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Abstract

We proved that if (M, τ) is a semi-finite von Neumann algebra, x
and y are τ−measurable operators, E is exact interpolation space for the
couple (L1(0,∞), L∞(0,∞)) and f is a increasing continuous function
on [0,∞). Then

(i) in the case f(0) = 0 and g(t) = f(
√

t) is operator convex,

‖f(|x|) + f(|y|)‖E(M) ≤ ‖f(|x + y|) + f(|x − y|)‖E(M)

≤ ‖f(2|x|) + f(2|y|)‖E(M).

(ii) in the case h(t) = f(
√

t) is concave,

1
8‖f(2|x|) + f(2|y|)‖E(M) ≤ ‖f(|x + y|) + f(|x − y|)‖E(M)

≤ 8‖f(|x|) + f(|y|)‖E(M).
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1 Introduction

Let B(H) be the space of all bounded linear operators on a separable complex
Hilbert space H. A unitarily invariant norm, denote by |||·|||, is a norm defined
on a norm ideal C|||·||| in B(H), satisfying the property that |||UAV ||| = |||A|||
for all operators A ∈ C|||·||| and all unitary operators U, V ∈ B(H). With the
exception of the usual operator norm, which is defined on all of B(H), each
unitarily invariant norm ||| · ||| is a symmetric gauge function of the singular
values, and C|||·||| is a Banach space contained in the ideal of compact operators.

Hirzallah and Kittaneh in [11] proved non-commutative Clarkson inequali-
ties for unitarily invariant norms: Let A, B ∈ B(H), |||·||| be unitarily invariant
norm.

(i) If f is an increasing function on [0,∞) such that f(0) = 0, limt→∞ f(t) =
∞, and the inverse function of g(t) = f(

√
t) is operator monotone. Then

2|||f (|A|)+f(|B|)||| ≤ |||f (|A+B|)+f(|A−B|)||| ≤ 2−1|||f (2|A|)+f(2|B|)|||.
(1)

(ii) If f is a nonnegative function on [0,∞) such that h(t) = f(
√

t) is
operator monotone. Then

2−1|||f (2|A|)+f(2|B|)||| ≤ |||f (|A+B|)+f(|A−B|)||| ≤ 2|||f (|A|)+f(|B|)|||.
(2)

The main result of this paper is to give similar inequalities in the case
noncommutative symmetric space norm and τ− measurable operators.

2 Preliminaries

Throughout this paper, we denote by M a semi-finite von Neumann algebra
in the Hilbert space H with a normal faithful semi-finite trace τ . The closed
densely defined linear operator x in H with domain D(x) is said to be affiliated
with M if and only if u∗xu = x for all unitary u which belong to the commutant
M′ of M. If x is affiliated with M, the x said to be τ -measurable if for every
ε > 0 there exists a projection e ∈ M such that e(M) � D(x) and τ(e⊥) < ε
(where for any projection e we let e⊥ = 1 − e). The set of all τ -measure
operators will be denoted by L0(M). The set L0(M) is a ∗-algebra with sum
and product being the respective closure of the algebraic sum and product.
Let P(M be the lattice of projections of M. The sets

N (ε, δ) = {x ∈ L0(M) : ∃ e ∈ P(M) such that ‖xe‖ < ε and τ(e⊥) < δ}

(ε, δ > 0) from a base at 0 for an metrizable Hausdorff topology in L0(M)
called the measure topology. Equipped with the measure topology, L0(M) is
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a complete topological ∗-algebra (see [16]). For x ∈ L0(M), the generalized
singular value function μ.(x) of x is defined by

μt(x) = inf{‖xe‖; e ∈ P(M) τ(e⊥) ≤ t}, t ≥ 0.

μt(x) admits the following ”minimax” representation:

μt(x) = inf
e ∈ P(M)

τ(1 − e) ≤ t

[ sup
ξ ∈ e(H)
‖ξ‖ = 1

‖xξ‖]. (3)

As shown shortly, we have μt(x) = μt(x
1
2 )2 when x is positive.

