
978-1-6654-2538-4/21/$31.00 ©2021 IEEE

Emulation of x86 computer on FPGA

Stepan Vyazigin
Department of Artificial Intelligence and

Big Data
Al-Farabi Kazakh National University

Almaty, Kazakhstan

Anuar Dyusembaev
Department of Artificial Intelligence and

Big Data
Al-Farabi Kazakh National University

Almaty, Kazakhstan

Madina Mansurova
Department of Artificial Intelligence and

Big Data
Al-Farabi Kazakh National University

Almaty, Kazakhstan

Abstract— It is well known that, emulation in the form of

software is the predominant method for engineers to evaluate the

capabilities of the studied microprocessors and embedded systems.

There are three main criteria for evaluating a model using

software tools: modeling speed, model accuracy, and model

completeness. The increasing complexity of the processor and the

tendency to have an increasing number of processors on the chip

put a strain on simulators to achieve all of the above criteria,

including accurate fixation of processes in the OS. Thus, the main

task in our work is experiments-prototyping using an emulation

system and analysis of the results of the described experiments,

which satisfies all three criteria. The system is a Board with FPGA,

RAM, ROM, real-time clock, DAC chips, and connectors for

connecting a monitor, keyboard, and mouse manipulator soldered

on it. The system is based on the FPGA Cyclone IV from

ALTERA. Which, thanks to a sufficient number of logical cells,

allows you to simulate not only a single processor, but also other

components of the computer as a whole. Therefore, you can apply

architectural changes to the processor and evaluate their impact

on the entire system. We use this FPGA-based emulation system

to validate the computer's FPGA emulation capabilities. The

paper justified the possibility of emulating a computer on an

FPGA and its ability to run real operating systems that are not

stripped down. The novelty of this project is that unlike other

similar projects, the system developed by us allows you to emulate

a full-fledged personal computer with an x86 processor

architecture, on the basis of which you can emulate more modern

computers with processors. For example: Intel Atom or Intel

Celeron. However, to achieve these goals, you will need to use a

more developed FPGA, based on the methodology proposed in this

paper.

Keywords— FPGA, emulation, PC, electronics, Pentium

I. INTRODUCTION

Computer architecture research has traditionally used
software to emulate a single-core processor such as
SimpleScalar [1]. Both previously and today, improving the
architecture of processors and memory hierarchies is an urgent
task. In addition, there are currently additional optimization
requirements across the entire system stack (processor
architecture, command set, device drivers, operating system, and
applications) with multiple processors. However, the above-
mentioned research at the system level is constrained by a
certain contradiction between the speed and detail of modeling
software and hardware components, and this contradiction is
inherent in software simulators, traditionally used for
innovations in microprocessor systems. Field Programmable

Gate Arrays (FPGA) are considered as a solution to this
contradiction and are aimed at developing a new research
infrastructure of the system stack that simulates a complete
system (processor, video card, sound card, North and South
bridges, network modem, etc.) [2]. Flexibility, speed (both
development time and simulation time) , and sufficient FPGA
capacity allow developers to emulate microprocessor systems
and computers in General. It should be noted that with the onset
of the 4th industrial revolution [3], in the development and
implementation of smart technologies in the urban environment,
such as the MQTT Service Broker [4] and With the transition of
states to electronic provision of services, many security
problems have arisen both for personal data [5] or the Event
Handler system as a MQTT [6] and for the protection of systems
in general. In connection with the software implementation of
various architectures, FPGA-based projects allow not only to
parallelize information processing at the hardware level, but also
to maximize information protection from hardware backdoors or
so-called backdoors on the part of chip manufacturers, for
example: Intel Management Engine [7]. However, one of the
most difficult issues facing the development of an emulation
system on an FPGA is compatibility with existing operating
systems (OS). Manufacturers have developed processor cores
for FPGA that are very small and simple, but have limited
support even for embedded operating systems like Barebone. In
addition, in order to run existing OS binaries, including closed
source ones such as Windows, it forces developers to consider
binary translation of OS files as a solution to the binary
translation problem [8]. In this research and convenience in this
work, we emulate a version of a commercial desktop computer
with an x86 processor on an FPGA to run real operating systems.
To be more precise, we replaced the computer with a debugging
Board with the necessary components soldered on it. Debugging
Board components: FPGA, RAM, ROM, real-time clock, and
some other chips are required to connect the FPGA to PC
peripherals. The following devices are emulated on an FPGA:

• Pentium compatible processor running at 50 MHz with a
32 KB cache.

