Duality property of the noncommutative $\ell \infty$ and $\ell 1$ valued symmetric Hardy spaces

Kanat Serikovich Tulenov and Oraltai Muratkhanovich Zholymbaev

Citation: AIP Conference Proceedings 1759, 020152 (2016); doi: 10.1063/1.4959766
View online: http://dx.doi.org/10.1063/1.4959766
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1759?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories J. Math. Phys. 56, 103501 (2015); 10.1063/1.4929538

Oscillators in a (2+1)-dimensional noncommutative space
J. Math. Phys. 55, 032105 (2014); 10.1063/1.4866914

Soft contribution to $B \rightarrow \gamma \ell v \ell$ from dispersion relations and duality
AIP Conf. Proc. 1492, 95 (2012); 10.1063/1.4763499
Some topological and geometric properties of the domain of the double sequential band matrix $\mathrm{B}(\tilde{r}, \tilde{s})$ in the sequence space $\ell(\mathrm{p})$
AIP Conf. Proc. 1470, 163 (2012); 10.1063/1.4747665
On duality and negative dimensions in the theory of Lie groups and symmetric spaces
J. Math. Phys. 52, 083514 (2011); 10.1063/1.3625954

Duality property of the noncommutative ℓ_{∞} and ℓ_{1} valued symmetric Hardy spaces

Kanat Serikovich Tulenov* and Oraltai Muratkhanovich Zholymbaev ${ }^{\dagger}$
*Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan
${ }^{\dagger}$ 'Shakarim State University of Semey, Semey, Kazakhstan

Abstract

In this paper, we consider the noncommutative $H_{E}\left(\mathscr{A} ; \ell_{\infty}\right)$ and $H_{E}\left(\mathscr{A} ; \ell_{1}\right)$ spaces and obtain some result on duality for these spaces.

Keywords: von Neumann algebra, Subdiagonal algebras, Noncommutative vector valued symmetric Hardy spaces, Duality PACS: 02.10.-v

INTRODUCTION

Let \mathscr{H} be a Hilbert space and \mathscr{M} be a finite von Neumann algebra on the Hilbert space equipped with a normal faithful tracial state τ. The set of all τ-measurable operators will be denoted by $L_{0}(\mathscr{M})$. The set $L_{0}(\mathscr{M})$ is a $*$-algebra with sum and product being the respective closure of the algebraic sum and product [1]. For each x on \mathscr{H} affiliated with \mathscr{M}, all spectral projection $e_{s}^{\perp}(|x|)=\chi_{(s ; \infty)}(|x|)$ corresponding to the interval $(s ; \infty)$ belong to \mathscr{M}, and $x \in L_{0}(\mathscr{M})$ if and only if $\chi_{(s, \infty)}(|x|)<\infty$ for some $s \in \mathbf{R}$. Recall the definition of the decreasing rearrangement (or generalized singular numbers) of an operator $x \in L_{0}(\mathscr{M})$: For $t>0$

$$
\mu_{t}(x)=\inf \left\{s>0: \lambda_{s}(x) \leq t\right\}, t>0,
$$

where

$$
\lambda_{s}(x)=\tau\left(e_{s}^{\perp}(|x|)\right), s>0
$$

The function $s \mapsto \lambda_{s}(x)$ is called the distribution function of x. For more details on generalized singular value function of measurable operators we refer to [2,3]. We now recall the definition of a symmetric operator space $L_{E}(\mathscr{M})$ buildup with respect to a noncommutative measure space (\mathscr{M}, τ) and a symmetric Banach function space.

By a symmetric quasi Banach space on $[0 ; 1]$ we mean a quasi Banach lattice E of measurable functions on $[0 ; 1]$ satisfying the following properties:
(i) E contains all simple functions;
(ii) if $x \in E$ and y is measurable function such that $|y|$ is equi-distributed with $|x|$, then $y \in E$ and $\|x\|_{E}=\|y\|_{E}$.