Therefore, for a positive x, this expression reads

μt(x) = inf
e ∈ P(M)

τ(1 − e) ≤ t

[ sup
ξ ∈ e(H)
‖ξ‖ = 1

(xξ, ξ)]. (4)

We recall some terminology from the theory of rearrangement invariant
space. Let L0([0,∞)) be the linear space of almost everywhere finite complex-
valued Lebesgue measurable functions on [0,∞). For f ∈ L0([0,∞)), the
right-continuous equimeasurable non-increasing rearrangement δ(f) of |f | is
defined by

δt(f) = inf{r ∈ R : d|f |(r) ≤ t}, t ∈ [0,∞),

where d|f | is the distribution function of |f | defined via

d|f |(r) = |{s : |f(s)| > r}|, r ∈ [0,∞).

If f, g ∈ L0([0,∞)), then we say that f is submajorized by g and write
f � g if and only if

∫ a

0
δt(f)dt ≤

∫ a

0
δt(g)dt, a ≥ 0.

A Banach space E ⊂ L0([0,∞)) will be called,
(i) rearrangement invariant if and only if f ∈ E, g ∈ L0([0,∞)) and δ(f) ≤

δ(g) imply that g ∈ E and ‖f‖E ≤ ‖g‖E.
(ii) symmetric if and only if f, g ∈ E and δ(f) ≤ δ(g) imply that ‖f‖E ≤

‖g‖E.
If E is a rearrangement invariant symmetric Banach function space on

[0,∞), we define E(M) = {x ∈ L0(M) : μ(x) ∈ E}, and set ‖x‖E(M) =
‖μ(x)‖E, x ∈ E(M). Then E(M) is a Banach space(see [6, 7]). It is called a
noncommutative symmetric space associated with the rearrangement invariant
symmetric Banach function space E and semi-finite von Neumann algebra M.

Let

M2(M) =

{(
x1,1 x1,2

x2,1 x2,2

)
, xi,j ∈ M, i, j = 1, 2

}
,
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then M2(M) is a von Neumann algebra on the Hilbert space H⊕H with trace

σ(x) = σ(

(
x1,1 x1,2

x2,1 x2,2

)
) =

2∑
k=1

τ(xk,k).

For x ∈ M2(M), let

C(x) = C(

(
x1,1 x1,2

x2,1 x2,2

)
) =

(
x1,1 0
0 x2,2

)
.

Then we have that

C(x) =
1

2

2∑
j=1

(u∗)jxuj , (5)

where u = (e1−e2), e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
and 1 is the unit operator

of M(see [3]).

Notice that the sub von Neumann algebra e1M2(M)e1 =

{(
x 0
0 0

)
, x ∈ M

}

of M2(M) is isomorphic to von Neumann algebra M, where e1 as in the pre-

vious paragraph. Define T : L0(e1M2(M)e1) → L0(M) by T

(
x 0
0 0

)
=

x. It is clear that ‖Tx‖L1(M2(M)) = ‖x‖L1(M) and ‖Tx‖ = ‖x‖. If E is
a noncommutative symmetric space and exact interpolation space for the
couple (L1(0,∞), L∞(0,∞)). Then by Theorem 3.4 in [6], we have that
‖Tx‖E(M2(M)) = ‖x‖E(M), i.e.

‖
(

x 0
0 0

)
‖E(M2(M)) = ‖x‖E(M) (6)

3 Main results

To achieve our goal , we need the following lemmas

Lemma 3.1 Let x be a positive τ−measurable operator.
(i) If f is a convex function on [0,∞), then

f(〈xξ, ξ〉) ≤ 〈f(x)ξ, ξ〉 (7)

for every unit vector ξ in D(x).
(ii) If g is a concave function on [0,∞), then

〈g(x)ξ, ξ〉 ≤ g(〈xξ, ξ〉) (8)

for every unit vector ξ in D(x).
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Proof. We prove only (i). The proof of (ii) is similar. Let x =
∫∞
0 λdeλ(x) be

spectral decomposition of x, then
f(x) =

∫∞
0 f(λ)deλ(x). Since

∫∞
0 d〈eλ(x)ξ, ξ〉 = 1 and 〈xξ, ξ〉 =

∫∞
0 λd〈eλ(x)ξ, ξ〉,

for every unit vector ξ in D(x). By Jensen’s inequality, we obtain that

f(〈xξ, ξ〉) = f(
∫ ∞

0
λd〈eλ(x)ξ, ξ〉) ≤

∫ ∞

0
f(λ)d〈eλ(x)ξ, ξ〉 = 〈f(x)ξ, ξ〉.

Lemma 3.2 Let x and y be positive τ -measurable operators and let E be
an exact interpolation space for the couple (L1(0,∞), L∞(0,∞)).

