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Lecthes 1–2.

Introduction. Probability theory with mathematical statistics adjoining it, fairly are
among the mathematical disciplines having the most close connections with practice. To
number of advantages of this disciplines it should be noted that methods offered them are
capable to work and deliver qualitative and quantative information in extremely adverseconditions
when about the studied phenomenon, it is known of factors generating it and the mechanism
of its formation very little or even it it ist’t know. This feture often does probability theory
pervoprokhodchik in science. Moreover, when nature of studied regularities, behind the
theory probability is found essentionally stochastic (i.e. difined of case) the learning role
of the supplier of mathematical models and methods of the quantative analysis remains.
Interesting to mark that first from such methods appeared as early as the XVI century,
till the basic ideas of theory probability were formed. This method born during practical
researches of the casual phenomena was taken to the supervision of frequencies of appearence
of unforeseeable in the long row of the tests repeated unconnected inter se. Found on a
big and various matherial a phenomenon of stabilization of frequancies of emergence of a
casual event first had no jastification and it was perceived as purely empirical fact. Therefore
emergence of the theoretical constractions explaining at the level of mathematical models
this phenomenon, coused a great interest both from mathimaticans, and from experts. The
well-known theorem published in 1713 of Ia.Bernoulli called subsequantly by the law of large
nambers, became this remarkable result, which has laid the foundation of probability theory
as siences. The first Bernoulli who has followed the theorem result – Moivre-Laplass so-called
theorem represented specification of the theorem Bernoulli. Presently already strongly there
was to divide a tradition limit theorems into two, as through the independent groups uniting
results like the law of the big large numbers (Bernulli’s result is first of which) and results
like the central limit theorem (which elementary representative Moivre-Laplace‘s theorem is).
Accourding to same experts, basic distinction of theorem of these two groups isn‘t present,
and this devision should be considered simply as a tribute convergence of classification. The
similar perception of these two groups of theorems can be challenger, hawever the main
thing is nevertheless their obgectivity. At formal creation of a course of probability theory
limit theorems appear in the form of same kind of superstructure over elementary heads of
probability theory in whom all tasks have final, purely arifmetic character. Actually however,
the informative value of probability theory reveals only limit theorems. Moreover, without
limit theorems there can’t be undestoodly real content of the most inital consept-consept
of probability. Really, all informative value of probability theory is consed by that the mass
casual phenomena in the cumulative action create strict, not casual regularities; the concept
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of mathematical probability would be fruitless if it didn’t find the implementation in the
form of the frequency of emergence of any result at mass repetition of uniform conditions (at
unlimited increase in number of tests, as mush as exact and reliable). Therefore the elementary
arithmetic culculations of probabilitions relating to gamblings, in works of mathematicians
before Ja.Bernoulli’s work, it is possible to consider as a probability theory prehistory, and
its real history begins with and its real history begins with Bernoulli’s theorems (1713)
and Moivre (1730). To these limit theorems, as the main achivements of probability theory
to P.L.Chebysheva, it is necessery to add Poisson’s three more theorems from which one
generalizes Bernoulli’s theorem, another Moivre-Laplace’s theorem and the third leads to
Poisson’s distribution. For clear undestanding further, it is useful to provide here a little
upgraded formulations of the listed theorems.

The first four of them treat sequence of indepandant tests

U1, U2, U3, . . .

in each of which there can be two outcomes У (success) and Н (failure). Test we will designate
probabilities of these events throught

pj = P (Lj), qj = (1− pj),

and from among the first tests we will designate number of actually appeared progress
throught µn.

In the first two theorems so-called uniform tests, in which all are considered pj are equal
to the same number p (0 < p < 1).

1) Bernouli’s theorem. At any ε > 0

P
(∣∣∣µn
n
− p

∣∣∣ > ε
)
→ 0,

when n→∞.
2) Theorem Moivre—Laplace.

P

{
a 6

µn − np√
npq

6 b

}
→ 1√

2π

b∫
a

e−
x2

2 dx,

and uniformly a and b, when n→∞.
In the following two theorems of probability pn may depend on n, but subject to the

condition, series
∞∑
n=1

pnqn

deverges. In these formulas, the notations

p1 + p2 + · · ·+ pn = An,

p1q1 + p2q2 + · · ·+ pnqn = B2
n.

3) The law of large numbers in the form Poisson. At any ε > 0

P

(∣∣∣∣µnn − An
n

∣∣∣∣ > ε

)
→ 0,
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when n→∞.
4) The main limit theorem in the form Poisson.

P

{
a 6

µn − An
Bn

6 b

}
→ 1√

2π

b∫
a

e−
x2

2 dx,

evenly relative a and b, when n→∞.
The fifth of theorems interesting us treats sequence of series (the scheme of series)

U11,

U21, U22

U31, U32, U33,

. . . . . . . . . . . . . . . . . . . . .

Un1, Un2, Un3, . . . , Unn,

. . . . . . . . . . . . . . . . . . . . .

in which tests of one series are mutually independent among themselves with distribution
of probabilities pn + qn = 1, in which tests of one series are mutually independant among
themselves with distribution of probabilities depending only from series member of actually
appeared number. Throught µn we will designate number of actuallyappeared achievements
in n - a series.

5) Poisson’s limit theorem for rare events. If

npn → λ

at n→∞, that
P (µn = m)→ λm

m!
e−λ.

We will notice that the provided scheme of series looks a little artifical. Really we a always
at least mentally, can complite missing series. However, this scheme, explains dependance of
probabilities of outcomes in each series from n. Therefore, the last formula can be applied
and at usual consecutive tests, at rather small p and moderate np. In this regard there is
question. At the fixed and rather big n, for binomial distribution to define at what values p
intervals (0,1), that is the smaller rest, is the best one of the given approximations normal or
Poisson. In other words, to what values of parameter of p intervals (0,1) it is better to apply
Moivre-Laplace’s theorem, and for Poisson’s theorem. Before formulating the corresponding
theorem, we will consider necessary designations. We will put:

B(m) =
n!

m! (n−m)!
pmqn−m, λ = np;

Π1(m), m < 0; Π1 =
(np)m

m!
e−(np), m > 0;

Π2(m) =
1√

2πnpq
e−

x2

2 , x =
m− np
√
npq

;

Π3(m) = 0, m < 0; Π3(m) =
(nq)m

m!
e−nq, m > 0;

ρk(p, n) =
∑
|B(m)− Πk(m)| (k = 1, 2, 3).
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Theorem (Yu.V.Prokhorov). At n→∞

ρ1(p, n) = c1p+ pO
(

min
(

1, (np)−
1
2

))
, c1 =

√
2

π
e−

1
2 = 0, 483 . . .

ρ2(p, n) = c2
|q − p|
√
npq

+O

(
1
√
npq

)
, c2 =

1

3
√

2π

(
1 + 4e−

3
2

)
= 0, 251 . . .

Consequence. There is such number c3 = 0, 637 . . . , that

min ρk(p, n) =


ρ1(p, n) p < c3n

− 1
3 +O

(
n−

2
3

)
,

ρ2(p, n) c3n
− 1

3 +O
(
n−

2
3

)
6 p < 1− c3n−

1
3 +O

(
n−

2
3

)
,

ρ3(p, n) p > 1− pn− 1
3 +O

(
n−

2
3

)
.

Iacob Bernoulli’s contemporaries and the subsequent generations of scientists saw the
big practical importance of the law of large numbers that it was the peculiar bridge which
has connected the theory and practice. With rare expection the probability theory has no
opportunity to determine by purely speculative way knowledge of probabilities or the related
sizes serving as input parameters of considered mathematical model.This knowledge should
be got by carrying out a series of corresponding experiments being guided by indications of
the law of large numbers.

In process of distribution of action of the law of large numbers on model of the law of large
numbers on model of an escalating community the sphere of its mathematical community of
its application extended also. However, passing various stages of generalization, the law of
large numbers always remained thus the fact purely mathematical, only to a greater or lesser
extent reflecting objective regularities of the real world. Therefore about a prototype of the
mathematical law of large numbers it is possible to speak as about some internal property of
many real processes representing very widespread phenomenon. Having, apparently, desire to
give to definition of the law of large numbers probably bigger coverage A.N.Kolmogorov as
follows formulated his essence in the relevant article of the big Soviet encyclopedia: The law
of large numbers – "the general principle owing to which cumulative action of a large number
of random factors brings, under the general conditions same very, to result not depending
almost from a case". Thus, the law of large numbers has as thought two treatments. One
- mathematical, connected with concrete mathematical models, and the second - more the
general, laving for this framework. The second treatment is connected with phenomenon of
education quite often noted in practice of same extent directed action against a large number
of the hidden or visible operating factor, externally such focus of not having. Examples
connected with the second treatment it is possible to give a set if to address to economy (for
example, a pricing phenomenon in the free market), the social sphere (formation of public
opinion on this or that question), ets.