For convenience we shall always assume E additionally satisfies

$$
0 \leq x_{n} \uparrow x, x_{n}, x \in E \Rightarrow\left\|x_{n}\right\|_{E} \uparrow\|x\|_{E} .
$$

Here $x \prec \prec y$ as usual denotes the submajorization in the sense of Hardy-Littlewood-Polya: for all $t>0$

$$
\int_{0}^{t} \mu_{s}(x) d s \leq \int_{0}^{t} \mu_{s}(y) d s
$$

To see examples, L_{p}, Orlich, Lorentz and Marcinkiewicz spaces are rearrangement invariant Banach function spaces. The Köthe dual of a symmetric Banach function space E on $[0,1]$ is the Banach space E^{\times}given by

$$
E^{\times}=\left\{x \in L_{0}[0,1]: \sup \left\{\int_{0}^{1}|x(t) y(t)| d t:\|x\|_{E} \leq 1\right\}<\infty\right\}
$$

with the norm

$$
\|y\|=\sup \left\{\int_{0}^{1}|x(t) y(t)| d t:\|x\|_{E} \leq 1\right\}, y \in E^{\times} .
$$

The space E^{\times}is fully symmetric and has the Fatou property. It is isometrically isomorphic to a closed subspace of E^{*} via the map

$$
y \rightarrow L_{y}, \quad L_{y}(x)=\int_{0}^{1} x(t) y(t) d t(x \in E)
$$

A symmetric Banach space E on $[0,1]$ has the Fatou property if and only if $E=E^{\times \times}$isometrically. It has order continuous norm if and only if it is separable, which is also equivalent to the statement $E^{*}=E^{\times}$.

Let E be a symmetric quasi Banach space on $[0 ; 1]$. We define

$$
L_{E}(\mathscr{M})=\left\{x \in L_{0}(\mathscr{M}): \mu .(x) \in E\right\}
$$

together with the norm

$$
\|x\|_{L_{E}(\mathscr{M})}=\|\mu \cdot(x)\|_{E}
$$

Then $\left(L_{E}(\mathscr{M}) ;\|\cdot\|_{L_{E}(\mathscr{M})}\right)$ is a quasi-Banach space (cf. [4-6]). We will use the following duality theorem proved in [7, Theorem 5.3 and Remark 5.4].

Theorem 1. Let \mathscr{M} be a semi-finite von Neumann algebra and let E be a separable symmetric Banach function space on \mathbf{R}_{+}. If $y=\left(y_{k}\right) \in L_{E}\left(\mathscr{M} ; \ell_{\infty}\right)$ satisfies $y_{k} \geq 0$ for all k. Then

$$
L_{E}\left(\mathscr{M} ; \ell_{1}\right)^{*}=L_{E^{\times}}\left(\mathscr{M} ; \ell_{\infty}\right)
$$

isometrically with respect to the duality bracket

$$
\langle x, y\rangle=\sum_{k \geq 1} \tau\left(x_{k} y_{k}\right)
$$

where $x \in L_{E}\left(\mathscr{M} ; \ell_{1}\right)$ and $y \in L_{E^{\times}}\left(\mathscr{M} ; \ell_{\infty}\right)$.
Now, let E be a quasi-Banach lattice. and let $0<r<\infty$. Then E is said to be r-convex (resp. r-concave) if there exists a constant $C>0$ such that for all finite sequence $\left(x_{n}\right)$ in E

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{r}\right)^{1 / r}\right\|_{E} \leq C\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{E}^{r}\right)^{1 / r}
$$

and

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{E}^{r}\right)^{1 / r} \leq C\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{r}\right)^{1 / r}\right\|_{E}
$$

respectively; as usual the best constant $C>0$ is denoted by $M^{(r)}(E)$ resp. $M_{(r)}(E)$. We recall that for $r_{1} \leq r_{2}$

$$
M^{r_{1}}(E) \leq M^{r_{2}}(E)
$$

and

$$
M_{r_{2}}(E) \leq M_{r_{1}}(E)
$$

To see example: each $L_{p}(\mu)$ is p-convex and p-concave with constant 1 , and as a sequence $M^{(2)}\left(L_{p}(\mu)\right)=1$ for $2 \leq p$ and $M_{(2)}\left(L_{p}(\mu)\right)=1$ for $p \leq 2$. For all needed information on convexity and concavity we once again refer to [8]. If $M^{\max (1, r)}(E)=1$, then the r-th power