• IDE controller.

• SD-IDE interface Converter.

• Intel 8259 compatible programmable interrupt
controllers

• Intel 8237 compatible direct memory access controller
(DMA)

• Sound Blaster – sound card

• Intel 8254 compatible programmable three-channel
timer and counter

• Intel 8042 compatible keyboard and mouse controller

• Standard VGA video card

• 8250 UART-COM port

It is important to emphasize that the FPGA-based computer
emulation system allows us to run real operating systems on the
FPGA, such as DOS, FreeDOS, Linux, and Windows, and
interacts with real peripherals. The ability to emulate a PC based
on FPGA provides a powerful tool for research and modification
of more advanced microprocessors. Although our proposed
emulator system does not contain a modern microprocessor, its
applicability to modern architectural research increases due to
the advanced modeling capabilities.

II. FEATURES OF EMULATION SYSTEMS

The concept of using FPGA for faster and more accurate
research of the microprocessor development space has recently
become widespread, which has led to an increase in the number
of publications on this topic [9]. Some of these works focus on
speeding up simulation time by offloading highly detailed
resource modeling in FPGA, while the software simulator
remains the core of the emulation environment [10]. Other
studies often focus on a single architectural innovation (for
example, transactional parallel systems [11], caching [12],
vector-thread processors [13]) and building models of the
corresponding hardware based on FPGA. In addition to these
approaches, we have implemented a full-fledged
microprocessor on FPGA, which allows you to use CPUs with
different architectures, for example: x86, x64, ARM, and others.
Most of the RTL models of microprocessors have already
become available for the SPARC V8 , Niagara, and PowerPC .
These cores can be synthesized in FPGAs and are designed to
facilitate design, as seen in Jones et al. [14]. Our emulation
platform also provides several orders of magnitude faster
simulation compared to software emulators such as Bochs and
Qemu. Some existing developments in embedded systems that
apply add-ons to an FPGA-based core have already been listed
above. The utility of the application microarchitecture variation
was seen in [17], and its automatic navigation in [18]. In
addition, the effect of including user instructions in such kernels
has been studied [19]. Unlike Amber (Conor Santifort), Cortex-
M1 (ARM), Navre (Sébastien Bourdeauducq), LEON (ESA,
Aeroflex Gaisler), OpenSPARCT (Sun) [23], ZPU (Zylin AS) ,
HIPP [20] and others, we focus on desktop systems, interaction
of peripherals and an operating system that supports x86
architecture.

III. FPGA-BASED EMULATION SYSTEM

In our work the emulation environment consists of four main
components:

FPGA on which the Pentium processor and PC motherboard
are emulated;

• hardware, including the debug Board and peripherals;

• software / operating system;

• necessary software for the implementation of the FPGA
project (Quartus II).

• Let's describe each of these four points in more detail.

A. The Emulated hardware

• The processor used in developed emulation system is a
recreated copy of the Pentium [25] released after i486
and before Pentium Pro in 1993 using 0.6 micron
technology, consisting of 3.2 million transistors and
initially operating at a frequency of 75 MHz. It is a 32 bit
processor with 5 step pipelining that supports the IA32
instruction set, which includes floating-point instructions
using the built-in floating-point module in the pipeline. It
is equipped with a level 1 cache of 8 KB for data and
instructions.

• IDE hard disk and floppy disk controller, Intel 8259
compatible programmable interrupt controllers, Intel
8237 compatible direct memory access controller
(DMA), Sound Blaster, Intel 8254 compatible
programmable three-channel timer and counter, Intel
8042 compatible keyboard and mouse controller,
standard VGA video card, 8250 UART-COM port were
recreated from the technical documentation of the
address space distributed by BOCHS[24].

The debug Board contains the FPGA (Fig. 1) and the
necessary chips and connectors for connecting peripherals.
These include SDRAM, flash for bios and vgabios, a TTL logic
level Converter for com port, and a DAC for VGA. The FPGA
used for emulation is a 90 nanometer Altera Cyclone IV device.
A more detailed analysis of the Cyclone IV resources used by
the system will be given in section 5.

