Работа транзисторного каскада в режиме малого сигнала

Цель

- 1. Исследование коэффициента усиления по напряжению в усилителях с общим эмиттером и общим коллектором.
- 2. Определение фазового сдвига сигналов в усилителях.
- 3. Измерение входного сопротивления усилителей.
- 4. Исследование влияния входного сопротивления усилителя на коэффициент усиления по напряжению.
- 5. Измерение выходного сопротивления усилителей.
- 6. Анализ влияния нагрузки усилителя на коэффициент усиления по напряжению.
- 7. Исследование влияния разделительного конденсатора на усиление переменного сигнала.
- 8. Анализ влияния сопротивления Rэ в цепи эмиттера на коэффициент усиления по напряжению.

Примечание. В тексте используются принятые в отечественном стандарте обозначения величин для транзисторного каскада $E_{\it E}$, $E_{\it K}$, $E_{\it J}$. Редактор, используемый в Multisim для обозначения элементов, не позволяет использовать кириллицу и индексы, потому обозначения на рисунках отличаются от обозначений в тексте. Однако соответствия обычно очевидны: Ес соответствует $E_{\it K}$, $E_{\it C}$ — $E_{\it J}$, $E_{\it D}$ — $E_{\it E}$. В случаях, когда соответствия неочевидны, мы будем при водить обозначение на рисунке в скобках, например, $E_{\it E}$ ($E_{\it D}$).

КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Коэффициент усиления по напряжению определяется отношением амплитуд выходного синусоидального напряжения к входному:

$$K_{\rm y} = U_{\scriptscriptstyle
m BMX}/U_{\scriptscriptstyle
m BX}$$

1. Усилитель с общим эмиттером.

Схема транзисторного каскада с общим эмиттером представлена на рис. 1

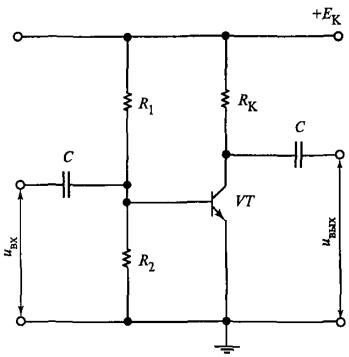


Рисунок 1.

Коэффициент усиления по напряжению усилителя с ОЭ приближенно равен отношению сопротивления в цепи коллектора ГК к сопротивлению в цепи эмиттера ГЭ:

$$K_{\rm y} = r_{\rm K}/r_{\rm B}$$

где r_K - сопротивление в цепи коллектора, которое определяется параллельным соединением сопротивления коллектора R_K и сопротивления нагрузки R_H , (не показанном на рис. 1)

$$r_{\rm K} = \frac{R_{\rm K} R_{\rm H}}{R_{\rm H} + R_{\rm K}}$$

гэ - дифференциальное сопротивление эмиттерного перехода, равное гэ = 25мВ/Іэ. Для усилителя с сопротивлением Rэ в цепи эмиттера коэффициент усиления равен

$$K_{y} = \frac{r_{K}}{r_{9} + R_{9}}$$

Входное сопротивление усилителя по переменному току определяется как отношение амплитуд синусоидального входного напряжения Uвх и входного тока Івх:

$$r_{\rm BX} = U_{\rm BX \, m} / I_{\rm BX \, m}$$

Входное сопротивление транзистора r_i определяется по формуле:

$$r_i = \beta_{AC} r_{\ni}$$

Входное сопротивление усилителя по переменному току Гвх вычисляется как параллельное соединение сопротивлений ri, R1 и R2:

$$1/r_{\rm BX} = 1/R_1 + 1/R_2 + 1/r_{\rm I}$$

Значение дифференциального выходного сопротивления схемы находится по напряжению u_x холостого хода на выходе усилителя, которое может быть измерено как падение напряжения на сопротивлении нагрузки, превышающем 200 кОм, и по напряжению $u_{\text{вых}}$, измеренному для данного сопротивления нагрузки R_{H} , из следующего уравнения, решаемого относительно $r_{\text{вых}}$:

$$u_{\rm BMX}/u_{\rm X} = \frac{R_{\rm H}}{R_{\rm H} + r_{\rm BMX}}$$

ПОРЯДОК ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

Эксперимент 1. Исследование каскада с общим эмиттером в области малого сигнала. а). Открыть файл с10_010 со схемой, изображенной на рис. 3. Установочные параметры приборов также должны соответствовать изображению.

