Методика расчета расхода теплового воздуха через стенку лопастей работающего агрегата Н.Б. Каласов, Р.К. Манатбаев

-Казахский Национальный университет имени аль-Фараби, Алматы, Казахстан;

Республика Казахстан по своему географическому положению находится в ветровом поясе северного полушария и на значительной территории Казахстана наблюдаются достаточно сильные воздушные течения, преимущественно северо-восточного, юго-западного направлений. В ряде районов Казахстана среднегодовая скорость ветра составляет более 6 м/с, что делает эти районы привлекательными для развития ветроэнергетики.

В периоды наибольшей нужды в тепловой и электрической энергии ВЭУ могут быть выведены из строя вследствие заносов мокрым снегом с последующим резким понижением температуры воздуха и образованием тяжелого ледового покрова на них.

Одним из возможных путей защиты наружных поверхности работающей ветротурбины от налипания мокрого снега является подогрев теплым воздухом, протекающим по внутренним каналам аппарата. Тепловая защита является более радикальным средством. В данной работе рассматриваются методика расчета расхода теплового воздуха через стенку реального аппарата. Используя эту методику, были определены расходы полного количество тепла на стенках специфического канала.

Ключевые слова: ветротурбина, число Рейнольдса, теплый воздух, скорость ветра, лопасть.

Введение

Схема движения теплого воздуха полости ветротурбины карусельного типа состоит следующим образом. Воздух с расходом Q_0 проходит по кольцевому каналу вращающегося вала, затем в равной доле ($Q_0/2$) поступает в 2 маха, подходит к рабочим лопастям и здесь вновь раздваивается — одна половина расхода ($Q_0/4$) движется по верхней половине лопасти и выбрасываются в атмосферу, другая половина расхода ($Q_0/4$) проходит по нижней половине и тоже выходит в атмосферу[1]. Тепло снимается с наружных поверхностей вала вращения, махов и рабочих лопастей. Для течения в махах и лопастях задача получается симметричной относительно оси вращения турбины, так что достаточно рассмотреть течение и теплообмен в одном из махов и одной половинке лопасти.

В данной работе рассматриваются методика расчета расхода теплового воздуха через стенку реального аппарата.

Методика расчета

Методика расчета строится следующим образом. Вначале необходимо определить расход теплого воздуха внутри маха. Для расчета потери тепла через стенку канала определим силу необходимую для перемещения массы теплого воздуха в канале маха. Массовый расход равен ρ Qм (где Qм объемный расход воздуха внутри маха в единицу времени) и имеет размерность ρ Qм (кг/с)

Если этот массовый расход умножить на среднерасходную скорость $\rho Q_{\rm M} u_{\rm cpm}$, то получим движущую силу, которая перемещает массу со средней скоростью $u_{\rm cp}$ и имеет размерность силы [H], разделив на площадь сечения канала найдем выталкивающую воздух силу, приходящуюся на единицу площади $\frac{\rho Q_{\rm M} u_{\rm cpm}}{S_{\rm M}}$ с размерностью (H/м²). Эта сила должна быть равна действующей на массу центробежной силе минус силе вязкого сопротивления канала, т.е.

$$\frac{\rho\omega^2l_{\scriptscriptstyle M}^2}{2} - \frac{\zeta_{\scriptscriptstyle M}l_{\scriptscriptstyle M}\rho u_{\scriptscriptstyle CPM}^2}{2d_{\scriptscriptstyle 2M}} = \frac{\rho Q_{\scriptscriptstyle M}u_{\scriptscriptstyle CPM}}{S_{\scriptscriptstyle M}}\,,$$

где ρ — плотность воздуха, ω — угловая скорость вращения турбины, $\zeta_{\rm M}$ - коэффициент гидравлического сопротивления канала [2], $l_{\rm M}$ - длина маха, $d_{\rm 9M}$ - эквивалентный диаметр канала, $S_{\rm M}$ — площадь поперечного сечения канала, $Q_{\rm M}$ - объемный расход подогретой воздушной массы, $u_{\rm cpM}$ - скорость ветра.