$$
E^{r}:=\left\{x \in L_{0}(\Omega):|x|^{1 / r} \in E\right\}
$$

endowed with the norm

$$
\|x\|_{E^{r}}=\left\||x|^{1 / r}\right\|_{E}^{r}
$$

is again a Banach function space which is $1 / \min (1, r)$-convex. Since for each operator $x \in L_{0}(\mathscr{M})$

$$
\mu\left(|x|^{r}\right)=\mu(x)^{r}
$$

we conclude for every symmetric Banach function space E on the interval $[0,1]$ which satisfies $M^{\max (1, r)}(E)=1$ that

$$
L_{E^{r}}(\mathscr{M}):=\left\{x \in L_{0}(\mathscr{M}):|x|^{1 / r} \in L_{E}(\mathscr{M})\right\}
$$

and

$$
\|x\|_{L_{E^{r}}(\mathscr{M})}=\|\mu(|x|)\|_{E^{r}}=\left\|\mu\left(|x|^{1 / r}\right)\right\|_{E}^{r}=\left\||x|^{1 / r}\right\|_{L_{E}(\mathscr{M})}^{r} .
$$

For details see [4]. Let \mathscr{D} be a von Neumann subalgebra of \mathscr{M}, and let $\Phi: \mathscr{M} \rightarrow \mathscr{D}$ be the unique normal faithful conditional expectation such that $\tau \circ \Phi=\tau$. A finite subdiagonal algebra of \mathscr{M} with respect to Φ is a w^{*}-closed subalgebra \mathscr{A} of \mathscr{M} satisfying the following conditions:
(i) $\mathscr{A}+\mathscr{A}^{*}$ is w^{*}-dense in \mathscr{M};
(ii) Φ is multiplicative on \mathscr{A}, i.e., $\Phi(a b)=\Phi(a) \Phi(b)$ for all $a, b \in \mathscr{A}$;
(iii) $\mathscr{A} \cap \mathscr{A}^{*}=\mathscr{D}$, where \mathscr{A}^{*} is the family of all adjoint elements of the element of \mathscr{A}, i.e., $\mathscr{A}^{*}=\left\{a^{*}: a \in \mathscr{A}\right\}$.

The algebra \mathscr{D} is called the diagonal of \mathscr{A}. It's proved by Exel [9] that a finite subdiagonal algebra \mathscr{A} is automatically maximal. Given $0<p \leq \infty$ we denote by $L_{p}(\mathscr{M})$ the usual noncommutative L_{p}-spaces associated with (\mathscr{M}, τ). Recall that $L_{\infty}(\mathscr{M})=\mathscr{M}$, equipped with the operator norm. The norm of $L_{p}(\mathscr{M})$ will be denoted by $\|\cdot\|_{p}$. For $p<\infty$ we define $H_{p}(\mathscr{A})$ to be closure of \mathscr{A} in $L_{p}(\mathscr{M})$, and for $p=\infty$ we simply set $H_{\infty}(\mathscr{A})=\mathscr{A}$ for convenience. These are so called Hardy spaces associated with \mathscr{A}. They are noncommutative extensions of the classical Hardy space on the torus \mathbf{T}. We refer to [10] and [11] for more examples. These noncommutative Hardy spaces have received a lot of attention since Arveson's pioneer work. For references see [10, 12-14] whereas more references on previous works can be found in the survey paper [1].
Definition 1. [15] Let E be a symmetric quasi Banach space on $[0 ; 1]$ and \mathscr{A} be a finite subdiagonal subalgebra of \mathscr{M}. Then $H_{E}(\mathscr{A})=\overline{\mathscr{A}}^{\|\cdot\|_{L_{E}(\mathscr{A})}}$ called symmetric Hardy space associated with \mathscr{A}. We denote $\overline{\mathscr{A}}_{0}^{\|\cdot\|_{L_{E}(\mathscr{A})}}$ by $H_{E}^{0}(\mathscr{A})$.

