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Abstract. In this paper, we consider the noncommutative HE(A ;ℓ∞) and HE(A ;ℓ1) spaces and obtain some result on duality
for these spaces.
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INTRODUCTION

Let H be a Hilbert space and M be a finite von Neumann algebra on the Hilbert space equipped with a normal
faithful tracial state τ . The set of all τ-measurable operators will be denoted by L0(M ). The set L0(M ) is a ∗-algebra
with sum and product being the respective closure of the algebraic sum and product [1]. For each x on H affiliated
with M , all spectral projection e⊥s (|x|) = χ(s;∞)(|x|) corresponding to the interval (s;∞) belong to M , and x ∈ L0(M )
if and only if χ(s;∞)(|x|) < ∞ for some s ∈ R. Recall the definition of the decreasing rearrangement (or generalized
singular numbers) of an operator x ∈ L0(M ): For t > 0

µt(x) = inf{s > 0 : λs(x)≤ t}, t > 0,

where
λs(x) = τ(e⊥s (|x|)),s > 0.

The function s 7→ λs(x) is called the distribution function of x. For more details on generalized singular value
function of measurable operators we refer to [2, 3]. We now recall the definition of a symmetric operator space LE(M )
buildup with respect to a noncommutative measure space (M ,τ) and a symmetric Banach function space.

By a symmetric quasi Banach space on [0;1] we mean a quasi Banach lattice E of measurable functions on [0;1]
satisfying the following properties:

(i) E contains all simple functions;
(ii) if x ∈ E and y is measurable function such that |y| is equi-distributed with |x|, then y ∈ E and ∥x∥E = ∥y∥E .

For convenience we shall always assume E additionally satisfies

0 ≤ xn ↑ x,xn,x ∈ E ⇒∥xn∥E ↑ ∥x∥E .

Here x ≺≺ y as usual denotes the submajorization in the sense of Hardy-Littlewood-Polya: for all t > 0∫ t

0
µs(x)ds ≤

∫ t

0
µs(y)ds.

To see examples, Lp, Orlich, Lorentz and Marcinkiewicz spaces are rearrangement invariant Banach function spaces.
The Köthe dual of a symmetric Banach function space E on [0,1] is the Banach space E× given by

E× = {x ∈ L0[0,1] : sup{
∫ 1

0
|x(t)y(t)|dt : ∥x∥E ≤ 1}< ∞}

with the norm

∥y∥= sup{
∫ 1

0
|x(t)y(t)|dt : ∥x∥E ≤ 1}, y ∈ E×.
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The space E× is fully symmetric and has the Fatou property. It is isometrically isomorphic to a closed subspace of E∗

via the map

y → Ly, Ly(x) =
∫ 1

0
x(t)y(t)dt (x ∈ E).

A symmetric Banach space E on [0,1] has the Fatou property if and only if E = E×× isometrically. It has order
continuous norm if and only if it is separable, which is also equivalent to the statement E∗ = E×.

Let E be a symmetric quasi Banach space on [0;1]. We define

LE(M ) = {x ∈ L0(M ) : µ·(x) ∈ E}

together with the norm
∥x∥LE (M ) = ∥µ·(x)∥E .

Then (LE(M );∥ ·∥LE (M )) is a quasi-Banach space (cf. [4–6]). We will use the following duality theorem proved in [7,
Theorem 5.3 and Remark 5.4].

Theorem 1. Let M be a semi-finite von Neumann algebra and let E be a separable symmetric Banach function space
on R+. If y = (yk) ∈ LE(M ;ℓ∞) satisfies yk ≥ 0 for all k. Then

LE(M ;ℓ1)
∗ = LE×(M ;ℓ∞)

isometrically with respect to the duality bracket

⟨x,y⟩= ∑
k≥1

τ(xkyk),

where x ∈ LE(M ;ℓ1) and y ∈ LE×(M ;ℓ∞).