Lections 3–4.

Preliminary dates
Characteristic function of a random variable ξ is called

fξ(t) = Meitξ =

∞∫
−∞

eitξdF (x).
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we will note same properties for characteristic functions
1.Characteristic function is evenly continuous on all numerical straight line and meets

conditions:

f(0) = 1, |f(t)| = 1.

2. If η = aξ + b,
fη(t) = eibtfξ(at).

3. If ξ1, ξ2, . . . , ξn independent random variables,

fξ1+···+ξn(t) = fξ1(t) . . . fξn(t)

4.As the moments αn and the absolute moments βn a random variables ξ are called
respectively a size Mξn and M |ξ|n (n > 0). In term of function of distribution

Mξn =

∞∫
−∞

xndF (x), M |ξ|n =

∞∫
−∞

|x|ndF (x).

If there is an absolute moment n

βn =

∞∫
−∞

|x|ndF (x)

that are all derivatives of characteristic function including to a derivative n - are order. And

fk(0) = ik
∞∫

−∞

xkdF (x).

5. In there is an other moment n+ δ,

βn+δ =

∞∫
−∞

|x|n+δdF (x) 0 < δ ≤ 1.

then fairly following decomposition of characteristic function in a vicinity of zero point.

fξ(t) = 1 +
α1

1!
it+

α2

2!
(it)2 + · · ·+ αn

n!
(it)n

21−δβn+δθ|t|n+δ

(1 + δ)(2 + δ) . . . (n+ δ)
, |θ| < 1.

6. Between distribution function F (x) and characteristic functions there is a bunique
complience:

а) F (x) and f(t) unambiguously define each other

f(t) =

∞∫
−∞

eitxdF (x), F (x) =
1

2π
lim
{y→−∞

lim
T→∞

T∫
−T

e−ity − e=itx

it
f(t)dt.
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б) If the sequence of function {Fn(x)} meets to F (x) in each point of a continuity F (x),
then the sequence of the corresponding characteristic function {fn(t)} meets to characteristic
function f(t) evenly, in each final interval |t| 6 T.

Back, if {fn(t)} → f(t), then the sequence of functions of distribution {Fn(t)} meets
generally to F (x), and its necessary f(t) there is a characteristic function of limit function
F (x).

For reduction of records further, we will adhere to the following designations for law
distributions.

1) Normal distribution — N(a, σ);
2) Bernulli’s distribution — B(n, p);
3) Poisson’s distribution — Π(λ);
4) Indicate distribution — π(x);
5) Uniform distribution — r(x);
6) Degenerate distribution — R(0).

7. We will consider characteristic function of the most important distribution. 1) Degenerate
distribution

P{ξ = 0} = 1, f(t) = 1.

2) Normal distribution

ϕ(x) =
1

2π
e−

x2

2 f(t) = e−
t2

2 .

3) Poisson’s distribution

P{ξ = m} =
λk

k!
e−λ, f(t) = eλ(e

it−1).

4) Bernulli’s distribution

P{ξn = m} = Cm
n p

mqn−m, f(t) =
(
peit + q

)n
.

5) Indicate distribution

p(x) = ae−ax (x > 0), f(t) =
a

a− it
(a > 0).

6) Uniform distribution

p(x) =
1

2l
, |x| 6 l, f(t) =

sin lt

lt
.

7) Let ξ1 and ξ2 – independent random variables with distribution function F1(x) and F2(x)
accordingly. Distribution F (x) of summer ξ1 + ξ2 is:

F (x) =

∞∫
−∞

F1(x− y)dF2(y) =

∞∫
∞

F2(x− y)fF1(y).

Over distribution functions putting in compliance to two functions to distributions F1(x) and
F2(x) function F (x) on the specified formula we will call operation composition or convolution
of functions distribution designation

F (x) = F1(x) ∗ F2(x).
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equally distributed sizes. We will write also F ∗n(x) for convolution designation n equally
distributed sizes. Operation of composition is commutative and associative operation. We
will note still that least one of a component F1(x), F2(x) it is absolutely continuous, that will
be and F (x).

Lectures 5–6.

First limit theorems and limit laws.
We will consider Bernoulli’s scheme with probability of success in each separate test p > 0.

We will designate over µn number success in n independent tests.

µn = ξ1 + ξ2 + · · ·+ ξn.

when
ξk ∈ {0, 1}, p(ξ = 1) = p, p(ξ = 0) = q, (p+ q = 1).

Theorem (Bernoulli)
For any ε > 0

lim
n→∞

P
{
|µn
n
− p| > ε

}
= 0.

or that is equivalent, by n→∞

R

(
µn − np

n

)
→ R(0)

Proof. We will show at first equivalence of these expressions. Function of distribution of
the generate random variable has an appearance:

E(x) =

{
1, если x > 0,

0, если x 6 0.

Fn(x) = P

{
µn − np

n
6 x

}
.

Let ε any positive number.

P

{∣∣∣∣µn − npn

∣∣∣∣ 6 ε

}
= P

{
−ε < µn − np

n
< ε

}
= Fn(ε)− Fn(−ε).

According to statement it aspires to unit, i.e.

Fn(ε)− Fn(−ε)→ 1 (ε > 0)

It means that

Fn(x)→

{
1, если x > 0,

0, если x 6 0.

The return is also right, i.e. if

R

(
µn − np

n

)
→ R(0),
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then
lim
n→∞

P
{
|µn
n
− p| > ε

}
= 0.

For the proof of the approval of the theorem it is enough to show that R((µn−np)/n) meets
to characteristic function of the degenerate law. We will notice that characteristic function
for E(x) it is equal 1.

Let R((µn − np)/n) has the characteristic function fn(t), then

fn(t) = Me
it

n∑
k=1

ξ+k−p
n

=
n∏
k=1

Meit
ξk−p
n =

(
pe

itq
n + qe−

itp
n

)n
.

Now we will use decomposition in a row Makloren

fn(t) =

[
p

(
1 +

itq

n
+ o

(
t

n

))
+ q

(
1− itp

n
+ o

(
t

n

))]n
=

[
1 + o

(
t

n

)]n
→ 1.

As was to be shown.

Theorem (Moivre — Laplace)
We will prove that at n→∞,

Fn(x) = P

{
µn − np
npq

6 x

}
→ 1√

2π

x∫
−∞

e−
y2

2 dy = Φ(x)

R

(
µn − np√

npq

)
→ N(0, 1).

Proof. On to show convergence of characteristic function enough

fn(t)→ e−
t2

2 .

fn(t) = Me
it

n∑
k=1

ξ+k−p
n

=
n∏
k=1

Meit
ξk−p
n =

(
pe

itq
n + qe−

itp
n

)n
.

Me
it
ξk−p√
npq = e

− itp√
npqMe

itξk√
npq = e−it

√
p
nq

(
pe

it√
npq + q

)
=

= pe
it 1−p√

npq + qe−it
√

q
np = pe

it q√
npq + qe−it

√
q
np

fn(t) =

[
p

(
1 + it

√
q

np
+

(it)2q

2!np
+ o

(
t2

n

))
+ q

(
1− it

√
p

nq
+

(it)2p

2!nq
+ o

(
t2

n

))]
=

=

[
1− t2

2n
+ o

(
t2

n

)]n
∼

[(
1− t2

2n

)− 2n
t2

]− t2
2

→ e−
t2

2 .
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Theorem (Poisson)

In his theorem Poisson altered Bernoulli scheme, suggesting that the probability p = pn
depends on the total number of tests n so that npn → λ > 0. So, now writing ξnk and µnn ξk
и µn, we get the Poisson scheme, which corresponds to the sequence of sum

µnn =
n∑
k=1

ξnk (n = 1, 2, . . . ).

Theorem If lim
n→∞

npn = λ > 0, then

P (µnn = k) = Ck
np

k
nq

n−k
n → λk

k!
e−λ (k = 0, 1, 2 . . . ).

Proof. It suffices to show the convergence of the corresponding characteristic function.

fnn(t) = Me
it

n∑
k=1

ξnk
=

n∏
k=1

Meitξnk =
(
pne

it + qn
)n

=

=

(
λ

n
eit + 1− λ

n
+ o

(
1

n

))n
=

[
1 +

λ

n

(
eit − 1

)
+ o

(
1

n

)]n
=

=

{[
1 +

λ

n
(eit − 1) + o

(
1

n

)] n

λ(eit−1)

}λ(eit−1)

→ exp
{
λ(eit − 1)

}

Lectures 7–8
Case of equally distributed composed. Theorem (Hinchin) If random variables ξ1, ξ2, . . .
independent, equally distributed also have mean, a = Mξk, at n→∞,

P

{∣∣∣∣ξ1 + ξ2 + · · ·+ ξn
n

− a
∣∣∣∣ > ε

}
→ 0.