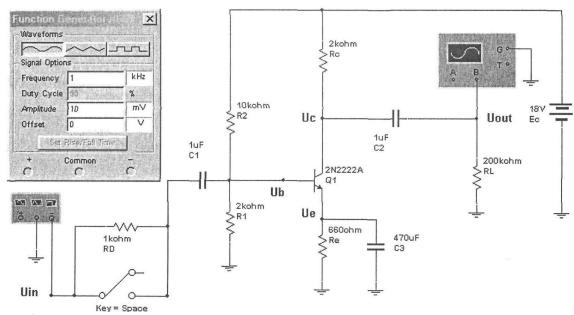


Рисунок 2

б). Включить схему. Для установившегося режима в раздел "Результаты экспериментов" записать результаты измерений амплитуд входного и выходного напряжений, разности фаз входного и выходного синусоидальных сигналов (разность фаз можно определить при помощи Боде-плоттера). По результатам измерений амплитуд входного и выходного синусоидальных напряжений, вычислить коэффициент усиления усилителя по напряжению. Результат записать в таблицу.

Коэфф. Усиления			
Расчет Эксперимент			

в). Для схемы на рисунке определить ток эмиттера. По его значению вычислить дифференциальное сопротивление гэ эмиттерного перехода. Используя найденное значение, вычислить коэффициент усиления каскада по напряжению. Результаты записать в таблицу.

Е	r_{9}

г). Подключить резистор R_D между точкой Uin и конденсатором C1, разомкнув ключ [Space]. Включить схему. Измерить амплитуды входного U_{BX} и выходного Uвых напряжения. Вычислить новое значение коэффициента усиления по напряжению по результатам измерений. Результаты записать в таблицу.

	$\mathrm{U}_{\mathrm{BX.M}}$	U вых.м	Ку
R _D =1 кОм			
$R_D=0$			

д). Переместить щуп канала A осциллографа в узел Ub. Снова включить схему и измерить амплитуду Ubx входного синусоидального напряжения в точке Uin. По результатам измерения напряжения Ubx.м и Ubbx.м вычислить коэффициент усиления по напряжению усилительного каскада. По результатам измерения амплитуд напряжения U_{BX} .м и U_{EM} вычислить входной ток Ibx. По значениям Ubx.м и Ibx.м вычислить входное сопротивление rbx усилителя по переменному току. Результаты записать.

$\mathrm{U}_{\mathrm{BX.M}}$	IBX.M	r_{BX}

	$\beta_{ m DC}$	r_9	\mathbf{r}_{i}
Ī			

ж). Замкнуть резистор R_D между узлом Uin и конденсатором C1, замкнув ключ [Space]. Переместить щуп канала A осциллографа в узел Uin. Установить номинал резистора R_L 2 кОм. Затем включить схему и измерить амплитуды входного и выходного синусоидального напряжения. Используя результаты измерений, вычислить новое значение коэффициента усиления по напряжению. Результаты записать в раздел "Результаты экспериментов".

	$R_{\rm L}$	$U_{BX.M}$	U вых.м	Ку
R _D =1 кОм	2 кОм			

- з). Используя результаты измерений амплитуды выходного синусоидального напряжения в пункте б) и пункте ж), значение сопротивления нагрузки в пункте ж), вычислить выходное сопротивление усилителя. Результат записать в раздел "Результаты экспериментов".
- и). Установить номинал резистора R_L 200 кОм. Переставить щуп канала В осциллографа в узел Uc и включить схему. Измерить постоянную составляющую выходного сигнала и записать результат измерения .

	<u> </u>		
	R_{L}	$U_{\mathrm{BX.M}}$	Ис.пост
$R_D=0$	200 кОм		

к). Вернуть щуп канала В осциллографа в узел Uouт. На осциллографе установить масштаб для входа 10 мВ/дел. Убрать шунтирующий конденсатор Сз и включить схему. Измерить амплитуды входного и выходного синусоидального напряжения. По результатам измерений вычислить значение коэффициента усиления каскада с ОЭ с сопротивлением в цепи эмиттера по напряжению. Записать результаты в раздел "Результаты экспериментов".

	$U_{\mathrm{BX.M}}$	U вых.м	Ку
R_{\ni}			
$R_{\mathfrak{I}}=0$			

л). По величине сопротивления r и значению сопротивления R вычислить значение коэффициента усиления усилителя с O с сопротивлением в цепи эмиттера по напряжению.

Ку(расчет) =

Вопросы

- 1. Каково отличие практического и теоретического значений коэффициента усиления по напряжению?
- 2. Какова разность фаз между входным и выходным синусоидальными сигналами в усилителе с ОЭ?
- 3. Как влияет входное сопротивление на коэффициент усиления по напряжению?
- 4. Какова связь между входным напряжением (узел Uвх) и напряжением на базе (узел UБ) при включении между ними сопротивления?
- 5. Каково отличие практического и теоретического значений входного сопротивления для усилителей по переменному току?
- 7. Какое влияние оказывает понижение сопротивления нагрузки на коэффициент усиления по напряжению?
- 8. Какова связь между выходным сопротивлением усилителя и сопротивлением в цепи коллектора RK?
- 9. Как влияет сопротивление Rэ на коэффициент усиления по напряжению усилителя? 10.Каково отличие практического и теоретического значений напряжения UБ по постоянному току?