(i) If f is a non-negative operator convex function on [0,∞) with f(0) = 0,
then

‖f(x) + f(y)‖E(M) ≤ 2‖f(x + y)‖E(M). (9)

(ii) If g is a non-negative increasing continuous concave function on [0,∞),
then

‖g(x + y)‖E(M) ≤ 4‖g(x) + g(y)‖E(M), (10)

Proof. Let z =

(
x

1
2 y

1
2

0 0

)
, then zz∗ =

(
x + y 0

0 0

)
and z∗z =

(
x x

1
2 y

1
2

y
1
2 x

1
2 y

)
.

(i) Since f is operator convex, by (5) we have that

‖
(

f(x) 0
0 f(y)

)
‖E(M2(M)) = ‖f(C(z∗z))‖E(M2(M)) = ‖C(f(z∗z))‖E(M2(M))

≤ ‖f(z∗z)‖E(M2(M)) = ‖f(zz∗)‖E(M2(M))

= ‖
(

f(x + y) 0
0 0

)
‖E(M2(M)).

On the other hand,

(
f(x) + f(y) 0

0 f(x) + f(y)

)
=

(
f(x) 0

0 f(y)

)
+u

(
f(x) 0

0 f(y)

)
u∗,

where u =

(
0 1
1 0

)
is unitary. So

‖
(

f(x) + f(y) 0
0 f(x) + f(y)

)
‖E(M2(M)) ≤ 2‖

(
f(x) 0

0 f(y)

)
‖E(M2(M)).

Hence

‖
(

f(x) + f(y) 0
0 f(x) + f(y)

)
‖E(M2(M)) ≤ 2‖

(
f(x + y) 0

0 0

)
‖E(M2(M)).

We using

(
f(x) + f(y) 0

0 0

)
≤
(

f(x) + f(y) 0
0 f(x) + f(y)

)
and (6), to

obtain (9).
(ii) By Lemma 2.5 in [8], we have that

μt(g(x + y)) = g(μt(x + y)) ≤ g(μ t
2
(x) + μ t

2
(y)) ≤ g(μ t

2
(x)) + g(μ t

2
(y))

= μ t
2
(g(x)) + μ t

2
(g(y)) ≤ 2μ t

2
(g(x) + g(y)).
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Since ‖2μ t
2
(g(x)+g(y))‖L1(0,∞) ≤ 4‖μt(g(x)+g(y))‖L1(0,∞), ‖2μ t

2
(g(x)+g(y))‖L∞(0,∞) ≤

2‖μt(g(x) + g(y))‖L∞(0,∞) and E is an exact interpolation space for the couple
(L1(0,∞), L∞(0,∞)). So

‖g(x + y)‖E(M) = ‖g(μt(x + y))‖E ≤ ‖2μ t
2
(g(x) + g(y))‖E

= 4‖μt(g(x) + g(y))‖E = 4‖g(x) + g(y)‖E(M).

Theorem 3.3 Let x and y be τ measurable operators and let f be an in-
creasing continuous function on [0,∞) such that f(0) = 0 and g(t) = f(

√
t) is

operator convex. Then

‖f(|x|) + f(|y|)‖E(M) ≤ ‖f(|x + y|) + f(|x − y|)‖E(M)

≤ ‖f(2|x|) + f(2|y|)‖E(M).
(11)

Proof. Since g is convex, by Lemma 3.1(i) we have that

〈(f(|x + y|) + f(|x − y|))ξ, ξ〉 = 〈(g(|x + y|2))ξ, ξ〉+ 〈(g(|x − y|2))ξ, ξ〉
≥ g(〈|x + y|2ξ, ξ〉) + g(〈|x − y|2ξ, ξ〉)
≥ 2g( 〈|x+y|2ξ,ξ〉+〈|x−y|2ξ,ξ〉

2
)

= 2g(〈(|x|2 + |y|2)ξ, ξ〉),

for any unit vector ξ in D(x)∩D(y). Using the equation (4) and the fact that
g is increasing, we see that

μt[(f(|x + y|) +f(|x − y|))]
= inf e ∈ P(M)

τ(1 − e) ≤ t

[sup ξ ∈ e(H)
‖ξ‖ = 1

〈(f(|x + y|) + f(|x − y|))ξ, ξ〉]
≥ inf e ∈ P(M)

τ(1 − e) ≤ t

[sup ξ ∈ E(H)
‖ξ‖ = 1

2g(〈(|x|2 + |y|2)ξ, ξ〉)]
= 2g[inf e ∈ P(M)

τ(1 − e) ≤ t

(sup ξ ∈ E(H)
‖ξ‖ = 1

〈(|x|2 + |y|2)ξ, ξ〉)]
= 2g[μt(|x|2 + |y|2)] = 2μt[g(|x|2 + |y|2)].