R

(
ξ1 + ξ2 + · · ·+ ξn

n
− a
)
→ R(0).

Proof. We will designate throught f(t) characteristic function of the aligned random
variable f(t) = Meit(ξk−a).

fn(t) = Me
it

n∑
k=1

ξk−a
n

=
n∏
k=1

Meit
(xik−a)

n = fn
(
t

n

)
=

[
1 +

α1

1!

it

n
+
α2

2!

(
it

n

)2

+ . . .

]n
As α=0 M(ξk − a) = 0,

fn
(
t

n

)
=

[
1 +

α2

2!

(
it

n

)
+ . . .

]n
=

[
1 + o

(
t

n

)]n
→ 1.
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Theorem (Hinchin — Levi)
Let ξ1, ξ2, . . . , ξn suqunce of the independant equally distributed random variables with a
population mean a and dispersion σ2. And let Sn = ξ1 + · · ·+ ξn, then at n→∞,

P

{
Sn − na
σ
√
n

6 x

}
→ Φ(x)

Proof. We will consider a random variable ηk = ξk−a
σ
. It is clear, that Mηk = 0, Dηk =

Mη2k = 1. Then f
(

t√
n

)
– there is a characteristic function for ηk√

n
= ξk−a

σ
√
n
. Further throught

fn(t) we will designate characteristic function for the rated sum.

Sn − na
σ
√
n

=
ξ1 + ξ2 + · · ·+ ξn − a

σ
√
n

.

It is enought to prove convergence of the corresponding characteristic function n→∞,

fn(t)→ e−
t2

2 .

Really, at n→∞

fn(t) = fn
(

t√
n

)
=

[
1− t2

2n
+ o

(
t2

n

)]n
→ e−

t2

2 .

The different distributed case.
Theorem (Markov) Let ξ1, ξ2, . . . , ξn sequence of independent random variables with final
means M |ξk|1+δ. If

lim
n→∞

1

n1+δ

n∑
k=1

M |ξk|1+δ = 0,

then the law of large number is fair,

lim
n→∞

P

{∣∣∣∣Snn
∣∣∣∣ > ε

}
= 0, R

(
Sn
n

)
→ R(0).

Proof. We will use decomposition of characteristic function, the theorem of a continuity
and representation ln(1 + z) = z + o(z), fair at |z| < 1.

From conditions of the theorem follows that at n→∞,

max
k

M |ξk|1+δ

n1+δ
6

1

n1+δ

n∑
k=1

M |ξk|1+δ → 0,

Therefore at any fixed t,

fk

(
t

n

)
= 1 +

21−δθnk|t|1+δ

1 + δ

M |ξk|1+δ

n1+δ
→ 1.

evenly on k. Here fk(t) = Meitξk . We will desigant throught

fn(t) = Me
it

n∑
k=1,
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then

fn

(
t

n

)
=

n∏
k=1

fk

(
t

n

)
.

ln fn

(
t

n

)
=

n∑
k=1

ln fk

(
t

n

)
=

n∑
k=1

ln

[
1 +

(
fk

(
t

n

)
− 1

)]
=

=
n∑
k=1

[
fk

(
t

n

)
− 1

]
+

n∑
k=1

∞∑
s=2

(−1)s
(fk − 1)s

s
=

n∑
k=1

[
fk

(
t

n

)
− 1

]
+Rn.

Here we used a ratio ln(1 + z) = z + o(|z|), |z| < 1. As fk(t/n) → 1, that since some
n,

∣∣f ( t
n

)
− 1
∣∣ < 1

2
. Now we will be engaged in an estimate |Rn|.

|Rn| 6
1

2

n∑
k=1

∞∑
s=2

|fk − 1|s =
1

2

n∑
k=1

|fk − 1|2

1− |fk − 1|
6

n∑
k=1

|fk − 1|2 6

6 max
k
|fk − 1|

n∑
k=1

|fk − 1| = max
k
|fk − 1|

n∑
k=1

21−δθnk
1 + δ

M |ξk|1+δ

n1+δ
+ o

( c

n1+δ

)
→ 0

Thus, we have

fn

(
t

n

)
→ 1.

Lectures 9–10 Theorem (Lypunov)
Let the sequence of independent random variables ξ1, . . . , ξn with zero population means be
given. Let Sn = ξ1 + · · ·+ ξn, Bn =

√
DSn, if

lim
n→∞

1

B2+δ
n

n∑
k=1

M |ξk|2+δ = 0,

for sum δ, then at n→∞,

R

(
Sn
Bn

)
→ N(0, 1).

Proof. From a condition of the theorem follows

max
k6n

(
σk
Bn

)2+δ

6 max
k6n

M |ξk|2+δ

B2+δ
n

6
1

B2+δ
n

n∑
k=1

M |ξk|2+δ → 0.

Therefore, at any fixed t and n→∞,

fk

(
t

Bn

)
= 1− t2

2

σ2
k

B2
n

+
21−δ

(1 + δ)(2 + δ)
θnk |t|2+δ

M |ξk|2+δ

B2+δ
n

→ 1,

evenly on k 6 n. Therefore, at rather big n,

n∑
k=1

ln fk

(
t

Bn

)
= −t

2

2
[1 + 0(1)] + 2θn|t|2+δ

1

B2+δ
n

n∑
k=1

M |ξk|2+δ → −
t2

2
.
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Klassical limit theorem.
Moivre-Laplace’s integrated limit theorem was a source of a big cycle of the researches

having fundamental value both for the probability theory, and for appendices in naturel
sciences, thecnical and economic science. To make idea of the direction of these researches,
we will give to the theorem of Moivre-Laplace a bit different from. Namely, throught ξk let’s

designate number of emergence of an event A в k-m test, is equal
n∑
k=1

ξk. Further,

M

n∑
k=1

ξk = np, D
n∑
k=1

ξk = npq.

Therefore the theorem of Moivre-Laplace can be written down in a look: at n→∞

P

a 6

n∑
k=1

(ξk −Mξk)√
n∑
k=1

Dξk

6 b

→
1√
2π

b∫
a

e−
z2

2 dz,

Naturally there is a question: as it is intimately bound ratio (1) with an express choice of items
ξk, whether it will take place and at weaker restrictions imposed on a cumulative distribution
function of items? Statement of this task, and also its decision belongs generally to Chebyshov
both its pupils Markov and Lyapunov. We will give accurate information of this condition.
The reasons owing to which this results gained huge value, lie on substance of the muss
phenomena which studied regularities are made by a probability theory subject. One of the
major schemes on which there is use of results of probability theory in naturel sciences and
technique consists in the following. Consider that process flows past under the influence of a
large number of random factors, each of which has small impact on flowing past process. The
researcher studying process as a whole, observer only cooperative influence of this factors.
Thus, there is a problem of studying of the regularities peculiar to the sums of a large number
of independent random values, each of which influences the sum a little. However, instead of
studying the sums big, but a finite number of items, we will consider sequence of the sums
with the increasing and large number of items and to consider that decisions are given by the
limiting functions of distributions. Such transition from a terminating problem definition to
the limiting is routine for the modern mathematics. So, we came to studying of the following
task: the sequence independent random values is given

ξ1, ξ2, . . . , ξn, . . .

about which we will assume that they have terminating akspactations and dispersions. Ley’s
enter designations

ak = Mξk, σ2
k = Dξk, B2

n =
n∑
k=1

σ2
k = D

n∑
k=1

ξk, Fk(x) = P (ξk < x).

It is asked, what conditions it is necessary to dement from ξk, that a sum cumulative
distribution function

1

Bn

n∑
k=1

(ξk − ak) (1)
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met to the normal law?
In the following lecture we will show that performance of a condition of Lindeberg for

this purpose suffices.

Lindeberg’s condition and his probability sense. At any τ > 0

lim
n→∞

1

B2
n

n∑
k=1

∫
|x−ak|>τBn

(x− ak)2 dFk(x) = 0.

Will find our sense of this condition.
Let’s designate through Ak the event, consisting that

|ξk − ak| > τBn (k = 1, 2, . . . , n)

also we will estimate probabilities

P{max
16k6n

|ξk − ak| > τBn}

As
P{max

16k6n
|ξk − ak| > τBn} = P{A1 + A2 + · · ·+ An}

and

P{A1 + A2 + · · ·+ An} 6
n∑
k=1

P{Ak}.

that, having notice that

P{Ak} =

∫
|x−ak|>τBn

(x− ak)2dFk(x) 6
1

(τBn)2

∫
|x−ak|>τBn

(x− ak)2dFk(x).

we find an inequality

P{max
16k6n

|ξk − ak| > τBn} 6
1

τ 2B2
n

n∑
k=1

∫
|x−ak|>τBn

(x− ak)2dFk(x).