The theory of vector-valued noncommutative L_{p}-spaces are introduced by Pisier in [16] for the case \mathscr{M} is hyperfinite and later by Junge [17](see also [18]) for the general case. The noncommutative symmetric $L_{E}\left(\mathscr{M} ; \ell_{\infty}\right)$ and $L_{E}\left(\mathscr{M} ; \ell_{1}\right)$ spaces are introduced by Defant in [19] and Dirksen in [7]. Now we give the definition of the noncommutative symmetric ℓ_{∞} and ℓ_{1} valued Hardy spaces which have been defined in [20-22]
Definition 2. (i) We define $H_{E}\left(\mathscr{A}, \ell_{\infty}\right)$ as the space of all sequences $x=\left(x_{n}\right)_{n \geq 1}$ in $H_{E}(\mathscr{A})$ which admit a factorization of the following form: there are $a, b \in H_{E^{1 / 2}}(\mathscr{A})$, and a bounded sequence $y=\left(y_{n}\right) \subset \mathscr{A}$ such that $x_{n}=a y_{n} b, \forall n \geq 1$. Given $x \in H_{E}\left(\mathscr{A}, \ell_{\infty}\right)$ define

$$
\|x\|_{H_{E}\left(\mathscr{A}, \ell_{\infty}\right)}:=\inf \left\{\|a\|_{H_{E^{1 / 2}}(\mathscr{A})} \sup _{n}\left\|y_{n}\right\|_{\infty}\|b\|_{H_{E^{1 / 2}}(\mathscr{A})}\right\}
$$

where the infimum runs over all factorizations of $\left(x_{n}\right)$ as above. Moreover, let us define $H_{E}\left(\mathscr{A} ; \ell_{\infty}^{c}\right)$ (here c should remind on the word "column") as the space of all $\left(x_{n}\right)_{n \geq 1}$ in $H_{E}(\mathscr{A})$ for which there are $b \in H_{E}(\mathscr{A})$ and bounded sequence $\left(y_{n}\right)_{n \geq 1}$ in \mathscr{M} such that $x_{n}=y_{n} b$ and

$$
\|x\|_{H_{E}\left(\mathscr{A}, \ell_{\infty}\right)}:=\inf \left\{\sup _{n}\left\|y_{n}\right\|_{\infty}\|b\|_{H_{E}(\mathscr{A})}\right\}
$$

Similarly, we define the row version $H_{E}\left(\mathscr{A} ; \ell_{\infty}^{r}\right)$ all sequences which allow a uniform factorization $x_{n}=a y_{n}$, again with $a \in H_{E}(\mathscr{A})$ and $\left(y_{n}\right)_{n \geq 1}$ uniformly bounded in \mathscr{M}.
(ii) We define $H_{E}\left(\mathscr{A} ; \ell_{1}\right)$ as the space of all sequences $x=\left(x_{n}\right)_{n \geq 1}$ in $H_{E}(\mathscr{A})$ which can be decomposed as $x_{n}=\sum_{k=1}^{\infty} u_{k n} v_{n k}, \forall n \geq 1$ for two families $\left(u_{k n}\right)_{k, n \geq 1}$ and $\left(v_{n k}\right)_{n, k \geq 1}$ in $H_{E^{1 / 2}}(\mathscr{A})$ such that

$$
\sum_{k, n=1}^{\infty} u_{k n} u_{k n}^{*} \in L_{E}(\mathscr{M}) \text { and } \sum_{n, k=1}^{\infty} v_{n k}^{*} v_{n k} \in L_{E}(\mathscr{M})
$$

In this space we define the following form:

$$
\|x\|_{H_{E}\left(\mathscr{A} ; \ell_{1}\right)}:=\inf \left\{\left\|\sum_{k, n=1}^{\infty} u_{k n} u_{k n}^{*}\right\|_{H_{E}(\mathscr{A})}^{1 / 2}\left\|\sum_{n, k=1}^{\infty} v_{n k}^{*} v_{n k}\right\|_{H_{E}(\mathscr{A})}^{1 / 2}\right\}
$$

where the infimum runs over all decompositions of x as above.