Fig. 1. Image of a PC emulator system based on an FPGA debug Board
equipped with different hardware peripherals running Windows ME

B. Emulator debugging Board

The DE2-115 Board from Terasic was chosen as the basis
for the main Board on the ALTERA Cyclone IV e
ep4ce115f29c7 FPGA. This Board has all the necessary
connectors for connecting peripherals. Such as a keyboard,
mouse manipulator, VGA display, logical level Converter for
COM port, etc. as well as 128 MB SDRAM and 8 MB flash for
storing BIOS and VGABIOS, as well as a connector for

connecting SD cards. In addition, a second SD card and an
external real-time clock are connected to the debug Board. SD
cards play the role of IDE hard drives and floppy disks. The
other necessary devices are emulated on the FPGA.

1) Motherboard
As previously mentioned in the emulation system, the FPGA

is taken as a basis on which all the necessary PC components are
recreated. The emulator motherboard (Fig. 2) can be divided into
2 main parts: FPGA and peripherals.

Fig. 2. Block diagram of the emulator

Peripheral devices include:

• Flash memory is non-volatile memory that is used to
store BIOS and VGABIOS with factory settings.

• SDRAM is a volatile memory that is used as PC RAM.

• RTC (Real Time Clock) is a CMOS RTC electronic
circuit MC146818 designed to take into account
chronometric data (current time, date, day of the week,
etc.), is a system from an autonomous power source,
taking into account devices and a tiny static memory with
a very low power consumption in which the basic BIOS
settings are stored.

• SD cards - in this case, they were used as hard drives on
which the OS was installed. One of the SD cards can
serve 2 roles: hard drive and floppy. Switching between
roles is carried out depending on the image recorded on
the SD card.

• DAC (digital to analog converter) - this device converts
a digital signal that outputs the GPU to the FPGA into an
analog signal for connecting to a monitor using the VGA
video interface standard.

• DAC, ADC (digital to analog converter, analog to digital
converter) - this device converts the digital signal that the
audio card outputs to the FPGA into analog for
connection to speakers or headphones. It also converts an
analog signal to digital for connecting a microphone to a
sound card.

• UART / TTL is a logic level converter chip from 3.3 V
to + -15 V for connecting to the port.

C. Testing operating systems

The challenge of our FPGA-based system is the ability to
load real operating systems. We successfully installed
unmodified versions of FreeDOS, DOS 6.2, Windows 96,
Windows 98, Windows ME, Windows 2000, Windows XP,
Tiny core linux, Fedora Core 4, Red Hat 9; the installation
procedure did not differ from the usual desktop system except
that instead of the installation disk, we used its image
downloaded to the SD card.

To measure the OS boot time for each of them, a program
was written and added to autoload with the sole purpose of
displaying a message via the COM port. The measurements
were carried out using the standard utility SignalTap II Logic
Analyzer built into Quartus II, the results of which can be seen
in Figure 3, the input parameters of which are:

Clock frequency: internal generator at 10 Hz.

Triggers: Start FPGA and start data transfer via COM port.

Fig. 3. PC boot schedule with OS

As you can see from the graph (Fig. 3), loading an emulated
PC with an OS without a graphical interface takes from 8 to 16
seconds, and with a graphical interface from 100 to 120 seconds.
The average startup time of some standard applications can be
seen in Figure 4.

Fig. 4. Application launch schedule

Typing is definitely done at full speed. To measure the
maximum search time for text files, the following experiment
was carried out:

0

50

100

150

200

T
im

e
 (

S
)

0

1

2

3

4

5

T
im

e
 (

S
) Windows 96

Windows 98

Windows ME

Windows 2000

Windows XP

Files of different sizes with an arbitrary set of characters and
the search word at the end are given. The standard application
“notepad” was chosen as the search application. The search time
was measured by filming the search process with a video camera
from the moment the “Search” button was pressed and until the
end of the search, the results of which are shown in Figure 5.

Fig. 5. Graph of delay during search in a text file

Thus, the system is ideally suited as a desktop computer for
very simple non-graphical applications. And for more complex
ones, you need to replace the video card, the requirements for
which depend on the application.

D. Development of an emulator on FPGA

For PC synthesis and placement, we use Quartus II 16.0 64
bit, and for routing emulated peripherals, we use The qsys
subprogram built into Quartus II. The entire compilation process
takes about 1 hour to synthesize, map, place, route, and generate
the bit stream, followed by an additional 2 minutes to load the
bit stream to the device. This is orders of magnitude faster than
the manufacturing time of the silicon implementation of the
processor, which can be inserted directly into the motherboard.
From a debugging perspective, Modelsim is used to simulate
VHDL in a step with a software simulator that simulates the
original behavior of the processor and emulated devices. A set
of regression tests is used to make sure that the processor is still
running on x86. Regression tests are a subset of those used to
test the original Pentium.