Owing to Lindeberg’s condition, for any τ > 0, the last sum at n → ∞ aspires to
zero. Thus, Lindeberg’s condition represents a peculiar requirement of the uniform smallness
(ξk − ak)/Bn в сумме (1). Let’s note once again that the sense of conditions,sufficient for
convergence of cumulative distribution functions of the sum (1) to the normal law, was found
quite out by Markov and Lyapunov’s researches.

Lectures 11–12

Before we will prove Lindeber’s theorem, we will give some inequalities which we will use
at theorem proof. It is obvious that

|eit − 1| =

∣∣∣∣∣∣
t∫

0

eixdx

∣∣∣∣∣∣ 6 t,
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Let’s similarly receve the following inequalities

|eit − 1− it| =

∣∣∣∣∣∣
t∫

0

(eix − 1)dx

∣∣∣∣∣∣ 6 t2

2
,

∣∣∣∣eit − 1− it+
t2

2

∣∣∣∣ =

∣∣∣∣∣∣
t∫

0

(eit − 1− ix)dx

∣∣∣∣∣∣ 6 t3

6
.

(2)

Theorem 8(Lindeberg’s) If sequence of mutally independent random values ξ1, ξ2, . . . , ξn, . . .
at any constant τ > 0 meet Lindeberg’s condition

lim
n→∞

1

B2
n

n∑
k=1

∫
|x−ak|>τBn

(x− ak)2 dFk(x) = 0, (3)

that at n→∞ evenly designation x

P

{
1

Bn

n∑
k=1

(ξk − ak) 6 x

}
→ 1√

2π

x∫
−∞

e−
z2

2 dz. (4)

Proof. Let’s enter designation

ξnk =
ξk − ak
Bn

, Fnk(x) = P{ξnk < x}.

It is apearent that

Mξnk = 0, Dξnk =
1

B2
n

Dξk

and therefore
n∑
k=1

Dξnk = 1. (5)

It is easy to be convinced that Lindaberg’s condition in these designations mill assume the
following air:

lim
n→∞

n∑
k=1

∫
|x|>τ

x2 dFnk(x) = 0, (6)

Caracteristic function of the sum

1

Bn

n∑
k=1

(ξk − ak) =
n∑
k=1

ξnk

it is equal

ϕn(t) =
n∏
k=1

fnk(t).
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We need to prove, that
lim
n→∞

ϕn(t) = e−
t2

2 .

We will establish first of all that fnk(t) at n→∞ is evenly relative k aspires to 1. Really, in
view of equality Mξnk = 0, we will be have:

fnk(t)− 1 =

∞∫
−∞

(eitx − 1− itx)dFnk(x).

On the basis of an inequality (1), we will be have:

|fnk(t)− 1| 6 t2

2

∞∫
−∞

x2dFnk(x).

Let ε the arbitrariest positive number; then it is apearent, that

∞∫
−∞

x2dFnk(x) =

∫
|x|6ε

x2dFnk(x) +

∫
|x|>ε

x2dFnk(x) 6 ε2 +

∫
|x|>ε

x2dFnk(x)

The last item agrees (6) at raither big n is evenly relative ε2. Thus, for rather large n, evenly
on relatively k and t in any final interval |t| < T.

|fnk(t)− 1| 6 ε2T 2.

From here we conclude that is evenly relative k

lim
n→∞

fnk(t) = 1. (7)

From this is follows that for rather large n and t, belonging to a terminating interval |t| < T,
inequality is carried out

|fnk(t)− 1| < 1

2
(8)

using decomposition of logarithm, we have

lnϕn(t) =
n∑
k=1

ln fnk(t) =
n∑
k=1

ln[1 + (fnk(t)− 1)] =
n∑
k=1

(fnk(t)− 1) +Rn,

where

Rn =
n∑
k=1

∞∑
s=2

(−1)s

s
(fnk(t)− 1)s.

on the basis of (8)

|Rn| 6
n∑
k=1

∞∑
s=2

1

2
|fnk(t)− 1|s =

1

2

n∑
k=1

|fnk(t)− 1|2

1− |fnk(t)− 1|
6

n∑
k=1

|fnk(t)− 1|2.
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As
n∑
k=1

|fnk(t)− 1| =
n∑
k=1

∣∣∣∣∣∣
∞∫

−∞

(eitx − 1− itx)dFnk(x)

∣∣∣∣∣∣ 6 t2

2

n∑
k=1

∞∫
−∞

x2dFnk(x) =
t2

2
,

that
|Rn| 6

t2

2
max
16k6n

|fnk(t)− 1|.

From (7) follows
Rn → 0.

Further,
n∑
k=1

(fnk(t)− 1) = −t
2

2
+ ρn,

where

ρn =
t2

2
+

n∑
k=1

∞∫
−∞

(eitx − 1− itx)dFnk(x).

On the basis of (5)

ρn =
n∑
k=1

∫
|x|<ε

(
eitx − 1− itx+

(tx)2

2

)
dFnk(x) +

n∑
k=1

∫
|x|>ε

(
t2x2

2
+ eitx − 1− itx

)
dFnk(x).

Inequalities (1) and (2) allow to make estimates.

|ρn| 6
|t|3

6

n∑
k=1

∫
|x|6ε

|x|3dFnk(x) + t2
n∑
k=1

∫
|x|>ε

x2dFnk(x) 6
|t|3

6
ε

n∑
k=1

∫
|x|6ε

x2dFnk(x)+

+t2
n∑
k=1

∫
|x|>ε

x2dFnk(x) =
|t|3

6
+ t2

n∑
k=1

∫
|x|>ε

x2dFnk(x).

On the basis of Lindeberg’s condition, the right member of the last expression at n → ∞
aspire to zero. Finely we have

lim
n→∞

ϕn(t) = e−
t2

2 .

Lectures 13–14

Statement of question.
The integral theorem of Moivre-Laplace was the ferst version of the central limit theorem.

It is known that the integral theorem of Moivre-Laplace was a consequence of the local
theorem, for the local theorem, for probabilities of a binomial distribution. Let’s remind in
brief these theorems. Let there is a sequence of the distributed random values indapendant
equally ξ1, . . . , ξn with two outcomes

P (ξk = 1) = p, P (ξk = 0) = q = 1− p.
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Let’s consider the sum Sn = ξ+ξ2 + · · · + ξn. Probability distribution Sn is defined by a
binomial distribution,

P (Sn = m) =
n!

m!(n−m)!
pmqn−m.

The local theorem for a binomial distribution looks as follows, At n→∞ and x = o(n1/6)

P (Sn = m) =
1√

2πnpq
e−

x2

2

{
1 +

q − p
6
√
npq

(x3 − 3x) +O

(
1

n

)}
.

Important point of this result is that the right member of the previous ratio is that the
right member of the previous ratio is an item of the integral sum of Riemann, i.e.

∑
a<m<b

P (Sn = m) =
1√
2π

∑
A<x<B

e−
x2

2 ∆x

{
1 +

q − p
6
√
npq

(x3 − 3x) + . . .

}

=
1√
2π

B∫
A

e−
x2

2 dx+O

(
1√
n

)
.

(9)

where ∆x = 1√
npq
, A = a−np√

npq
, B = b−np√

npq
.

Generalization of a binomial case.
Let ξ1, . . . , ξk sequence of the distributed random variables independent equally with

probability distribution

P (ξj = ν) = pν ,
k∑
ν=1

pν = 1

Let

Sn = ξ1 + · · ·+ ξn ∈ {n, n+ 1, . . . , kn}

The task consists in finding a formula for probabilities P (Sn = m).

For finding of the specified formula, we will use expression for characteristic function of
size Sn

fn(t) =
nk∑
m=n

pme
itm, (10)

fn(t) =
(
p1e

it·1 + p2e
it·2 + · · ·+ pke

it·k)n = fn(t). (11)

Multiplying both parts of a ratio (10) on 1
2π
e−itN and integrating on an interval (−π, π) we

will recieve,

P (Sn = N) =
1

2π

π∫
−π

fn(t)e−itNdt.
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On the basis of (11), after an involution, from the previous we will recieve

P (Sn = N) =
1

2π

π∫
−π

fn(t)e−itNdt =

=
1

2π

π∫
−π

∑
m1+···+mk=n

n!

m1! . . .mk!
pm1
1 . . . pmkk e−it(N−m1−2m2−···−kmk)dt.

(12)

Relying on orthogonal property, the previous equally can be written down in a look

P (Sn = N) =
∑

m1+···+mk=n
m1+2m2+···+kmk

n!

m1! . . .mk!
pm1
1 . . . pmkk (13)

The task consists in studying of the asymptotic behavior of probabilities P (Sn = N), at
n → ∞. The task is bound to the asymptotic behavior of probabilities of a polynomial
distribution. On the basis of two representaitens of requirend probability formules (12) and
(13), it is possible to consider two ways for a conclusion of local probability P (Sn = m).