MAIN RESULTS

Proposition 2. Let E be a separable symmetric quasi Banach function space on $[0 ; 1]$. Then we have the following:

$$
H_{E}\left(\mathscr{A} ; \ell_{\infty}\right)=\left\{\left(x_{n}\right) \in L_{E}\left(\mathscr{M} ; \ell_{\infty}\right): \Sigma_{n=1}^{\infty} \tau\left(x_{n} y_{n}\right)=0, \quad \forall\left(y_{n}\right) \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right\}
$$

and

$$
H_{E}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)=\left\{\left(x_{n}\right) \in L_{E}\left(\mathscr{M} ; \ell_{\infty}\right): \Sigma_{n=1}^{\infty} \tau\left(x_{n} y_{n}\right)=0, \quad \forall\left(y_{n}\right) \in H_{E^{\times}}\left(\mathscr{A} ; \ell_{1}\right)\right\}
$$

Proof. The inclusion $H_{E}\left(\mathscr{A} ; \ell_{\infty}\right) \subset\left\{\left(x_{n}\right) \in L_{E}\left(\mathscr{M} ; \ell_{\infty}\right): \Sigma_{n=1}^{\infty} \tau\left(x_{n} y_{n}\right)=0, \quad \forall\left(y_{n}\right) \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right\}$ is clearly. Let

$$
\left(z_{n}\right) \in\left\{\left(x_{n}\right) \in L_{E}\left(\mathscr{M} ; \ell_{\infty}\right): \Sigma_{n=1}^{\infty} \tau\left(x_{n} y_{n}\right)=0 \quad \forall\left(y_{n}\right) \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right\}
$$

and $c \in \mathscr{A}_{0}$. For $n \in \mathscr{N}$, set $y_{k}=0,(k \neq n)$ and $y_{n}=c$, then $\left(y_{k}\right) \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{1}\right)$. Hence for all $n \in \mathscr{N}$,

$$
\tau\left(z_{n} c\right)=0 \quad \forall c \in \mathscr{A}_{0}
$$

By (1.2) in [13], we get $\left(z_{n}\right) \subset H_{E}(\mathscr{A})$. Using Lemma 1 in [20], we obtain that $\left(z_{n}\right) \in H_{E}\left(\mathscr{A} ; \ell_{\infty}\right)$. The latter equality follows from the continuity of Φ on $H_{E}\left(\mathscr{A} ; \ell_{\infty}\right)$.

By Proposition 1 in [20], arguments similar to proof of Proposition 2, we get the following result.
Proposition 3. Let E be an r-convex symmetric quasi Banach function space on $[0 ; 1]$ for some $0<r<\infty$ and E do not contain c_{0} or separable. Then

$$
H_{E}\left(\mathscr{A} ; \ell_{1}\right)=\left\{x \in L_{E}\left(\mathscr{M} ; \ell_{1}\right): \sum_{n=1}^{\infty} \tau\left(x_{n} y_{n}^{*}\right)=0, \text { for all }\left(y_{n}^{*}\right) \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)\right\}
$$

Moreover,

$$
H_{E}^{0}\left(\mathscr{A} ; \ell_{1}\right)=\left\{x \in L_{E}\left(\mathscr{M} ; \ell_{1}\right): \sum_{n=1}^{\infty} \tau\left(x_{n} y_{n}^{*}\right)=0, \text { for all }\left(y_{n}^{*}\right) \in H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)\right\}
$$

Theorem 4. Let E be an r-convex symmetric Banach function space on $[0 ; 1]$ for some $0<r<\infty$ and E do not contain c_{0} or separable. Then

$$
\text { (i) }\left(H_{E}\left(\mathscr{A} ; \ell_{1}\right)\right)^{*}=L_{E^{\times}}\left(\mathscr{M} ; \ell_{\infty}\right) / J\left(H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)\right)
$$

isometrically via the following duality bracket

$$
\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sum_{n=1}^{\infty} \tau\left(y_{n}^{*} x_{n}\right)
$$

for $x \in H_{E}\left(\mathscr{A} ; \ell_{1}\right)$ and $y \in H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)$, where $J\left(H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)\right)=\left\{x^{*}: x \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)\right\}$.