Или

$$\frac{\omega^2 l_M^2}{2} = \frac{\zeta_M l_M Q_M^2}{2 d_{\text{av}} S_M^2} + \frac{Q_M^2}{S_M^2}.$$
 (1)

Учитывая, что
$$\omega^2 l_v^2 = V^2$$
, $\frac{Q_{\scriptscriptstyle M}^2}{S_{\scriptscriptstyle M}^2} = u_{\scriptscriptstyle {\rm cpm}}^2 \zeta = 4,62 {\rm Re}_{\scriptscriptstyle {\rm um}}^{-0.488}$, где ${\rm Re}_{\scriptstyle {\rm um}} = \frac{u_{\scriptscriptstyle {\rm cpm}} d_{\scriptscriptstyle {\rm 3M}}}{v} = \frac{4 Q_{\scriptscriptstyle {\rm M}}}{v \Phi_{\scriptscriptstyle {\rm M}}}$,

$$Re_{u}^{2} + 2,31 \frac{l_{M}}{d_{M}} Re_{u}^{1.512} - \frac{d_{M}^{2}}{2\Phi_{M}^{2}} Re_{v}^{2} = 0$$
 (2)

решение, которого даст величину расхода теплого воздуха внутри маха за счет естественной вентиляции [3]. Этот расход теплого воздуха распределяется в равной доле по двум половинкам рабочей лопасти, что дает возможность определить величину Re_{uл} в рабочей лопасти. Так как воздух должен выбрасываться из двух отверстий, расположенных на концах лопасти, то расход воздуха в каждой половинке лопасти уменьшается вдвое

$$Q_{\pi} = \frac{Q_{M}}{2} \tag{3}$$

соответсвенно изменяются значения величин $u_{\text{срл}}$ и $\zeta_{\text{л}}$ в лопасти.

При построении методики теплового расчета необходимо иметь ввиду, что $F_{3\text{H}}$ - $F_{3\text{B}}$ = Δ - толщина стенки, $T_{w2} = T_{w1} - \frac{q\Delta}{\lambda_k}$, q – количество тепла, передаваемое через стенку в окружающую среду, λ_k – коэффициент теплопроводности материала стенки.

Вследствие линейного изменения температуры теплого воздуха в канале температура внутренней поверхности последнего T_{w1} приводят к постоянству разности T- $T_{wB} = \overline{T} - \overline{T}_{wB} = k$. Очевидно, при постоянной толщине стенок канала и однородности материала ($\lambda_k = \text{const}$), из которого изготовлена лопасть, температура наружной поверхности T_{wH} будет отличаться от T_{wB} на постоянную величину T_{wB} - T_{wH} =const. Таким образом, все 3 функции $T(\overline{z})$, $T_{wB}(\overline{z})$, $T_{wH}(\overline{z})$ параллельны друг другу. Уравнения (1) и (2) определяют полные количества тепла, отдаваемого из канала в целом. Что касается уравнения (3), то теплоотдача от наружной стенки лопасти к набегающему потоку меняется по длине канала, так как T_{wH} снижается, а T_{∞} =const. Поэтому это уравнение следует записать в виде

$$q_{_{\Pi H}}(\overline{z}) = \alpha_{_{\Pi H}} F_{_{\Pi H}}(T_{_{\mathbf{W}H}}(\overline{z}) - T_{_{\infty}}).$$

Чтобы найти полное количество тепла, отдаваемого наружной поверхности лопасти потоку следует проинтегрировать последнее уравнение по длине лопасти

$$q_{_{ЛH}}=\int_{0}^{1}q_{_{ЛH}}(\overline{z})\,d\overline{z}=\alpha_{_{ЛH}}F_{_{ЛH}}\int_{0}^{1}(T_{_{ЛH}}(\overline{z})-T_{_{\infty}})\,d\overline{z}=\alpha_{_{ЛH}}F_{_{ЛH}}(\overline{T}_{_{WH}}-T_{_{\infty}}),$$
 (4) где $q_{_{ЛH}}$ - количество тепла, отдаваемого наружной поверхности лопасти, $T_{_{\infty}}$ - температура окружающей среды, $F_{_{ЛH}}$ - площадь поверхности канала, $\overline{T}_{_{WH}}$ - средняя температура наружной поверхности канала, $T_{_{ЛH}}$ - коэффициент