By Lemma 3.2(i), it follows that

‖f(|x + y|) + f(|x − y|)‖E(M) ≥ 2‖g(|x|2 + |y|2)‖E(M)

≥ ‖g(|x|2) + g(|y|2)‖E(M)

= ‖f(|x|) + f(|y|)‖E(M).

This is the first inequality in (11). We using this inequality to obtain that

‖f(2|x|) +f(2|y|)‖E(M)

= ‖f(|(x + y) + (x − y)|) + f(|(x + y) − (x − y)|)‖E(M)

≥ ‖f(|x + y|) + f(|x − y|)‖E(M).

So obtain the second inequality in (11).
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Theorem 3.4 Let x and y be τ measurable operators and let f be a non-
negative increasing continuous function on [0,∞) such that h(t) = f(

√
t) is

concave. Then

1
8
‖f(2|x|) + f(2|y|)‖E(M) ≤ ‖f(|x + y|) + f(|x − y|)‖E(M)

≤ 8‖f(|x|) + f(|y|)‖E(M).
(12)

Proof. Since h is concave. Now for any unit vector ξ in D(x) ∩ D(y), by
Lemma 3.1(ii) we have that

〈(f(|x + y|) + f(|x − y|))ξ, ξ〉 = 〈(h(|x + y|2))ξ, ξ〉+ 〈(h(|x − y|2))ξ, ξ〉
≤ h(〈|x + y|2ξ, ξ〉) + h(〈|x − y|2ξ, ξ〉)
≤ 2h( 〈|x+y|2ξ,ξ〉+〈|x−y|2ξ,ξ〉

2
)

= 2h(〈(|x|2 + |y|2)ξ, ξ〉).

Using the equation (4) and the fact that h is monotone, we obtain that

μt[(f(|x + y|) +f(|x − y|))]
= inf e ∈ P(M)

τ(1 − e) ≤ t

[sup ξ ∈ e(H)
‖ξ‖ = 1

〈(f(|x + y|) + f(|x − y|))ξ, ξ〉]
≤ inf e ∈ P(M)

τ(1 − e) ≤ t

[sup ξ ∈ e(H)
‖ξ‖ = 1

2h(〈(|x|2 + |y|2)ξ, ξ〉)]
= 2h[inf e ∈ P(M)

τ(1 − e) ≤ t

(sup ξ ∈ e(H)
‖ξ‖ = 1

〈(|x|2 + |y|2)ξ, ξ〉)]
= 2h[μt(|x|2 + |y|2)] = 2μt[h(|x|2 + |y|2)].

Hence, by Lemma 3.2(ii),

‖f(|x + y|) + f(|x − y|)‖E(M) ≤ 2‖h(|x|2 + |y|2)‖E(M)

≤ 8‖h(|x|2) + h(|y|2)‖E(M)

= 8‖f(|x|) + f(|y|)‖E(M).

‖f(2|x|) +f(2|y|)‖E(M)

= ‖f(|(x + y) + (x − y)|) + f(|(x + y) − (x − y)|)‖E(M)

≤ 8‖f(|x + y|) + f(|x − y|)‖E(M).

Specializing Theorems 3.3 and 3.4 to the functions f(t) = tp (2 ≤ p ≤ 4)
and f(t) = tp (0 < p ≤ 2), respectively, we obtain the following.

Corollary 3.5 Let x and y be τ measurable operators. Then

‖ |x|p + |y|p‖E(M) ≤ ‖ |x + y|p + |x − y|p‖E(M) ≤ 2p‖ |x|p + |y|p‖E(M). (13)

for 2 ≤ p ≤ 4, and

2p−3‖ |x|p + |y|p‖E(M) ≤ ‖ |x+y|p + |x−y|p‖E(M) ≤ 8‖ |x|p + |y|p‖E(M). (14)

for 0 ≤ p ≤ 2.
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