$$
\text { (ii) }\left(L_{E}\left(\mathscr{M} ; \ell_{1}\right) / J\left(H_{p}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right)\right)^{*}=H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)
$$

isometrically via the following duality bracket

$$
\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sum_{n=1}^{\infty} \tau\left(y_{n}^{*} x_{n}\right)
$$

for $x \in H_{E}\left(\mathscr{A} ; \ell_{1}\right)$ and $y \in H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)$, where $J\left(H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right)=\left\{x^{*}: x \in H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right\}$.
Proof. By Theorem 1 it is clear that

$$
\left(H_{E}\left(\mathscr{A} ; \ell_{1}\right)\right)^{*}=L_{E^{\times}}\left(\mathscr{M} ; \ell_{\infty}\right) /\left(H_{E}\left(\mathscr{A} ; \ell_{1}\right)\right)^{\perp} \quad \text { and } \quad\left(L_{E}\left(\mathscr{M} ; \ell_{1}\right) /^{\perp}\left(H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)\right)\right)^{*}=H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right),
$$

where

$$
\left(H_{E}\left(\mathscr{A} ; \ell_{1}\right)\right)^{\perp}=\left\{\left(x_{n}\right) \in L_{E^{\times}}\left(\mathscr{M} ; \ell_{\infty}\right): \sum_{n=1}^{\infty} \tau\left(y_{n}^{*} x_{n}\right)=0 \quad \forall\left(y_{n}\right) \in H_{E}\left(\mathscr{A} ; \ell_{1}\right)\right\}
$$

and

$$
{ }^{\perp}\left(H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)\right)=\left\{\left(x_{n}\right) \in L_{E}\left(\mathscr{M} ; \ell_{1}\right): \sum_{n=1}^{\infty} \tau\left(y_{n}^{*} x_{n}\right)=0 \quad \forall\left(y_{n}\right) \in H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)\right\} .
$$

On the other hand, by Proposition 2 and Proposition 3, we have that

$$
{ }^{\perp}\left(H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)\right)=J\left(H_{E}^{0}\left(\mathscr{A} ; \ell_{1}\right)\right), \quad\left(H_{E}\left(\mathscr{A} ; \ell_{1}\right)\right)^{\perp}=J\left(H_{E^{\times}}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)\right) .
$$

From that the desired results follow.
Remark 1. Let $\mathscr{M}=L^{\infty}(\mathbf{T}), \mathscr{A}=H^{\infty}(\mathbf{T})$ and let

$$
\Phi(a)=\left(\int a d t\right) 1, \tau(a)=\left(\int a d t\right) \forall a \in \mathscr{M}
$$

Then \mathscr{A} is a finite subdiagonal algebra in \mathscr{M} and \mathscr{A} is maximal. Let $1<p<\infty, 1 / p+1 / p^{\prime}=1$. Then

$$
\begin{aligned}
& L_{p}\left(\mathscr{M} ; \ell_{\infty}\right)=\left\{\left(y_{n}\right)_{n \geq 1} \subset L_{p}(\mathbf{T})\left|\sup _{n}\right| y_{n} \mid \in L_{p}(\mathbf{T})\right\} \\
& H_{p}\left(\mathscr{A} ; \ell_{\infty}\right)=\left\{\left(y_{n}\right)_{n \geq 1} \subset H_{p}(\mathbf{T})\left|\sup _{n}\right| y_{n} \mid \in L_{p}(\mathbf{T})\right\}
\end{aligned}
$$

and

$$
\left\|\left(x_{n}\right)\right\|_{L_{p}\left(\mathscr{M} ; \ell_{\infty}\right)}=\left\|\sup _{n}\left|x_{n}\right|\right\|_{L_{p}(\mathbf{T})}, \quad\left\|\left(y_{n}\right)\right\|_{H_{p}\left(\mathscr{A} ; \ell_{\infty}\right)}=\left\|\sup _{n}\left|y_{n}\right|\right\|_{L_{p}(\mathbf{T})}
$$