Polinomial distribution law. Let’s consider serial independent tests, in each of which
there is one of events A1, . . . , Ak, with probabilities

P (Ai) = pi, p1 + · · ·+ pk = 1.

Will define probability of that in n tests the event A1 will appear m1 time, an event A2 will
appear m2 time, ets. the event Ak will appear mk time. Possible outcomes n test are various
sets of events Aj1 , Aj2 , . . . , Ajn ji, independently from each other can accept one of values
1, . . . , k. Each such set represents the simple event, and their set makes space of the simple
events. Let A1 appears m1 time, . . .Ak appears mk time. Probability of such event it will be
equal

P (Aj1 , Aj2 , . . . , Ajk) = pm1
1 pm2

2 . . . pmkk

Number of all such probabilities to equally multinomial coefficient, therefore

Pn(m1, . . . ,mk) =
n!

m1! . . .mk!
pm1
1 . . . pmkk . (14)

Really, all shifts from n events equally n!. From them shifts formed by identical events equally
m1! . . .mk!. Having reduced n! by number of identical events we will recive the necessary
resalt. In confirnmation, we will write down a know formula.∑

m1+···+mk=n

n!

m1! . . .mk!
pmk1 . . . pmkk = (p1 + · · ·+ pk)

n = 1.

Models bringing to polynomial distribution One of them is selection with return
of balls from a ballot box. Let in a ballot box are available a finite number of the numbered
balls, numbers change from 1 to k. Thus the probability of emergence of a ball with number
i is supposed equal pi, (p1 + · · ·+pk = 1). Selection with volume return is made n. Then the
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probability of that balls with number 1 will appear m1 time,. . . , with number k will appear
mk time, (m1 + · · ·+mk = n) are defined by a polenomeal distribution.

The following widespread model, distribution of particles on cells, is. Is available k sells,
in each of which independently particulars from each other are in a random way distributed.
The probability of hit of a particle in i a sell is identical to all particles and is equal pi, (p1 +
· · · + pk = 1). Distribution n particles on sells is identical to all particles and is equal. In
this case, the probability of that will get to the first cell m1, . . . , in k cell will get mk also
is defined by a polynomial distribution. The following model is bound to random values. Let
X1, . . . , Xn sequence of the distributed random vectors independent equally. Let’s consider
unit vectors of Evklidov’s space: e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1). In this case we will
put that vectors Xi have the following probability distribution,

P (Xi = ej) = pj, (i = 1, . . . , n, p1 + · · ·+ pk = 1).

For descriptive reasons, we will give the following representation

Xi =


e1 = (1, 0, 0, . . . , 0, 0), with probability p1,
e2 = (0, 1, 0, . . . , 0, 0), with probability p2,
−−−−−−−−−
ek = (0, 0, 0, . . . , 0, 1), with probability pk.

(15)

If to consider the sum X = X1 + · · ·+Xn, in the assumption of that the first possible vector
e1 will appear m1 time, the second it be shown m2 time, etc., k-the possible vector will be
shown mk time, probability of a cooperative vector, P{X = (m1, . . . ,mk)}, where mi ≥ 0
m1 + · · ·+mk = n, whole will have a polynomial distribution.

Lectures 15–16

Properties of the probability distribution of a polinomial. We also give a formula
for the probability distribution of the polinomial (14). For this we consider the transformed
polinomial distribution probability formula.

In this terms, the following assertion holds:

ni = mi + · · ·+mk, ui = pi + · · ·+ pk, qi =
pi
ui
.

Lemma. The probabilities of the multinomial distribution can be represented as a product
of conditional binomial probabilities

Pn(m1, . . . ,mk) =
k−1∏
i=1

ni!

mi!(ni −mi)!
qmii (1− qi)ni−mi . (16)

The validity of the previous formula, verifie the dusclosure of the right side and the
reduction on the corresponding factors. Indeed, discributing the product and considering the
factors individually obtain

n1!

m1!n2!

n2!

m2!n3!
. . .

nk−1!

mk−1!nk!
=

n!

m1! . . .mk−1!mk!

pm1
1 . . . p

mk−1

k−1 pmkk = pm1
1 (1− p1)n−m1

( p2
1− p1

)m2
(

1− p2
1− p1

)n−m1−m2

. . .( pk−1
1− p1 − · · · − pk−2

)mk−1
(

1− pk−1
1− p1 − · · · − pk−2

)n−m1−···−mk−1
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Size ni has binomial distribution law, i.e.

Pn(ni) =
n!

ni!(n− ni)!
unii (1− ui)n−ni , ni =

k∑
j=i

mj, ui =
k∑
j=1

pj. (17)

Proof. Так как n = m1 + · · ·+mk, то при фиксированных mi, . . . ,mk будем иметь,

Pn(ni) =
∑

m1+···+mk=n
m1+···+mi−1=n−ni

Pn(m1, . . . ,mk). (18)

The following representation of a polynomial distribution is apparent

Pn(m, . . . ,mk) =
n!

mi! . . .mk!(n− ni)!
pmii . . . pmkk (1− ui)n−ni×

(n− ni)!
m1! . . .mi−1!

( p1
1− ui

)m1

. . .
( pi−1

1− ui

)mk
(19)

On the basis of the last expression, summing in (18) on m1, . . . ,mi−1, at the fixed mi, . . . ,mk

results, in the following equality,

Pn(ni) =
∑

mi+···+mk=ni

n!

mi! . . .mk!(n−mi − · · · −mk)!
pmii . . . pmkk (1− ui)n−mi− ···−mk

Entering similarly (19) finally we will receive,

Pn(ni) =
∑

mi+···+mk=ni

n!

ni!(n− ni)!
unii (1− ui)n−ni×

× ni!

mi! . . .mk!

(pi
ui

)mi
. . .
(pk
ui

)mk
=

n!

ni!(n− ni)!
unii (1 − ui)n−ni .

Moments of components of random vector in (15) equal,

Mmi = npi, Mm2
i = n(n− 1)p2i + npi, Mmimj = n(n− 1)pipj, (i 6= j). (20)

Proof.

Mm1 =
∑

m1+···+mk=n

m1
n!

m1! . . .mk!
pm1
1 . . . pmkk =

= np1
∑

(m1−1)+m2+···+mk=n−1

(n− 1)!

(m1 − 1)!m2! . . .mk!
pm1−1
1 . . . pmkk = np1

It is apparent that the previous ratio is fair and for the arbitraries mi. futher,

Mm1(m1 − 1) =
∑

m1+···+mk=n

m1(m1 − 1)
n!

m1! . . .mk!
pm1
1 . . . pmkk =

= n(n− 1)p21
∑

(m1−2)+m2+···+mk=n−2

(n− 2)!

(m1 − 2)!m2! . . .mk!
pm1−1
1 . . . pmkk = n(n− 1)p21
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Mm1m2 =
∑

m1+···+mk=n

m1m2
n!

m1! . . .mk!
pm1
1 . . . pmkk =

= n(n− 1)p21
∑

(m1−1)+(m2−1)+···+mk=n−2

(n− 2)!

(m1 − 1)! (m2 − 1)!m3! . . .mk!
pm1−1
1 pm2−1

2 . . . pmkk =

= n(n− 1)p1p2

Thereby the lemma is proved.
Lectures 17 – 18

Pearson’s local theorem. t n → ∞, xi = o(n1/6) for probabilities of a polinomial
distribution fairly following asimptotic decomposition

Pn(m1, . . . ,mk) =
1

(
√

2πn)k−1
√
p1 . . . pk

e
− 1

2

k∑
i=1

x2i

{
1 +

k∑
i=1

x3i − 3xi
6
√
npi

+O

(
1

n

)}
(21)

,
where xi = mi−npi√

npi
.

Proof. Let’s use a Stirling formula

n! =
√

2π nn+1/2e−n +
θ

12n
(0 < θ < 1)

All factorials in (22) it is replaceble on a Stirling formula. As a result we will receive,

Pn(m1, . . . ,mk) =
nn+

1
2 e−n pm1

1 . . . pmkk(√
2πn

)k−1
m
m1+

1
2

1 e−m1 · · ·mk+
1
2

k e−mk
exp

{
θ

12n
− θ1

12m1

− · · · − θk
12mk

}
The received expression can be written down in the following

Pn(m1, . . . ,mk) =
1(√

2πn
)k−1√

p1 . . . pk

(
m1

np1

)−(m1+
1
2
)

. . .

(
mk

npk

)−(mk+ 1
2
)

exp

{
θ

12n
− θ1

12m1

− · · · − θk
12mk

}
= H1H2H3.

where

H1 =
1(√

2πn
)k−1√

p1 . . . pk
, H2 =

(
m1

np1

)−(m1+
1
2
)

. . .