теплоотдачи. $q_{\rm лн}$ T_{∞} $F_{\rm лн}$ $T_{\rm лн}$ $\alpha_{\rm лн}$ Процесс теплоотдачи движущейся лопасти набегающему на него потоку описывается

следующей системой уравнений
$$T_{_{ЛH}}$$

$$q_{_{\Pi}} = \rho Q C p(T_{_{0\Pi}} - T_{_{1\Pi}})$$

$$q_{_{\Pi B}} = q_{_{0\Pi}} = \alpha_{_{\Pi B}} F_{_{\Pi B}} (\overline{T}_{_{\Pi}} - \overline{T}_{_{W \Pi \Pi}}) = \tau_{_{\Pi B}} C p \frac{F_{_{\Pi B}}}{u_{_{cp}}} (\overline{T}_{_{\Pi}} - \overline{T}_{_{WB}})$$

$$\overline{T}_{_{W \Pi \Pi}} = \overline{T}_{_{W \Pi \Pi}} - \frac{q_{_{\Pi 0}} \Delta}{\lambda_{_{\Pi}} F_{_{\Pi}}}$$

$$q_{_{\Pi H}} = \alpha_{_{\Pi H}} F_{_{\Pi H}} (\overline{T}_{_{W H}} - \overline{T}_{_{\infty}}) = \tau_{_{\Pi H}} C p \frac{F_{_{\Pi H}}}{u_{_{cp}}} (\overline{T}_{_{W H}} - \overline{T}_{_{\infty}}),$$
 (5)

где $T_{0\pi}$ - начальная температура входящего в канала газа, $T_{1\pi}$ – температура выходящего из канала газа, $\tau_{\pi\pi}$ - напряжение трения, λ_{π} - коэффициент теплопроводности материала стенки, Δ - толщина стенки

При этом следует иметь ввиду, что

$$T_{\pi wh0} = \overline{T}_{\pi wh} + \frac{T_{\pi wh0} - T_{\pi wk1}}{2} \; ; \qquad \quad T_{\pi wh0} = \overline{T}_{\pi wh} + \frac{T_{\pi wh0} - T_{\pi wk1}}{2}.$$

Или

$$\begin{split} T_{\scriptscriptstyle{\Pi}WH0} &= 2\overline{T}_{\scriptscriptstyle{\Pi}WH} - T_{\scriptscriptstyle{\Pi}WH1}, \\ T_{\scriptscriptstyle{\Pi}WH1} &= 2\overline{T}_{\scriptscriptstyle{\Pi}WH} - T_{\scriptscriptstyle{\Pi}WH0}, \\ F_{\scriptscriptstyle{\Pi}H} &= F_{\scriptscriptstyle{\Pi}B} - 2\Delta l_{\scriptscriptstyle{\Pi}} \,. \end{split}$$

Соответственно средняя температура воздуха в лопасти

$$\overline{T}_{\Pi} = \frac{T_{0\Pi} + T_{1\Pi}}{2}.$$

Очевидно, можно также представить в виде

$$\overline{T}_{\Pi} = \frac{T_{0\Pi} - T_{1\Pi}}{2} + T_{1\Pi},\tag{6}$$

$$T_{\Pi} = \overline{T}_{0\Pi} - \frac{T_{0\Pi} - T_{1\Pi}}{2} \,. \tag{7}$$

Сделаем следующую операцию: из уравнения (5) имеем

$$\overline{T}_{_{\Pi}} - \overline{T}_{_{\mathbf{W}\Pi\Pi}} = \frac{q_{_{0\Pi}}u_{_{CP}}}{\tau_{_{\Pi H}}C_{p}F_{_{\Pi H}}} = \Delta T_{1}^{_{\Pi}} \ .$$