IV. DESCRIPTION AND SOME FEATURES OF SOFT PROCESSORS

This section will describe the improvements of the integrated
Pentium processor when increasing the amount of memory
caches, as well as the ability to connect already emulated
processors to our system.

A. Third-party SOFT processors

Today, there is a fairly large selection OF soft processors for
FPGA, both old and relatively new, but in most of them the main
distinguishing feature is the RISC architecture that allows you
to run Linux on them at best.

For this system, the following SOFT processors were tested
for the role of the CPU: Amber-a processor compatible with
ARM A23; VexRiscv-a processor with the RV32I instruction
set; as well as a number of other processors such as: LEON;
OpenSPARC; CPU86; ZetCPU (x8086); OpenRISC, NIOSII.
The space occupied by these SOFT processors is shown in figure
6.

Fig. 6. Space occupied by various SOFT processors

B. Emulator debugging Board

The cache level 1 of the selected Pentium processor is 8 KB,
which is of course small by today's standards, but enough to
demonstrate the possibility of changing the processor
configuration. Recall that there are two similar caches, one for
data memory, the other for instruction memory, each of which
has a size of 8 KB and is a two-way associative set of 32 bytes
per cache line [21]. In our experiments, the cache sizes were
increased 4 times, and became 32 KB 8 band associative caches.
The LRU algorithm, which determines which row is pushed out
in the full set, has also been extended to handle sets of 8 cache
rows. Instruction and data caches can be individually configured
for 8 KB or 32 KB versions. for larger volumes, you need to
replace the FPGA, but in this work, we always keep them the
same size 32 KB.

V. EXPERIMENT WITH THE EMULATOR SYSTEM

In this section, we analyze and test a PC system with an
emulated Pentium processor based on FPGA to obtain the
following results: Allocation of system resources of the
emulated PC according to the CAD stream; Comparison
between the original cache of level 1 8 KB and our extended
cache of level 1 32 KB. We will look at each stage in more detail.
Note that the number of elements used in this paper is considered
in terms of FPGA resources. However, the FPGA resource
analysis can be used for preliminary estimation of the number of
transistors when implemented on a silicon wafer [22].

A. Distribution of the emulator system volumes

In this work, we emulated a computer based on a Pentium
compatible processor in VHDL for Cyclone IV E
EP4CE115F29C7 and noticed that more than half of the device's
resources were used; the corresponding data is shown in table 1,
taken after completing high-level synthesis and mapping the
model in Quartus.

TABLE I. USE OF SYSTEM RESOURCES IN CYCLONE IV

Resource Used space Percentage
utilization

Total logic
elements

104731 91 %

Total
combinational

functions

95179 83 %

Dedicated logic
registers

71273 62 %

0

1

2

3

1 3 5 7 9 1113151719

T
im

e
 (

S
)

Size (MB)

Text file

In our experiment, 91 % of the logic elements were used to
store all the system logic. In addition, 62 % of the register blocks
were used. Although more than half of the FPGA resources were
used for emulation, there are still enough unused elements on
the FPGA to extend the PC's capabilities. Figure 7 shows a
breakdown of each Cyclone IV resource used by different blocks
in the system.

Fig. 7. Space occupied by PC components

As you can see from the graph (Fig. 7), Most of the logic
elements and registers were used by the processor, sound card,
and hard disk controller. Cyclone IV logic elements were used
mainly by FPU, ALU, address generation and cache, conversion
of SD-IDE interfaces and audio codecs. The entire memory
hierarchy in the experiment (including caches and the bus
interface) required approximately 30 % of the logic elements,
assuming that even when considering logic alone, almost half of
the chip is allocated for communication, leaving the other half
for management and actual calculations. Special attention
should be paid to the organization of access to RAM and the
relationship between a large number of modules via DMA,
which is the main factor affecting both the speed and the amount
of space occupied.