Now, let E be a quasi-Banach lattice. and let 0 < r < ∞. Then E is said to be r-convex (resp. r-concave) if there
exists a constant C > 0 such that for all finite sequence (xn) in E∥∥∥∥∥∥

(
n

∑
k=1

|xk|r
)1/r

∥∥∥∥∥∥
E

≤C

(
n

∑
k=1

∥xk∥r
E

)1/r

,

and (
n

∑
k=1

∥xk∥r
E

)1/r

≤C

∥∥∥∥∥∥
(

n

∑
k=1

|xk|r
)1/r

∥∥∥∥∥∥
E

,

respectively; as usual the best constant C > 0 is denoted by M(r)(E) resp. M(r)(E). We recall that for r1 ≤ r2

Mr1(E)≤ Mr2(E),

and
Mr2(E)≤ Mr1(E).

To see example: each Lp(µ) is p-convex and p-concave with constant 1, and as a sequence M(2)(Lp(µ)) = 1 for 2 ≤ p
and M(2)(Lp(µ)) = 1 for p ≤ 2. For all needed information on convexity and concavity we once again refer to [8]. If
Mmax(1,r)(E) = 1, then the r-th power

Er := {x ∈ L0(Ω) : |x|1/r ∈ E}

endowed with the norm
∥x∥Er = ∥|x|1/r∥r

E

is again a Banach function space which is 1/min(1,r)-convex. Since for each operator x ∈ L0(M )

µ(|x|r) = µ(x)r,
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we conclude for every symmetric Banach function space E on the interval [0,1] which satisfies Mmax(1,r)(E) = 1 that

LEr(M ) := {x ∈ L0(M ) : |x|1/r ∈ LE(M )},

and
∥x∥LEr (M ) = ∥µ(|x|)∥Er = ∥µ(|x|1/r)∥r

E = ∥|x|1/r∥r
LE (M ).

For details see [4]. Let D be a von Neumann subalgebra of M , and let Φ : M → D be the unique normal faithful
conditional expectation such that τ ◦Φ = τ . A finite subdiagonal algebra of M with respect to Φ is a w∗-closed
subalgebra A of M satisfying the following conditions:

(i) A +A ∗ is w∗-dense in M ;
(ii) Φ is multiplicative on A , i.e., Φ(ab) = Φ(a)Φ(b) for all a,b ∈ A ;
(iii) A ∩A ∗ = D , where A ∗ is the family of all adjoint elements of the element of A , i.e., A ∗ = {a∗ : a ∈ A }.

The algebra D is called the diagonal of A . It’s proved by Exel [9] that a finite subdiagonal algebra A is
automatically maximal. Given 0 < p ≤ ∞ we denote by Lp(M ) the usual noncommutative Lp-spaces associated with
(M ,τ). Recall that L∞(M ) = M , equipped with the operator norm. The norm of Lp(M ) will be denoted by ∥ · ∥p.
For p < ∞ we define Hp(A ) to be closure of A in Lp(M ), and for p = ∞ we simply set H∞(A ) =A for convenience.
These are so called Hardy spaces associated with A . They are noncommutative extensions of the classical Hardy space
on the torus T. We refer to [10] and [11] for more examples. These noncommutative Hardy spaces have received a lot
of attention since Arveson’s pioneer work. For references see [10, 12–14] whereas more references on previous works
can be found in the survey paper [1].

Definition 1. [15] Let E be a symmetric quasi Banach space on [0;1] and A be a finite subdiagonal subalgebra of

M . Then HE(A ) = A
∥·∥LE (M ) called symmetric Hardy space associated with A . We denote A0

∥·∥LE (M ) by H0
E(A ).