Сложив эти два уравнения, придем к равенству

$$\overline{T}_{\pi} - T_{\infty} + \overline{T}_{\mathbf{w}_{\pi\pi}} - \overline{T}_{\mathbf{w}_{\pi\pi}} = \overline{T}_{\pi} - T_{\infty} - \frac{q_0 \Delta}{\lambda_{\pi} F_{\pi}} = \Delta T_1^{\pi} + \Delta T_2^{\pi} \; ,$$

или
$$\overline{T}_{\scriptscriptstyle \Pi} = T_{\scriptscriptstyle \infty} + rac{q_0 \Delta}{\lambda_{\scriptscriptstyle \Pi} F_{\scriptscriptstyle \Pi}} + \Delta T_1^{\scriptscriptstyle \Pi} + \Delta T_2^{\scriptscriptstyle \Pi}.$$

Преобразуем среднюю температуру теплого воздуха (\overline{T}_{n}) по формуле (6) и запишем

$$\overline{T}_{1\pi} - T_{\infty} = \frac{q_0 \Delta}{\lambda_{\pi} F_{\pi}} + + \Delta T_1^{\pi} + \Delta T_2^{\pi} - + \Delta T_3^{\pi}, \tag{8}$$

$$\tau_{_{\mathrm{JB}}}=rac{\zeta}{8}\rho u_{cp}^{2}$$
 .

Для канала имеющую форму крылового профиля NASA – 0021 $\zeta = 4.62 \text{Re}^{-0.488}$ Соответственно для внешней задачи

$$\tau_{\text{JH}} = 0.0296 \text{Re}_{\text{V}}^{-0.2} \rho \text{V}^2.$$

Используя выражения для $\tau_{\text{лв}}$ и $\tau_{\text{лн}}$, запишем

$$\Delta T_1^{\pi} = \frac{q_{0\pi}}{\frac{\zeta}{8}\rho u_{cp}\frac{\lambda}{\mu}F_{\pi\theta}},$$

$$\Delta T_2^{\scriptscriptstyle \Pi} = \frac{q_{\scriptscriptstyle 0.7}}{0.0296 Re_V^{-0.2} \rho V_{\scriptscriptstyle u}^{\lambda} F_{\scriptscriptstyle JH}},$$

$$\Delta T_3^{\pi} = \frac{q_{0\pi}}{2\rho Q_{\overline{u}}^{\lambda}} = \frac{2q_{0\pi}}{Re_u \Phi \lambda}.$$

Приведем последние равенства к удобному для вычислений виду

$$\Delta T_1^{\pi} = \frac{32Sq_{0\pi}}{4.62Re_{\nu}^{0.512}\lambda \Phi^2 l_{\pi}}$$

$$\Delta T_2^{\pi} = \frac{q_{0\pi}}{0.0296 Re_V^{0.8} \lambda l_{\pi}},$$

$$\Delta T_3^{\pi} = \frac{2q_{0\pi}}{Re_{\pi}\Phi\lambda}.$$

Поставим в (8) и получим

$$T_{1\pi} - T_{\infty} = q_{0\pi} \left[\frac{6,93S}{Re_{u}^{0.512} \lambda \Phi^{2} l_{\pi}} + \frac{33.8}{Re_{v}^{0.8} \lambda l_{\pi}} + \frac{\Delta}{\lambda \Phi_{\pi} l_{\pi}} - \frac{2}{Re_{u} \Phi \lambda} \right], \tag{9}$$

где $T_{1\pi}$ - температура на выходе из канала, T_{∞} - температура окружающей среды, $q_{0\pi}$ – полное количество тепла, отдаваемая через стенки канала, Φ – смоченный периметр этого сечения, Re – число Рейнольдса. $T_{1\pi}$ T_{∞} $q_{0\pi}$

Вывод

Последнее уравнение дает возможность определить полное количество тепла $q_{0\pi}$, отданное лопастью окружающей среде с температурой T_{∞} так как $T_{1\pi}$ мы задаем сами, а все величины, стоящее в квадратной скобке, могут быть определены количественно при заданных геометрических и динамических параметрах задачи.

