

n = una1/2, so x1/2
n = a1/2u∗nuna1/2. Thus x ∈ Lp(M ;ℓ∞)

and ∥x∥Lp(M ;ℓ∞) ≤ ∥a∥p (see [17]). Then by using Proposition 2.1 in [3] , we obtain x ∈ Hp(A ;ℓ∞) . On the other hand
if x ∈ Hp(A ;ℓ∞) is positive, then for all n ≥ 1 we can find a positive a ∈ Hp(A ) and positive contractions yn ∈ A

such that xn = a1/2yna1/2. From this it is easy to show that xn ≤ a, which is the conclusion.

Theorem 1. Let 2 ≤ r,s ≤ ∞ such that 1
p = 1

r +
1
s and let 1 ≤ q ≤ ∞. Then H(r,s)

p (A , ℓ∞) and Hq(A ;ℓ1) are Banach
spaces, respectively.

Proof. First we prove the part on Hq(A ;ℓ1). Let x(i) ∈ Hq(A ;ℓ1) with i = 1,2 and ε > 0. Choose (u(i)kn ) and (v(i)nk ) in
H2q(A ) such that

x(i)n =
∞

∑
k=1

u(i)kn v(i)nk ∀n

and ∥∥∥∥∥ ∞

∑
k,n=1

u(i)kn (u
(i)
kn )

∗

∥∥∥∥∥
q

=

∥∥∥∥∥ ∞

∑
n,k=1

(v(i)nk )
∗v(i)nk

∥∥∥∥∥
q

≤ ∥x(i)∥Hq(A;ℓ1)+ ε.

Then

x(1)+ x(2) =
2

∑
i=1

∞

∑
k=1

u(i)kn v(i)nk

is a decomposition of x(1)+ x(2) and∥∥∥∥∥ 2

∑
i=1

∞

∑
k,n=1

u(i)kn (u
(i)
kn )

∗

∥∥∥∥∥
q

≤ ∥x(1)∥Hq(A ;ℓ1)+∥x(2)∥Hq(A ;ℓ1)+2ε.

A similar inequality holds for v(i)nk . It then follows that

∥x(1)+ x(2)∥Hq(A ;ℓ1) ≤

∥∥∥∥∥ 2

∑
i=1

∞

∑
k,n=1

u(i)kn (u
(i)
kn )

∗

∥∥∥∥∥
1/2

q

∥∥∥∥∥ 2

∑
i=1

∞

∑
n,k=1

(v(i)nk )
∗v(i)nk

∥∥∥∥∥
1/2

q

≤ ∥x(1)∥Hq(A ;ℓ1)+∥x(2)∥Hq(A ;ℓ1)+2ε.

Therefore, ∥ ·∥Hq(A;ℓ1) verifies triangle inequality. On the other hand it is trivial ∥xn∥q ≤ ∥x∥Hq(A ;ℓ1) ∀n ≥ 1. It follows
that ∥ ·∥Hq(A ;ℓ1) is a norm. To prove its completeness, it suffices to show that if ∑∞

i=1 ∥x(i)∥Hq(A ;ℓ1) < ∞, then the series

∑∞
i=1 x(i) converges in Hq(A ;ℓ1). This is proved by an argument similar to the previous one.
We turn to H(r,s)

p (A ;ℓ∞). Let us first check that ∥ · ∥p;(r,s) satisfies triangle inequality provided r,s ≥ 2. Let

(h(1)n ),(h(2)n ) ∈ H(r,s)
p (A , ℓ∞), choose a factorization of h( j) with j = 1,2:

h( j)
n = a( j)x( j)

n b( j) ∀n

such that

∥a( j)∥r = ∥b( j)∥s = ∥(h( j)
n )∥

1
2
p;(r,s)
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and

sup
n
∥x( j)

n ∥∞ ≤ 1+ ε, where j = 1,2.

Indeed, for any ε > 0 choose a factorization h( j)
n = c( j)y( j)

n d( j) ∀n ≥ 1 with j = 1,2 such that

c( j) ∈ Hr(A ), d( j) ∈ Hs(A ), sup
n
∥y( j)

n ∥∞ = α

and

∥h( j)
n ∥p;(r,s)(1+ ε)≥ ∥α

1
2 c( j)∥r sup

n
∥y( j)

n

α
∥∞∥α

1
2 d( j)∥s.

Then by choosing

a( j) =
α∥(h( j)

n )∥1/2
p;(r,s)c

( j)

∥α 1
2 c( j)∥r

, b( j) =
α∥(h( j)

n )∥1/2
p;(r,s)d

( j)

∥α 1
2 d( j)∥s

and

x( j)
n =

∥α 1
2 c( j)∥r∥α 1

2 d( j)∥sy
( j)
n

α∥(h( j)
n )∥p;(r,s)

,

we obtain

a( j)x( j)
n b( j) = c( j)y( j)

n d( j) = h( j)
n , j = 1,2

and

∥a( j)∥r = ∥(h( j)
n ∥1/2

p;(r,s),

∥b( j)∥s = ∥(h( j)
n ∥1/2

p;(r,s).

Let a( j) = |(a( j))∗|u( j) and b( j) = v( j)|b( j)| be the polar decompositions of (a( j))∗ and b( j), respectively. Then substi-
tuting x( j)

n by u( j)x( j)
n v( j), we may assume that the a( j)’s and b( j)’s are positive. Define operators: a := (|(a(1))∗|2 +

|(a(2))∗|2 + ε) 1
2 and b := (|b(1)|2 + |b(2)|2 + ε) 1

2 ; clearly,

∥a∥r ≤ (∥(a(1))∗∥2
r +∥(a(2))∗∥2

r + ε)
1
2 = (∥(h(1)n )∥p;(r,s)+∥(h(2)n )∥p;(r,s)+ ε)

1
2 ,

a similar inequality holds for b with norm ∥ · ∥s. By Remark in [9] there exist contractions ω( j),θ ( j) ∈ M such that
|(a( j))∗|= a(ω( j))∗, |b( j)|= θ ( j)b and

(ω(1))∗ω(1)+(ω(2))∗ω(2) = r(a2), (θ (1))∗θ (1)+(θ (2))∗θ (2) = r(b2).