The theory of vector-valued noncommutative Lp-spaces are introduced by Pisier in [16] for the case M is hyperfinite
and later by Junge [17](see also [18]) for the general case. The noncommutative symmetric LE(M ;ℓ∞) and LE(M ;ℓ1)
spaces are introduced by Defant in [19] and Dirksen in [7]. Now we give the definition of the noncommutative
symmetric ℓ∞ and ℓ1 valued Hardy spaces which have been defined in [20–22]

Definition 2. (i) We define HE(A , ℓ∞) as the space of all sequences x = (xn)n≥1 in HE(A ) which admit a factorization
of the following form: there are a,b ∈ HE1/2(A ), and a bounded sequence y = (yn)⊂ A such that xn = aynb,∀n ≥ 1.
Given x ∈ HE(A , ℓ∞) define

∥x∥HE (A ,ℓ∞) := inf{∥a∥H
E1/2 (A ) sup

n
∥yn∥∞∥b∥H

E1/2 (A )},

where the infimum runs over all factorizations of (xn) as above. Moreover, let us define HE(A ;ℓc
∞) (here c should

remind on the word "column") as the space of all (xn)n≥1 in HE(A ) for which there are b ∈ HE(A ) and bounded
sequence (yn)n≥1 in M such that xn = ynb and

∥x∥HE (A ,ℓ∞) := inf{sup
n
∥yn∥∞∥b∥HE (A )}.

Similarly, we define the row version HE(A ;ℓr
∞) all sequences which allow a uniform factorization xn = ayn, again

with a ∈ HE(A ) and (yn)n≥1 uniformly bounded in M .
(ii) We define HE(A ;ℓ1) as the space of all sequences x = (xn)n≥1 in HE(A ) which can be decomposed as

xn = ∑∞
k=1 uknvnk,∀n ≥ 1 for two families (ukn)k,n≥1 and (vnk)n,k≥1 in HE1/2(A ) such that

∞

∑
k,n=1

uknu∗kn ∈ LE(M )and
∞

∑
n,k=1

v∗nkvnk ∈ LE(M ).

In this space we define the following form:

∥x∥HE (A ;ℓ1) := inf{∥
∞

∑
k,n=1

uknu∗kn∥
1/2
HE (A )

∥
∞

∑
n,k=1

v∗nkvnk∥
1/2
HE (A )

},

where the infimum runs over all decompositions of x as above.
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MAIN RESULTS

Proposition 2. Let E be a separable symmetric quasi Banach function space on [0;1]. Then we have the following:

HE(A ;ℓ∞) = {(xn) ∈ LE(M ;ℓ∞) : Σ∞
n=1τ(xnyn) = 0, ∀ (yn) ∈ H0

E×(A ;ℓ1)}

and
H0

E(A ;ℓ∞) = {(xn) ∈ LE(M ;ℓ∞) : Σ∞
n=1τ(xnyn) = 0, ∀ (yn) ∈ HE×(A ;ℓ1)}.

Proof. The inclusion HE(A ;ℓ∞)⊂ {(xn) ∈ LE(M ;ℓ∞) : Σ∞
n=1τ(xnyn) = 0, ∀ (yn) ∈ H0

E×(A ;ℓ1)} is clearly. Let

(zn) ∈ {(xn) ∈ LE(M ;ℓ∞) : Σ∞
n=1τ(xnyn) = 0 ∀ (yn) ∈ H0

E×(A ;ℓ1)}

and c ∈ A0. For n ∈ N , set yk = 0,(k ̸= n) and yn = c, then (yk) ∈ H0
E×(A ;ℓ1). Hence for all n ∈ N ,

τ(znc) = 0 ∀c ∈ A0.

By (1.2) in [13], we get (zn)⊂ HE(A ). Using Lemma 1 in [20], we obtain that (zn) ∈ HE(A ;ℓ∞). The latter equality
follows from the continuity of Φ on HE(A ;ℓ∞).

By Proposition 1 in [20], arguments similar to proof of Proposition 2, we get the following result.

Proposition 3. Let E be an r-convex symmetric quasi Banach function space on [0;1] for some 0 < r < ∞ and E do
not contain c0 or separable. Then

HE(A ;ℓ1) = {x ∈ LE(M ;ℓ1) :
∞

∑
n=1

τ(xny∗n) = 0, f or all (y∗n) ∈ H0
E×(A ;ℓ∞)}.