If $H_{p}\left(\mathscr{A} ; \ell_{1}\right)^{*}=H_{p^{\prime}}\left(\mathscr{A} ; \ell_{\infty}\right)$, then $L_{p^{\prime}}\left(\mathscr{M} ; \ell_{\infty}\right) / J\left(H_{p^{\prime}}^{0}\left(\mathscr{A} ; \ell_{\infty}\right)\right.$ is equivalent to $H_{p^{\prime}}\left(\mathscr{A} ; \ell_{\infty}\right)$. Hence the Hilbert transform \mathscr{H} is bounded projection from $L_{p^{\prime}}\left(\mathscr{M} ; \ell_{\infty}\right)$ to $H_{p^{\prime}}\left(\mathscr{A} ; \ell_{\infty}\right)$, i. e.,

$$
\left\|\sup _{n}\left|\mathscr{H} x_{n}\right|\right\|_{H_{p^{\prime}}(\mathbf{T})} \leq C_{p^{\prime}}\left\|\sup _{n}\left|x_{n}\right|\right\|_{L_{p^{\prime}}(\mathbf{T})} \quad \forall\left(x_{n}\right) \in L_{p^{\prime}}(\mathbf{T}) .
$$

This means that $\mathscr{H} \otimes$ id is bounded on $L_{p^{\prime}}\left(\mathbf{T}, \ell_{\infty}\right)$. By Lemma 2 in [23], we get $\ell_{\infty} \in U M D$. This is a contradiction. In general, $H_{E}\left(\mathscr{A} ; \ell_{1}\right)^{*} \neq H_{E^{\times}}\left(\mathscr{A} ; \ell_{\infty}\right)($ see [22]).

ACKNOWLEDGEMENTS

This publication is supported by the target program 0085/PTSF-14 from the Ministry of Science and Education of the Republic of Kazakhstan.

REFERENCES

1. G. Pisier, and Q. Xu, Handbook of the Geometry of Banach Spaces 2, 1459-1517 (2003).
2. T. Fack, and H. Kosaki, Pac. J. Math. 123, 269-300 (1986).
3. T. N. Bekjan, and D. Dauitbek, Positivity 19, 341-345 (2015).
4. P. G. Dodds, T. K. Dodds, and B. de Pager, Math. Z 201, 583-587 (1989).
5. Q. Xu, Math. Proc. Camb. Phil. Soc. 109, (1991) 541-563.
6. N. J. Kalton, and F. A. Sukochev, J. Reine Angew. Math. 621, 81-121 (2008).
7. S. Dirksen, Noncommutative Boyd interpolation theorems, ArXiv:1203.1653v2 .
8. J. Lindentrauss, and L. Tzafriri, Classical Banach Space II, Springer-Verlag, Berlin, 1979.
9. R. Exel, Amer. J. Math. 110, 775-782 (1988).
10. W. B. Arveson, Amer. J. Math. 89, 578-642 (1967).
11. M. Marsalli, and G. West, J. Operator Theory 40, 339-355 (1998).
12. D. P. Blecher, and L. E. Labuschagne, Integral Equ. Oper. Theory 56, 301-321 (2006).
13. T. N. Bekjan, and Q. Xu, J. Oper. Theory 62, 215-231 (2009).
14. T. N. Bekjan, J. Math. Anal. Appl. 429, 1347-1369 (2015).
15. T. N. Bekjan, Integral Equ. Oper. Theory 81, 191-212 (2015).
16. G. Pisier, Astérisque 247, (1998).
17. A. Defant, and M. Junge, J. Funct. Anal. 206, 322-355 (2004).
18. M. Junge, and Q. Xu, J. Amer. Math. Soc. 20, 385-439 (2007).
19. A. Defant, Classical Summition in Commutative and Noncommutative L_{p}-spaces, Lecture Notes in Mathematics, SpringerVerlag, Berlin, 2011, (pages 80-95).
20. K. S.Tulenov, Russian Math. 59, 74-79 (2015).
21. K. Tulenov, AIP Conference Proceedings 1676, 020093 (2015), (DOI: 10.1063/1.4930519).
22. T. N. Bekjan, K. Tulenov, and D. Dauitbek, Positivity 19, 877-891 (2015).
23. J. Bourgain, Ark. Mat. 21, 163-168 (1983).