Нетрудно видеть величины, стоящее в квадратной скобке, обратно пропорционально числам Рейнольдса и при больших их значениях достаточно малы, что приводит к высоким значениям $q_{0\pi}$. Поэтому при проведении расчета необходимо подбирать значения Re, или то же самое подбирать величину Q_0 .

Используя посследнее уровнения определили полное колличество тепла и получили зависимость расхода полного количество тепла, отдаваемая через стенки канала от скорости ветра.

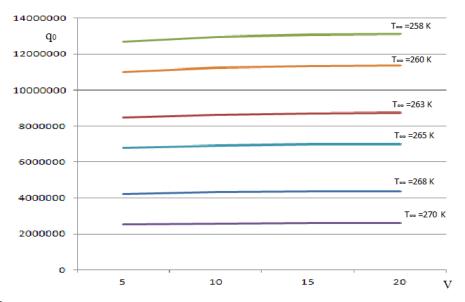


Рис.1 Зависимость расхода полного количество тепла, отдаваемая через стенки канала от скорости ветра

References

- 1. Manatbayev R.K., Dauylbaev O., Elubaeva B.T., Sadikova L.A., Tulegenova A.T.Theoretical basis of natural ventilation inside Darrieus. International Journal of Mathematics and Physics V.3, N1, p.59-61.
- 2. Ershyna A.K., Manatbayev R.K. Opredeleniya gidravlicheskogo soprotivleniya simmetrichnogo krylovogo profilya NASA − 0021. Vestnik KazNU, seriya matematika, mehanika, informatika, 2006 g. №4 (51), S.56-58.
- 3. Ershyna A.K., Ershyn SH. A., Ershyn Ch. Sh., Manatbayev R.K. Sposob teplovoi zashity vetroenergoticheskoi ustanovki karusel'nogo tipa I konstruktivnoe oformlenie (varianty) dlya ego osushchestvleniya. Patent Rossiskoi Federacii. № 2447318, g.Moskva. byul. №10 ot 10.04.2012g.

Түйін

Қазақстан айтарлықтай бөлігінде, көбінесе солтүстік-шығыс, онтүстік – батыс бағыттарда күшті ауа Республикасы солтүстік жарты шардың желді белдеуінде орналасқан және Қазақстан территориясының ағыстары байқалады. Қазақстанның көптеген аудандарында желдің орташа жылдық жылдамдығы 6 м/с-тан жоғары. Бұл осы аудандарда жел энергетикасын дамытуға қалайлы етеді.

Жылу және электр энергиясына ең зәру болған сәттерде ЖӘҚ-на қардың жабысып, кейін ауа температурасының күрт төмендеп ауыр мұз жамылғысының пайда болуынан істен шығып қалуы мүмкін. Жұмыс істеп тұрған жел турбинасының сыртқы бет жақтарын қар жабысуынан мүмкін болатын қорғаудың бір жолы, аппараттың ішкі арналары бойымен ағатын жылы ауамен жылыту болып табылады. Бұл жұмыста жылулық ауаның нақты аппараттың қабырғасынан жұмсалуын есептеу әдістемесі қарастырылады. Бұл әдістемені қолдана отырып, арнайы каналдың қабырғаларындағы толық жылу мөлшерінің шығыны анықталды.

Түйін сөздер: Жел турбинасы, Рейнольдс саны, жылы ауа, жел жылдамдығы, қалақша.

Abstract

The Republic of Kazakhstan in terms of geography is in a wind zone of the northern hemisphere, and in large parts of Kazakhstan, fairly strong air currents, mainly the north-east, south-west. In some regions of Kazakhstan annual average wind speed is greater than 6~m/s, which makes the area attractive for wind power development.

In times of greatest need in heat and power turbine can be damaged due to wet snow drifts, followed by a sharp decrease in air temperature and the formation of heavy ice on them.

One possible way to protect the outer surface of the operating wind turbines on wet snow is heated by warm air flowing through the internal channels apparatus. Thermal protection is a more radical way. This paper discusses the method of calculation of the heat flow of air through the wall of the machine. Using this technique, the total costs were determined amount of heat on the walls of a particular channel.

Key words: wind turbine, warm air, Reynolds number, wind speed, blade.