And, since a−1,b−1 ∈ M and (a−1)−1 = a,b ∈ Lr(M ), by Theorem 3.1. in [2] there exist the unitary operators
ν(1),ν(2) ∈ M and w(1),w(2) ∈ A such that a−1 = ν(1)w(1) and b−1 = w(2)ν(2), where (w(1))−1,(w(2))−1 ∈ Hr.
Obviously,

h(1)n +h(2)n = (w(1))−1[(ν(1))−1(ω(1))∗u(1)x(1)n v(1)θ (1)

+(ω(2))∗u(2)x(2)n v(2)θ (2)(ν(2))−1](w(2))−1.
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Define the sequence

y(·) := (ν(1))−1(ω(1))∗u(1)x(1)
(·) v(1)θ (1)+(ω(2))∗u(2)x(2)

(·) v(2)θ (2)(ν(2))−1.

Since yn = (w(1))−1[h(1)n +h(2)n ](w(2))−1 ∈ Hp(A ) by Proposition 3.3. in [2] yn ∈ Hp(A )∩M =A . Consider for each
fixed n the following mapping:

U : M2(M )→ M2(M )

defined by

U(X) =

(
(ω(1))∗ (ω(2))∗

0 0

)(
u(1) 0
0 u(2)

)
X
(

v(1) 0
0 v(2)

)(
θ (1) 0
θ (2) 0

)
,

where

X =

(
y(1)n 0
0 y(2)n

)
∈ M2(M ).

We need to show that ∥yn∥ ≤ 1.
Indeed,

∥yn∥= ∥(ν(1))−1[(ω(1))∗u(1)x(1)n v(1)θ (1)+(ω(2))∗u(2)x(2)n v(2)θ (2)](ν(2))−1∥

= ∥(ω(1))∗u(1)x(1)n v(1)θ (1)+(ω(2))∗u(2)x(2)n v(2)θ (2)∥= ∥U(X)∥

≤
∥∥∥∥( (ω(1))∗ (ω(2))∗

0 0

)∥∥∥∥∥∥∥∥( u(1) 0
0 u(2)

)∥∥∥∥∥X∥
∥∥∥∥( v(1) 0

0 v(2)

)∥∥∥∥∥∥∥∥( θ (1) 0
θ (2) 0

)∥∥∥∥
≤ ∥ω∗

1 ω1 +ω∗
2 ω2∥

1
2 ∥θ ∗

1 θ1 +θ ∗
2 θ2∥

1
2 ≤ ∥r(a2)∥

1
2 ∥r(b2)∥

1
2 ≤ 1.

So,

∥(h(1)n +h(2)n )∥
H(r,s)

p (A ,ℓ∞)
≤ ∥c∥r sup

n
∥yn∥∥d∥s ≤ (∥|(c(1))∗|2∥ r

2
+∥|(c(2))∗|2∥ r

2
+ ε)

1
2

× (∥|d(1)|2∥ r
2
+∥|d(2)|2∥ r

2
+ ε)

1
2 ≤ (∥c(1)∥2

r

+∥c(2)∥2
r + ε)

1
2 (∥d(1)∥2

r +∥d(2)∥2
r + ε)

1
2

= ∥(h(1)n )∥
H(r,s)

p (A ,ℓ∞)
+∥(h(2)n )∥

H(r,s)
p (A ,ℓ∞)

+ ε.

Then letting ε → 0 we obtain the desired triangle inequality. To show the completeness, it suffices to show that if
∑∞

i=1 ∥x(i)∥
H(r,s)

p (A ;ℓ∞)
< ∞, then the series ∑∞

i=1 x(i) converges in H(r,s)
p (A ;ℓ∞). This is proved by an argument similar

to the previous one.

Proposition 3. Let 1 ≤ p < ∞. Then we have the following, where H0
p(A ;ℓ∞) = {x ∈ Hp(A ;ℓ∞) : Φ(xn) = 0, ∀n} :

Hp(A ;ℓ∞) = {x ∈ Lp(M ;ℓ∞) : τ(xnc) = 0, f or all c ∈ A0 and n}. (3)

Moreover,
H0

p(A ;ℓ∞) = {x ∈ Lp(M ;ℓ∞) : τ(xnc) = 0, f or all c ∈ A and n}. (4)

Proof. The inclusion Hp(A ;ℓ∞) ⊂ {x ∈ Lp(M ;ℓ∞) : τ(xnc) = 0, f or all c ∈ A0 and n} is clearly. Let y ∈ {x ∈
Lp(M ;ℓ∞) : τ(xnc) = 0, f or all c ∈ A0 and n}. Then by Lemma 2.1 (i) in [3] there exist a ∈ H2p(A ), b ∈ H2p(A )
and zn ∈ M such that

yn = aznb ∀n,

where a−1,b−1 ∈A and supn ∥yn∥∞ ≤ 1. On the other hand we have τ(ync) = 0, ∀c ∈A0. Since a−1sb−1 ∈A0, ∀s ∈
A0, substituting c by a−1sb−1 we obtain zn ∈ A (see also [23]), so (yn) ∈ Hp(A ;ℓ∞). Similarly we can prove (4),
which is the conclusion.

Remark 1. The previous proposition is also holds for the Hp(A ;ℓ1) space with similar proof.
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