B. Changing the size of the level 1 cache for the emulated

processor

Figure 8 shows the additional FPGA resources consumed
when increasing the L1 cache from 8 KB (in 2 directions) to 32
KB (in 8 directions). The expansion required about 24 % more
logic, as well as more than 50 % more registers, which made this
growth in the L1 cache very expensive in terms of volume.
However, the performance gain is quite significant. On average,
the performance improvement reaches 16 %, sometimes

reaching 40 %. Despite the presence of a significant number of
publications devoted to the study of Cache functioning and its
interaction with the CPU, OP, OS, and other computer
components, this work is of interest from the point of view of
controlling the actions of the operating system, such as clearing
the cache and replacing it, while maintaining high simulation
speeds. However, such studies have not received sufficient
coverage in the literature.

Fig. 8. Increasing the space occupied by the level 1 cache

C. A comparison of the performance of emulators

As you know, today there are several PC emulators such as:
Limbo, Qemu, Bochs, DOSBox, VirtualBox, VMware
Workstation, Wine, Simics [15], SimOS [16], etc. each of these
emulators has its advantages and disadvantages. Some
emulators were not affected in this work. For example:
VirtualBox and VMware Workstation-do not emulate the
processor but use the host processor; Wine and Limbo-are
focused on Android devices. To confirm the effectiveness of our
emulator, the following experiment was performed:

The conditions of the experiment:

1) 3 PC emulators: Qemu; Bochs; FPGA emulator
developed by US

2) processor Frequency 50 MHz

3) 128 MB RAM

4) Same Windows XP image

To conduct experiments, we developed a specialized
program that emits the activity of an office computer. Namely:

1) waiting for work to start;

2) open the directory and select documents;

3) typing;

4) move the text editor window.

During the experiments, the load on the emulated processor
was recorded. The results of which can be seen in figure 9.
Where from 0 to 1 second-waiting for work to start; from 1 to 4
seconds - opening directories and selecting documents; from 4
to 6 seconds-typing; from 6 to 8 seconds-moving the text editor
window.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

logic

elements

logic

registers

COM

GPU

Audio

SDRAM

RTC

PC BUS

PC DMA

PS2

PIT

PIC

Floppy

HDD

BIOS loader

CPU

0 %

10 %

20 %

30 %

40 %

50 %

60 %

logic elements combinational

functions

logic registers

Fig. 9. CPU usage

As you can see from the graph, the FPGA emulator we
developed shows good results compared to other emulators in
our experiment. Especially good results are seen when working
with files and text, while the CPU load does not exceed 5 %,
which is 3 times less compared to Bochs and 6 times less
compared to Qemu. In this case, the text set that is fed to the
emulation system is comparable to the text set in Bochs and in
our experiment loads the processor by 4-7 %, in contrast to
Qemu which loads the processor by 11-25 % (Fig. 9). Which
allows you to make the following conclusion. The FPGA
emulation we created is as good as commercial PC emulators,
and in some cases even better. It performed best when
interacting with external devices such as the mouse and
keyboard manipulator (Fig. 9). It should also be noted that
during the experiments it turned out that the Bochs emulator
does not work well with the mouse manipulator.

VI. CONCLUSION

The FPGA-based PC emulator is a powerful tool for
researching architectural improvements to processors and other
desktop components. Its ability to quickly prototype
architectural changes and measure their impact at the application
level in the presence of a real operating system provides a more
realistic research tool without the expensive costs and long
design times associated with silicon-based creation.

The system we emulated showed that it can be used to
develop and achieve greater efficiency of the source computer
by optimizing the entire system stack: architecture, device
drivers with installed instructions, operating systems and
applications without limiting the time of simulation of the
software simulator. For illustration, we used FPGAs with fairly
limited functions, but using more advanced FPGAs will allow
us to emulate modern multiprocessor and multicomputer
systems based on our methodology.

REFERENCES

[1] T. Austin and D. Burger. The SimpleScalar Tool Set Version 3.0, 1998.

[2] G. Gibeling, A. Schultz, and K. Asanovic. RAMP: The RAMP
Architecture and Description Language. Technical Report, 2006.

[3] A. Romanovs, I. Pichkalov, E. Sabanovic, J. Skirelis. Industry 4.0:
Methodologies, Tools and Applications. 2019 Open Conference of
Electrical, Electronic and Information Sciences (eStream). Vilnius,
Lithuania, April 2019.

[4] A. Zabasta, N. Kunicina, K. Kondratjevs, A. Patlins, L. Ribickis, J.
Delsing. MQTT Service Broker for Enabling the Interoperability of Smart

City Systems. 2018 Energy and Sustainability for Small Developing
Economies (ES2DE). Funchal, Portugal, July 2018.