(
mk

npk

)−(mk+ 1
2
)

H3 = exp

{
θ

12n
− θ1

12m1

− · · · − θk
12mk

}
Substituting mi = npi + xi

√
npi and substituting its exprassion for lnH2 we will receive,

lnH2 = −(np1+x1
√
np1+1/2) ln

(
1 +

x1√
np1

)
−· · ·−(npk+xk

√
npk+1/2) ln

(
1 +

xk√
npk

)
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Decompositing logarithms in a row, removing the brackets and giving the corresponding
expressions at identical degrees (npi)

−j we will receive

lnH2 = −1

2

k∑
i=1

x2i +R(x1, . . . , xk).

where

R(x1, . . . , xk) =
k∑
i=1

{
∞∑
j=1

(−1)j+1 xj+2
i

(j + 1)(j + 2)(npi)j/2
+

1

2

∞∑
j=1

(−1)j

j

(
xi√
npi

)j}

For lnH2 we will be limitied to two terms, of decomposition, i.e.

R(x1, . . . , xk) = −1

2

k∑
i=1

x2i +
k∑
i=1

x3i − 3xi
6
√
npi

+O

(
1

n

)
.

Using the received representation, in the form of the Gram-Charlier expansion in a series, we
will receive (22).

Remarks.
1) From Pirson’s theorem at k = 2 the theorem of Moivre does not follows. This results

from the fact that normalization in the corresponding theorems a various. Really, in the
theorem Moivre the normalization has an appearence

x =
m− np
√
npq

In Pearson’s theorem

xi =
mi − npi√

npi
.

2) In this regard, from Pearson’s decomposition, it is impossible immediatly, to pass to the
integral theorem. The matter is that expression

χ2 =
k∑
i=1

(mi − npi)2

npi
=

k∑
i=1

x2i

represents the positive definet quadratic form.It follows from a condition,

k∑
i=1

xi
√
pi =

k∑
i=1

mi − npi√
n

= 0.

Thus, we are faced by task — to consider Pearson’s local theorem in the transformed form.
It can be reached by means of reduction of the quadratic form to a canonical form. Such
transformation is Helmert’s generalized transformation.
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Lectures 19—20.
Helmert’s generalized transformation.

Let there is a quadratic form χ2, presented in a look

χ2 = x21 + x22 + · · ·+ x2k; c1x1 + c2x2 + · · ·+ ckxk = λ, (22)

where λ, ci, i = 1, 2, . . . , k real numbers.
Let’s enter designations: ~X = (x1, . . . , xk)

T , ~Y = (λ/ω1, y1, . . . , yk−1)
T ,

ω2
i = c2i + c2i+1 + · · ·+ c2k, ~c = (c1/ω1, c2/ω1, . . . , ck/ω1)

T

Theorema.
The quadratic form (1), by means of orthogonal transformation ~X = C1

~Y , где

C1 =



c1
ω1

±ω2

ω1
0 0 · · · 0 0

c2
ω1

∓ c1c2
ω1ω2

±ω3

ω2
0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ck−2

ω1
∓ c1ck−2

ω1ω2
∓ c2c3
ω2ω3

∓ c3c4
ω3ω4

· · · ±ωk−1

ωk−2
0

ck−1

ω1
∓ c1ck−1

ω1ω2
∓ c2ck−1

ω2ω3
∓ c3ck−1

ω3ω4
· · · ∓ ck−2ck−1

ωk−2ωk−1
± ωk
ωk−1

ck
ω1

∓ c1ck
ω1ω2

∓ c2ck
ω2ω3

∓ c3ck
ω3ω4

· · · ∓ ck−2ck
ωk−2ωk−1

∓ ck−1ck
ωk−1ωk


is provided to a look χ2 = λ2/ω2

1 + y21 + · · ·+ y2k−1.

The generalized transformation is necessary for a special case which meets in the multidimensional
local theorem of Moivre-Laplace

χ2
1 = x21 + x22 + · · ·+ x2k;

√
p1x1 +

√
p2x2 + · · ·+√pkxk = 0, (23)

where pi > 0, p1 + p2 + · · · + pk = 1. That transformation of the quadratic form (2) has
a degenerate matrix is remarkable. Nevertheless, this transformation leads χ2

1 to a look:
χ2
1 = y21 + y22 + · · ·+ y2k−1.

Lectures 21 — 22.

Multidimensional of Moivre – Laplace theorem.
Let’s consider expression of asymptotic decomposition for probabilities of a polynomialdistribution

Pn(m1, . . . ,mk) =
1

(
√

2πn)k−1
√
p1 . . . pk

e
− 1

2

k∑
i=1

x2i

{
1 +

k∑
i=1

x3i − 3xi
6
√
npi

+O

(
1

n

)}
(24)

,
where xi = mi−npi√

npi
.

We will write out expression of the quadratic form in the following form:

χ2 = x21 + x22 + · · ·+ x2k;
√
p1x1 +

√
p2x2 + · · ·+√pkxk = 0, (25)
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On the basis a lemma 1 we will construct transformation

x1 =

√
u2
u1
y1

x2 = −
√
p1p2
u1u2

y1 +

√
u3
u2
y2

x3 = −
√
p1p3
u1u2

y1 −
√
p2p3
u2u3

y2 +

√
u4
u3

−−−−−−−−−−−−−−−−−−−−−−−−−−

xk−1 = −
√
p1pk−1
u1u2

y1 −
√
p2pk−1
u2u3

y2 − · · · −
√
pk−2pk−1
uk−2uk−1

yk−2 +

√
uk
uk−1

yk−1

xk = −
√
p1pk
u1u2

y1 −
√
p2pk
u2u3

y2 − · · · −
√

pk−2pk
uk−2uk−1

yk−2 −
√
pk−1pk
uk−1uk

yk−1

(26)

where
ui = pi + · · ·+ pk, u1 = 1, uk = pk.

The matrix of transformation (27) is degenerate is remarkable. Nevertheless we can define
an inverse transformation. The new variable will have an appearence

yi = xi

√
ui+1

ui
−
√

pi
uiui+1

(
xi+1
√
pi+1 + · · ·+ xk

√
pk

)
=

mi − npi
npi

√
ui+1

ui
−
√

pi
uiui+1

mi+1 + · · ·+mk − n(pi+1 + · · ·+ pk)

n
=

1
√
npiuiui+1

[
(mi − npi)ui+1 − pi(mi+1 + · · ·+mk − nui+1)

]
=

1
√
npiuiui+1

[
(mi − npi)ui+1 +mipi − pi(mi +mi+1 + · · ·+mk − nui+1)

]
.

Thus,

yi =
miui − (n−m1 − · · · −mi−1)pi√

npiuiui+1

. (i = 1, 2, . . . , k − 1). (27)

On the basis of transformation (27) expression (25) will assume an air:

Pn(m1, . . . ,mk) =
1

(
√

2πn)k−1
√
p1 . . . pk

e
− 1

2

k−1∑
i=1

y2i

{
1 +

k∑
i=1

x3i − 3xi
6
√
npi

+O

(
1

n

)}
(28)

, Let’s consider an increase yi, at the fixed values m1, . . . ,mi−1. As a result, we will receve

∆yi = yi(mi + 1)− yi(mi) =

√
ui

npiui+1

.

Therefore,

∆y1 . . .∆yk−1 =
1

(
√
n)k−1

√
p1 . . . pk

.
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By means of transformation (27) we will receive,

k∑
i=1

x3i − 3xi
6
√
npi

=
k−1∑
i=1

1

6
√
npiuiui+1

{
(ui+1 − pi)y3i − 3yi

[
ui+1 − (k − i)pi + pi

k−1∑
j=i+1

y2i

]}
. (29)

where in a right member of the last expression, i = 1, . . . , k − 1,
1∑
2

≡ 0. Let’s notice that

at k = 2, the ratio (30) will assume an air,

2∑
i=1

x3i − 3xi
6
√
npi

=
q − p

6
√
npq

(x3 − 3x).

So, decomposition (29) sign in forme

Pn(m1, . . . ,mk) =
1

(
√

2π)k−1
e

1
2

k−1∑
i=1

y2i
∆y1 . . .∆yk−1×

×

{
1 +

k−1∑
i=1

1

6
√
npiuiui+1

{
(ui+1 − pi)y3i − 3yi

[
ui+1 − (k − i)pi + pi

k−1∑
j=i+1

y2i

]}}
.

(30)

Let’s consider a body (31) in a look,

1√
2π

exp

{
−(mi − (n−m1 − · · · −mi−1)pi)

2

2npi
ui+1

ui

}
1√

npi
ui+1

ui

.