Moreover,

H0
E(A ;ℓ1) = {x ∈ LE(M ;ℓ1) :

∞

∑
n=1

τ(xny∗n) = 0, f or all (y∗n) ∈ HE×(A ;ℓ∞)}.

Theorem 4. Let E be an r-convex symmetric Banach function space on [0;1] for some 0 < r < ∞ and E do not contain
c0 or separable. Then

(i) (HE(A ;ℓ1))
∗ = LE×(M ;ℓ∞)/J(H0

E×(A ;ℓ∞))

isometrically via the following duality bracket

((xn),(yn)) =
∞

∑
n=1

τ(y∗nxn)

for x ∈ HE(A ;ℓ1) and y ∈ HE×(A ;ℓ∞), where J(H0
E×(A ;ℓ∞)) = {x∗ : x ∈ H0

E×(A ;ℓ∞)}.

(ii) (LE(M ;ℓ1)/J(H0
p(A ;ℓ1)))

∗ = HE×(A ;ℓ∞)

isometrically via the following duality bracket

((xn),(yn)) =
∞

∑
n=1

τ(y∗nxn)

for x ∈ HE(A ;ℓ1) and y ∈ HE×(A ;ℓ∞), where J(H0
E×(A ;ℓ1)) = {x∗ : x ∈ H0

E×(A ;ℓ1)}.

Proof. By Theorem 1 it is clear that

(HE(A ;ℓ1))
∗ = LE×(M ;ℓ∞)/(HE(A ;ℓ1))

⊥ and (LE(M ;ℓ1)/
⊥(HE×(A ;ℓ∞)))

∗ = HE×(A ;ℓ∞),

where

(HE(A ;ℓ1))
⊥ = {(xn) ∈ LE×(M ;ℓ∞) :

∞

∑
n=1

τ(y∗nxn) = 0 ∀ (yn) ∈ HE(A ;ℓ1)},
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and
⊥(HE×(A ;ℓ∞)) = {(xn) ∈ LE(M ;ℓ1) :

∞

∑
n=1

τ(y∗nxn) = 0 ∀ (yn) ∈ HE×(A ;ℓ∞)}.

On the other hand, by Proposition 2 and Proposition 3, we have that

⊥(HE×(A ;ℓ∞)) = J(H0
E(A ;ℓ1)), (HE(A ;ℓ1))

⊥ = J(H0
E×(A ;ℓ∞)).

From that the desired results follow.

Remark 1. Let M = L∞(T), A = H∞(T) and let

Φ(a) =
(∫

adt
)

1, τ(a) =
(∫

adt
)

∀a ∈ M .

Then A is a finite subdiagonal algebra in M and A is maximal. Let 1 < p < ∞, 1/p+1/p
′
= 1. Then

Lp(M ;ℓ∞) = {(yn)n≥1 ⊂ Lp(T) | sup
n
|yn| ∈ Lp(T)},

Hp(A ;ℓ∞) = {(yn)n≥1 ⊂ Hp(T) | sup
n
|yn| ∈ Lp(T)},

and
∥(xn)∥Lp(M ;ℓ∞) = ∥sup

n
|xn|∥Lp(T), ∥(yn)∥Hp(A ;ℓ∞) = ∥sup

n
|yn|∥Lp(T).

If Hp(A ;ℓ1)
∗ =Hp′ (A ;ℓ∞), then Lp′ (M ;ℓ∞)/J(H0

p′(A ;ℓ∞) is equivalent to Hp′ (A ;ℓ∞). Hence the Hilbert transform
H is bounded projection from Lp′ (M ;ℓ∞) to Hp′ (A ;ℓ∞), i. e.,

∥sup
n
|H xn|∥Hp′ (T) ≤Cp′∥sup

n
|xn|∥Lp′ (T) ∀(xn) ∈ Lp′(T).

This means that H ⊗ id is bounded on Lp′(T, ℓ∞). By Lemma 2 in [23],we get ℓ∞ ∈UMD. This is a contradiction. In
general, HE(A ;ℓ1)

∗ ̸= HE×(A ;ℓ∞) (see [22]).
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