[5] P. Dorogovs, A. Romanovs. Overview of government e-service security
challenges. 2015 IEEE 3rd Workshop on Advances in Information,
Electronic and Electrical Engineering (AIEEE). Riga, Latvia, Nov. 2015.

[6] A. Zabasta, K. Kondratjevs, J. Peksa, N. Kunicina. MQTT enabled service
broker for implementation arrowhead core systems for automation of
control of utility' systems. 2017 5th IEEE Workshop on Advances in
Information, Electronic and Electrical Engineering (AIEEE). Riga,
Latvia, Nov. 2017.

[7] Security researchers lift lid on snafu at Black Hat Europe. Intel
Management Engine pwned by buffer overflow.
URL:https://www.theregister.com/2017/12/06/intel_management_engin
e_pwned_by_buffer_overflow/

[8] G. Gibeling and J. Wawrzynek. A Universal Processor for RAMP.
Technical Report, 2006.

[9] International Symposium on High-Performance Computer Architecture.
Workshop on Architecture Research using FPGA Platforms, San
Francisco, 2005.

[10] D. Chiou, H. Sunjeliwala, D. Sunwoo, J. Xu, and N. Patil. FPGA-based
Fast, Cycle-Accurate, Full-System Simulators. In Workshop on
Architecture Research using FPGA Platforms in the 12th International
Symposium on High-Performance Computer Architecture, 2006.

[11] C. Kozyrakis and K. Olukotun. ATLAS: A Scalable Emulator for
Transactional Parallel Systems. In Workshop on Architecture Research
using FPGA Platforms in the 11th International Symposium on High-
Performance Computer Architecture, 2005.

[12] S.-L. Lu, E. Nurvitadhi, J. Hong, and S. Larsen. Memory Subsystem
Performance Evaluation with FPGA based Emulators. In Workshop on
Architecture Research using FPGA Platforms in the 11th International
Symposium on High-Performance Computer Architecture, 2005.

[13] J. Kasper, R. Krashinksy, C. Batten, and K. Asanovic. A Parameterizable
FPGA Prototype of a Vector-Thread Processor. In Workshop on
Architecture Research using FPGA Platforms in the 11th International
Symposium on High-Performance Computer Architecture, 2005.

[14] P. Jones, S. Padmanabhan, D. Rymarz, J. Maschmeyer, D. V. Schuehler,
J. W. Lockwood, and R. K. Cytron. Liquid Architecture. In International
Parallel and Distributed Processing Symposium: Workshop on Next
Generation Software, 2004.

[15] P. S. M. et al. Simics: A Full System Simulation Platform. IEEE
Computer, 35(2):50–58, 2002.

[16] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete
Computer System Simulation: The SimOS Approach. IEEE parallel and
distributed technology: systems and applications, 3(4):34–43, Winter
1995.

[17] P. Yiannacouras, J. G. Steffan, and J. Rose. Application-Specific
Customization of Soft Processor Microarchitecture. In FPGA ’06:
Proceedings of the 2006 international symposium on Field-programmable
gate arrays. ACM Press, 2006.

[18] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, and D. Tullsen.
Application-Specific Customization of Parameterized FPGA Soft-Core
Processors. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). ACM Press, 2006.

[19] P. Biswas, S. Banerjee, N. Dutt, P. Ienne, and L. Pozzi. Performance and
Energy Benefits of Instruction Set Extensions in an FPGA Soft Core. In
IEEE International Conference on VLSI Design (VLSID). IEEE, 2006.

[20] Hifn. 4450 HIPP III Storage Security Processor, 2006.

[21] Intel. The Pentium Datasheet, 1997.

[22] I. Kuon and J. Rose. Measuring the Gap BetweenFPGAs and ASICs. In
FPGA’06: Proceedings of the 2006 international symposium on Field-
programmablegate arrays. ACM Press, 2006.

[23] Sun Microsystems 2006. OpenSPARC. Sun Microsystems

[24] Bochs 2019. XT, AT, and PS/2 I/O port addresses.

[25] Intel 1997. MultiProcessor Specification.

0

20

40

60

80

0 1 2 3 4 5 6 7 8

C
P

U
 u

sa
g

e
 (

%
)

Time (S)

FPGA

Bochs

Qemu