Thus size mi at fixed m1, . . .mi−1 has the normal distribution law with parameters a =
(n−m1 − · · · −mi−1)pi, σ2 = npi

ui+1

ui
.

Lecture 23—24.
Culkulater of moments yi.

For finding of unknown quantaties of the polinomial distribution law.

Mmi = npi, Mm2
i = n(n− 1)p2i + npi, Mmimj = n(n− 1)pipj (i 6= j).

Let’s enter designation ni = mi + · · ·+mk.

Mni = nui, Mn2
i = n(n− 1)u2i + nui.

Let’s consider also at, i < j.

Mninj = M(mi + · · ·+mj−1 + nj)nj = n(n− 1)(pi + · · ·+ pj−1)uj +n(n− 1)u2j +nuj =

= n(n− 1)(pi + · · ·+ pj−1 + uj)uj + nuj = n(n− 1)uiuj + nuj.

Let’s yi consider representation

yi =
miui+1 − (n−m1 − · · · −mi)pi√

npiuiui+1

=
miui+1 − ni+1pi√

npiuiui+1



26

Follows,

Myi =
npiui+1 − npiui+1√

npiuiui+1

= 0, Dyi = My2i =
m2
iu

2
i+1 − 2mini+1ui+1pi + n2

i+1p
2
i

npiuiui+1

=

=
1

npiuiui+1

[
n(n− 1)p2iu

2
i+1 + npiu

2
i+1 − 2n(n− 1)u2i+1p

2
i + n(n− 1)u2i+1p

2
i + nui+ip

2
i

]
=

=
nui+1pi(pi + ui+1)

npiuiui+1

=
npiuiui+1

npiuiui+1

= 1

Beliving i < j,

Cov(yi, yj) = Myiyj = M

(
miui+1 − ni+1pi√

npiuiui+1

mjuj+1 − nj+1pj√
npjujuj+1

)
Let’s consider expectation

M(miui+1 − ni+1pi)(mjuj+1 − nj+1pj) = M(mimjui+1uj+1 −minj+1ui+1pj−

−mjni+1piuj+1 + ni+1nj+1pipj) = n(n− 1){pipjui+1uj+1 − pipjui+1uj+1−
−pipjui+1uj+1} − npipjuj+1 + npipjuj+1 = 0

Thus yi (i = 1, . . . , k − 1) is independent.

Integral theorems.

Let there is some squarable are G. It is reqred to find probability

P (~m ∈ G) =
∑
~m∈G

n!

m1! . . .mk!
pm1
i . . . pmkk .

Let’s apply the many-dimensional local theorem we have

P (~m ∈ G) =
1

(
√

2π)k−1

∑
~m∈G

e
1
2

k−1∑
i=1

y2i
∆y1 . . .∆yk−1×

×

{
1 +

k−1∑
i=1

1

6
√
npiuiui+1

{
(ui+1 − pi)y3i − 3yi

[
ui+1 − (k − i)pi + pi

k−1∑
j=i+1

y2i

]}}
.

Apply a toting formula

P (~m ∈ G) =
1

(
√

2π)k−1

∫
· · ·
∫

~y∈G

e
1
2

k−1∑
i=1

y2i
dy1 . . . dyk−1 +O

(
1√
n

)
. (31)

Private cases: 1)Let

G =

{
(y1, . . . yk−1) : χ2 =

k−1∑
i=1

y2i 6 x

}
.
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In this case, we came to a chi-square of distribution,

P (χ2 6 x) =
1

2
k−1
2 Γ

(
k−1
2

) x∫
0

z
k−1
2
−1e−

z
2dz + εn,

εn = O
(
1
n

)
. 2)Let

G = {a1 < y1 6 b1, . . . , ak−1 < y 6 bk−1} .

P (~y ∈ G) =
k−1∏
i=1

 1√
2π

bi∫
ai

e−
y2

2 dyi

+O

(
1√
n

)
.

3)Let

G =

{
(y1, . . . yk−1) : max

i6i6k−1
|yi| 6 x

}
.

P ( max
i6i6k−1

|yi| 6 x) =

 1√
2π

bi∫
ai

e−
y2

2 dyi

k−1

+O

(
1

n

)
.

The last ratio is received by means a formula of toting of Eyler-Makloren.
Lecture 25-26.
Direct method of summation.
Let ξ1, . . . , ξk sequence of the distributed sizes independent equally with a probability

distribution

P (ξj = ν) = pν ,
k∑
ν=1

pν = 1

Let

Sn = ξ1 + · · ·+ ξn ∈ {n, n+ 1, . . . , kn}

We need to find a formula for probabilities P (Sn = m). Let’s use the following expression for
characteristic function of Sn

fn(t) =
nk∑
m=n

pme
itm, (32)

fn(t) =
(
p1e

it·1 + p2e
it·2 + · · ·+ pke

it·k)n = fn(t). (33)

Multiplying both parts of a ratio (10) non 1
2π
e−itN and integrating on an interval, (−π, π)

,we will have

P (Sn = N) =
1

2π

π∫
−π

fn(t)e−itNdt.
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On the (11) we get

P (Sn = N) =
1

2π

π∫
−π

fn(t)e−itNdt =

=
1

2π

π∫
−π

∑
m1+···+mk=n

n!

m1! . . .mk!
pm1
1 . . . pmkk e−it(N−m1−2m2−···−kmk)dt.

(34)

Or

P (Sn = N) =
∑

m1+···+mk=n
m1+2m2+···+kmk

n!

m1! . . .mk!
pm1
1 . . . pmkk (35)

Using formulas (35) and (31) we get

P (Sn = N) =
1

2π

π∫
−π

∑
m1+···+mk=n

e
− 1

2

k∑
j=1

x2j−it(N−m1−2m2−···−kmk)

(
√

2πn)k−1
√
p1 . . . pk

dt (36)

Using mj = npj + xj
√
npj, we get

−2it(m1+2m2+ · · ·+kmk−N) = 2it
[
N − na−

√
n
(
x1
√
p1 + 2x2

√
p2 + · · ·+ kxk

√
pk

)]
.

Using of transformation,

x1 =

√
u2
u1
y1

x2 = −
√
p1p2
u1u2

y1 +

√
u3
u2
y2

x3 = −
√
p1p3
u1u2

y1 −
√
p2p3
u2u3

y2 +

√
u4
u3

−−−−−−−−−−−−−−−−−−−−−−−−−−

xk−1 = −
√
p1pk−1
u1u2

y1 −
√
p2pk−1
u2u3

y2 − · · · −
√
pk−2pk−1
uk−2uk−1

yk−2 +

√
uk
uk−1

yk−1

xk = −
√
p1pk
u1u2

y1 −
√
p2pk
u2u3

y2 − · · · −
√

pk−2pk
uk−2uk−1

yk−2 −
√
pk−1pk
uk−1uk

yk−1

get

x1
√
p1 + 2x2

√
p2 + · · ·+ kxk

√
pk =

√
p1
u1u2

(u2 − 2p2 − · · · − kpk)y1 +

√
p2
u2u3

(2u3 − 3p3−

− · · · − kpk)y2 + · · ·+
√

pk−1
uk−1uk

(uk(k − 1)− kpk)yk−1 = −
√

p1
u1u2

a1y1−

−
√

p2
u2u3

a2y2 − · · · −
√

pk−1
uk−1uk

ak−1yk−1.



29

where aj = pj+1 + 2pj+2 + · · ·+ (k − j)pk. Consiquently,

x21 + · · ·+ x2k − 2it(x1
√
p1 + 2x2

√
p2 + · · ·+ kxk

√
pk = y21 + · · ·+ y2k−1+

2it

(√
p1
u1u2

a1y1 +

√
p2
u2u3

a2y2 + · · ·+
√

pk−1
uk−1uk

ak−1yk−1

)
=

=

(
y1 + it

√
p1
u1u2

a1

)2

+ · · ·+
(
yk−1 + it

√
pk−1
uk−1uk

ak−1

)2

+ t2σ2.

where σ2 = p1 + 22p2 + · · ·+ k2pk − a2 = Mξ2 − (Mξ)2 = Dξ. On the basis

P (Sn = N) =
1

2π
√
n

π
√
n∫

−π
√
n

∑
χ2<r2

exp

{
−1

2

k−1∑
j=1

(
yj + it

√
pj

ujuj+1
aj

)2
− t2σ2

2
− itξ

}
(
√

2πn)k−1
√
p1 . . . pk

dt+O

(
1√
n

)

where ξ = N−na√
n
.

Lectures 27 — 28
Direct method (continuation).

Way 1.
Let’s write down required probability, in a look

P (Sn = N) =
1

2π
√
n

∞∫
−∞

e−
1
2
(t2σ2−2itξ)Λ(y1, . . . , yk−1)dt+O

(
1√
n

)
. (37)

where

Λ(y1, . . . , yk−1) =
1

(
√

2π)k−1

∑
χ2<r2

exp

{
−1

2

k−1∑
j=1

(
yj + itaj

√
pj

ujuj+1

)2
}

∆y1 . . .∆yk−1.

As a result of summing the previous expression will assume an air,

Λ =
1

(
√

2π)k−1

∞∫
· · ·
∫

−∞

exp

{
−1

2

k−1∑
j=1

(
yj + itaj

√
pj

ujuj+1

)2
}
dy1 . . . dyk−1+O

(
1√
n

)
. (38)

Let’s make variable replacement

zj = yj + itaj

√
pj

ujuj+1

,

and having substituted integral in (39), we will receive

Λ =
1

(
√

2π)k−1

∞∫
· · ·
∫

−∞

e
− 1

2

k−1∑
j=1

z2j
dz1 . . . dzk−1 +O

(
1√
n

)
= 1 +O

(
1√
n

)
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Substituting the received result for Λ in (38), we will have

P (Sn = N) =
1

2π
√
n

∞∫
−∞

e−
1
2
(t2σ2−2itξ)dt+O

(
1√
n

)
=

=
1

2π
√
n

∞∫
−∞

e−
1
2(tσ− iξσ )− ξ2

2σ2 dt+O

(
1√
n

)
.

After variable replacement

z = tσ − iξ

σ
, dt =

1

σ
dz,

we get,

P (Sn = N) =
1√

2πnσ
e−

(n−na)2

2nσ2 +O

(
1√
n

)
.

Thus, we received the local theorem

Way 2.
Let’s proceed from a formula (36)

P (Sn = N) =
∑

m1+···+mk=n
m1+2m2+···+kmk

n!

m1! . . .mk!
pm1
1 . . . pmkk

We will need the following
Lemma

χ2 = x21 + x22 + · · ·+ x2k,

x1
√
p1 + x2

√
p2 + · · ·+ xk

√
pk = t

x1
√
p1 + 2x2

√
p2 + · · ·+ kxk

√
pk = τ

(39)

by means of orthogonal transformation (27) it is led to a look

χ2 = t2 +
(τ − at)2

σ2
+

k−2∑
ν=1

z2ν

where a = p1 + 2p2 + · · ·+ kpk, σ2 =
k∑
ν=1

(ν − a)2pν

Let’s note the main stages of the proof. At the first stage we consider

χ2 = x21 + x22 + · · ·+ x2k, x1
√
p1 + x2

√
p2 + · · ·+ xk

√
pk = t.
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On the basis of (27), we built the following orthogonal transformation

x1 =

√
u2
u1
y1 + t

√
p1

x2 = −
√
p1p2
u1u2

y1 +

√
u3
u2
y2 + t

√
p2

−−−−−−−−−−−−−−−−−−−−−−−−−−−

xk−1 = −
√
p1pk−1
u1u2

y1 − · · · −
√
pk−2pk−1
uk−2uk−1

yk−2 +

√
uk
uk−1

yk−1 + t
√
pk−1

xk = −
√
p1pk
u1u2

y1 − · · · −
√

pk−2pk
uk−2uk−1

yk−2 −
√
pk−1pk
uk−1uk

yk−1 + t
√
pk

(40)

Lectures 29 — 30
Continuation.

Using (40), we will find expression of the second linear condition from (39): in terms

k∑
ν=1

νxν
√
pν =

k−1∑
ν=1

cνyν + at = τ,

where

cν =

√
uν+1pν
uν

ν −
√

pν
uνuν+1

(
(ν + 1)pν+1 + (ν + 2)pν+2 + · · ·+ kpk

)
=

= −
√

pnu
uνuν+1

(
pν+1 + 2pν+2 + · · ·+ (k − ν)pν

)
= −

√
pν

uνuν+1

aν+1

aν = pν + 2pν+1 + · · ·+ (k − ν + 1)pk.

(41)

Noticing, that aν+1 − aν+2 = uν+1 we will have

σ2
ν = c2ν + · · ·+ c2k =

pν
uνuν+1

a2ν+1 +
pν+1

uν+1uν+2

a2ν+2 + · · ·+ pk−1
uk−1uk

a2k =

=

(
1

uν+1

− 1

uν

)
a2ν+1 +

(
1

uν+2

− 1

uν+1

)
a2ν+2 + · · ·+

(
1

uk
− 1

uk−1

)
a2k =

= −
a2ν+1

uν
+
a2ν+1 − a2ν+2

uν+1

+ · · ·+
a2k−1 − a2k
uk−1

− a2k
uk

= −
a2ν+1

uν
+ aν+1+

2(aν+2 + · · ·+ ak) = −a
2
ν

uν
+ aν + 2(aν+1 + · · ·+ ak) = c2ν −

a2ν
uν
.

Here, c2ν = aν + 2(aν+1 + · · ·+ ak) = pν + 22pν+1 + · · ·+ (k − ν + 1)2pk.
Thus is our case a1 = a = MX1, σ2

1 = σ2 = DX1. Besides we will note that σ2
k−1 = pk−1pk.

Therefore, we have

χ2 =
k−1∑
ν=1

y2ν ,

k−1∑
ν=1

cνyν = τ − at.
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Let’s apply a lemma 1, as a result we will receve

χ2 =
k−2∑
ν=1

z2ν +
(τ − at)2

σ2

where communication between yν and zj is istablished by transformation

y1 =

√
p1
u1u2

a2
σ1

(
τ − at
σ1

)
+

√
u1
u2

σ2
σ1
z1

y2 =

√
p2
u2u3

a3
σ1

(
τ − at
σ1

)
−
√
p1p2
u2u3

a2a3
σ1σ2

z1 +

√
u2
u3

σ3
σ2
z2

−−−−−−−−−−−−−−−−−−−−−−−

yk−2 =

√
pk−2

uk−2uk−1

ak−2
σ1

(
τ − at
σ1

)
−
√

p1pk−2
uk−2uk−1

a2ak−1
σ1σ2

z1 − · · ·−

−
√
pk−3pk−2
uk−2uk−1

ak−2ak−1
σk−3σk−2

zk−3 +

√
uk−2
uk−1

σk−1
σk−2

zk−2

yk−1 =

√
pk−1
uk−1uk

ak
σ1

(
τ − at
σ1

)
−
√
p1pk−1
uk−1uk

a2ak
σ1σ2

z1 − · · ·−

−
√
pk−2pk−1
uk−1uk

ak−1ak
σk−2σk−1

zk−2

(42)

On the basis of (40) and (42) we can write down the following transformation

x1√
p1

= t+
1− a
σ1

τ +
σ2

σ1
√
p1
z1

x2√
p2

= t+
2− a
σ1

τ +

√
p1

σ1σ2
(a2 − c2)z1 +

σ3
σ2
√
p2
z2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
xk−2√
pk−2

= t+
k − 2− a

σ1
τ +

√
p1

σ1σ2
((k − 3)a2 − c2)z1 +

√
p2

σ2σ3
((k − 4)a3 − c3)z2 + · · ·+

√
pk−3

σk−3σk−2
(ak−2 − ck−2)zk−3 +

σk−1
σk−2
√
pk−2

zk−2

xk−1√
pk−1

= t+
k − 1− a

σ1
τ +

√
p1

σ1σ2
((k − 2)a2 − c2)z1 +

√
p2

σ2σ3
((k − 3)a3 − c3)z2 + · · ·+

√
pk−3

σk−3σk−2
(2ak−2 − ck−2)zk−3 +

√
pk−2

σk−2σk−1
(ak−1 − ck−1)zk−2

xk√
pk

= t+
k − a
σ1

τ +

√
p1

σ1σ2
((k − 1)a2 − c2)z1 +

√
p2

σ2σ3
((k − 2)a3 − c3)z2 + · · ·+

+

√
pk−3

σk−3σk−2
(3ak−2 − ck−2)zk−3 +

√
pk−2

σk−2σk−1
(ak−1 − ck−1)zk−2+

+

√
pk−2

σk−2σk−1
(2ak−1 − ck−1)zk−2

(43)
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As a results, we have

P (Sn = N) =
∑ 1

(
√

2πn)k−1
√
p1 . . . pk

exp

{
− τ 2

2σ2
− 1

2

k−2∑
j=1

z2j

}(
1 +O

(
1√
n

))
Furthe

∆z1 . . .∆zk−2 =
σ1
σ2

1√
nk−2p1 . . . pk−2

.

Considering that

1

(
√
n)k−1

√
p1 . . . pk

=
1√
nσ2

1

∆z1 . . .∆zk−2

As a result, we will receive

P (Sn = N) =
1√

2πnσ
e−

(N−na)2

2nσ2

(
1 +O

(
1√
n

))
.
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